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Abstract e

Iris recognition research is heading towards enabling
more relaxed acquisition conditions. This has effects on the
quality and resolution of acquired images, severely affect-
ing the accuracy of recognition systems if not tackled ap-
propriately. In this paper, we evaluate a super-resolution
algorithm used to reconstruct iris images based on iter-
ative neighbor embedding of local image patches which
tries to represent input low-resolution patches while pre-
serving the geometry of the original high-resolution space.
To this end, the geometry of the low- and high-resolution
manifolds are jointly considered during the reconstruction
process. We validate the system with a database of 1,872
near-infrared iris images, while fusion of two iris compara-
tors has been adopted to improve recognition performance.
The presented approach is substantially superior to bilin-
ear/bicubic interpolations at very low resolutions, and it
also outperforms a previous PCA-based iris reconstruction
approach which only considers the geometry of the low-
resolution manifold during the reconstruction process.

1. Introduction
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Figure 1. Block diagram of patch-based hallucination.

the observed LR one. Learning-based methods have the
advantage of only needing one image as input, and gen-
erally allows to achieve higher magnification factors than
reconstruction-based methodsl[21].

Super-resolution in biometrics is relatively recent, with
a lot of research in face reconstructionl[24]. Despite the
vast literature on image SR, one reason of such limited
research might be that most SR approaches are general-
scene, designed to produce overall visual enhancement, but
the aim of biometrics is a better recognition accuracy [19].
Therefore, adaptation of super-resolution techniquebeo t
particularities of images from a specific biometric modal-
ity is needed to achieve a more efficient up-sampling [5].
Reconstruction-based methods to improve iris images from
videos include for example the work [11], where authors
compute the pixel-wise average of a number of aligned iris
images, or the work [15], where authors apply PCA to un-

Low image resolution can reduce the effectiveness of iris wrapped iris images in order to highlight the variance infor

biometric systems to recognize individuals. Unfortungtel mation among the pixel intensity vectors, and then compute
this problem arises in a number of real-world biometric ap- the pixel-wise average of the resulting images. Both meth-
plications that are becoming ubiquitous, such as those mak-ods select as inputimages the frames with best quality from
ing use of surveillance or smart-phone caméras [13]. In thisa given iris video stream. Learning-based methods include
context, super-resolution (SR) techniques can be used to enfor example[[28], which uses Multi-Layer Perceptrons, or
hance the quality of low resolution iris images to improve [9], which employs frequency analysis. A major limita-
the recognition performance of existing systems. tion of these two learning-based works is that they try to
Two main categories of SR methods are distinguished develop a prototype iris using combination of complete im-
in the literature: reconstruction- and learning-based.[21 ages. Patch-based methods, which models a local patch us-
Reconstruction-based methods fuse several low resolutioring collocated patches from the training dictionary, iaste
(LR) images to obtain a high resolution (HR) image, with of using the whole image, have been also proposed. The
the disadvantage that multiple LR images are needed as inwork [12] for example employs Markov networks for this
put. On the other hand, learning-based methods use couple@urpose, while the work [2] employs PCA. In these meth-
dictionaries to learn the mapping relations between LR andods, each patch is hallucinated separately, having its own
HR image pairs in order to hallucinate a HR image from optimal reconstruction coefficients, which provides krette
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guality reconstructed prototypes with better local degad AL W \
lower distortions. Local methods are also generally swperi
in recovering texture than global methods, which is essen-

tial due to the prevalence of texture-based methods in ocula _

biometrics [20] Figure 2. Example of images of the CASIA Interval v3 database
= with the annotated circles modeling iris boundaries andidse

Existing iris super-resolution methods assume that low-
and high-resolution manifolds of iris images have similar
local geometrical structure, hence learn local models on2. Low Resolution Iris Reconstruction
the low-resolution manifold, which are then used to com- . .
bine the high-resolution patches. For example, the previ- The method er_nployed Is based on thg recon§tructlon al-
ous work [2] uses PCA to project the low-resolution patches g(_)nthm fo_r face images Of. [14], Wh.'Ch is described ’.‘e’“-
onto a low-dimensional sub-space. The weights suitable toG'Ven an mqu IOW resolutlon (LR) imagk, the goal is
reconstruct the low-resolution patch are then used to syn—to reconstruct its high resolution (HR) counterpiit The

thesize the high-resolution patch. However, the geonadtric LR image can be modeled as the HR image manipulated

structure of the low-resolution manifold is distorted by th by blurring (B), warping (V) and down-samplingl) as

one-to-many relationship between low- and high-resotutio X - .D.BWY TR (whereﬁ represe_,-nts additive noise). For
patches[[16]. Therefore, the reconstruction weights esti-s'mpl'c'ty’ the warp matrix and noise are usually ommited,

mated on the low-resolution manifold do not correlate well leading toX’ = DBY'. . . ,
with the actual weights needed to reconstruct the unknown !N local patch-based methods, input LR images are first
high-resolution patch. In this work, we iteratively seek SeParated intaV = N, x N, overlapping patcheX =
for the optimal neighbourhood on the high-resolution man- 1X1:X2, -+ ,Xn} according to the predefined patch size
ifold, which is not affected by the degradation process. 2Nd Overlap pixels. Parametel§ and NV, are the verti-
This method first approximates the high resolution patch c@l @nd horizontal number of patches respectively. Since
using weights approximated on the low-resolution mani- & Will consider square images in our experiments, we can
fold, and then exploits the geometrical structure of théahig  assume thatV, = Nj. Each individual LR patche; is
resolution manifold to improve the reconstruction quality hen hallucinated separately, producing the correspgndin

[14]. Incorporating the HR space to the regularization pro- HR patchy;. Patch-based approaches provide better qual-

cess has the advantage that this space is unaffected by thily reconstructed prototypes than global approaches, with
image degradation process. better local detail and lower distortions. The structure of

] i the hallucination method employed is shown in Figdre 1.
In our experiments, we employ the CASIA-IrisV3-

Interval databasé [7] of NIR iris images. Prior to the hallu- 2.1, Training Dictionary
cination process, iris images are aligned with respectdo th
pupil center, since alignment is critical for the perforroan ]
of SR systems. We conduct verification experiments with Putéd for each patck; from collocated patches of a train-
two iris comparators based on Log-Gabor wavelets [18] and'"9 database-l Ofgf high ]rv?sqlutmn imagegH}. Super
SIFT key-points[[17]. Log-Gabor exploit texture informa- S€tHi = {hi,h?, -~ h}} is obtained from collocated
tion globally (across the entire iris image), while SIFT ex- Patches of{H}. By degradation (low-pass filtering and
ploit local features (in discrete key points), therefore ou 90Wn-sampling), a low-resolution databfﬂf} IS Ob]t\?'”_ed
motivation is to employ features that are diverse in nature, ToM {H}, and the other super skt = {1.1,--- 1} }is
and reveal if they behave differently. Despite the patch- OPtained similarly, but fron{L;}.

e ppron e s o 14 e conliuie w22, Mullayer Localy-Constained  Heraive
application (and fusion) of these two iris comparators & th Neighbour Embedding (M-LINE)

reconstructed images. Reported results demonstrate the su  This work assumes that input images reside on a low-
periority of the presented method at very low resolutions dimensional manifold where we try to find the optimal com-
w.r.t. bicubic/bilinear interpolations and the PCA method bination weights suitable to synthesize a high-resolution
of [2]. The best individual matcher achieves an EER of representation. The authors in [2] proposed a global ap-
~4% for an iris image size of only 1515, with the fu- proach where all entries in the dictionary are used to esti-
sion of the two systems pushing down this value-®6%. mate the optimal weights. This, however, results in over-
In addition, the improvement of the presented method w.r.t. smooth reconstructed images which lacks important texture
the other methods is even more pronounced at high secudetail, which is essential for iris recognition, espegiait

rity regions (low FAR), where the iris modality is usually very low-resolutions. Moreover, the authorslinl[16] emypiri
employed([6]., cally show that the structure of the low- and high-resolutio

Two super sets of basis patchEg and L; are com-
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Figure 3. Resulting HR hallucinated images for differenvdesampling factors. The original HR image is also showrtt(o right).

manifold is not well preserved, especially at very low reso- is computed usingl-nearest neighbour(j ). The com-
lutions. bination weights are then derived using

The M-LINE method was originally proposed for face
super-resolution [14] ta@) to preserve the neighbourhood 9
selected for neighbour embedding, amgdmitigate the in- wij = argmiw; | (l[xi = Li (s) wi [, + )
consistencies between the low- and high-resolution mani- +7||d(s) © w}; |Z)
folds. The first problem is addressed by iteratively updéte o
the neighbours used for neighbour embedding by exploitingwherer is a regularization parameter. Operatodenotes
the geometrical structure of the high resolution manifold, the element-wise multiplication, and it is used to penalize
which is not affected by noise due to resolution degradation the reconstruction weights with the distances betwegn
The second step involves updating the low-resolution dic- and its closest neighbors in the training dictionBky. Note
tionary to reduce the modality gap between low- and high- that Equatiofi 2 jointly considers the LR manifold (g,
resolution patches contained within the dictionary, aigio ~ L; (s)) and the HR counterpart (vid(s)). This optimiza-
this step is not yet implemented for our experiments here. tion problem can be solved by an analytic solution [14]. The

The first estimate of the high-resolution patchy is ini-  estimated high-resolution patch is then updated using
tialized by up-scaling the low-resolution patghusing bi-
cubic interpolation. This iterative method has a loop in- vij+1 = Hi(s)w}; (3

dexed byj € [0, J — 1]. For every iteratiory, the suppors

of H, that minimizes the distance and the loop is then repeated. The final estimate of the high-

resolution patch is then derived using

d=|lvi; — Hi(S)H% 1) Yi=ViJ 4)
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We employ 7=1e~® and J=4, as recommended in as shown in Figurl2 (more information is provided in the
[14]. Finally, once the overlapping reconstructed patchesexperimental setup).
{y1,y2, -+ ,yn} are obtained, they are stitched together
by averaging, resulting in the reconstructed HR im&ge 4. Experimental Framework

2.3. Image Re-projection 4.1. Database and Protocol

Inspired by [2], we incorporate a re-projection step to  We use the CASIA Interval v3 iris databasé [7]. It has
Y’ in order to reduce artifacts and make the output image 2,655 NIR images of 280320 pixels from 249 contribu-
Y more similar to the input imagX. The imageY’ is tors captured in 2 sessions with a close-up iris camera, to-
re-projected tX via Y™t = Y! —oU (B (DBY' — X)) talling 396 different eyes (the number of images per con-
whereU is the up-sampling matrix. The process stops when tributor / per session is not constant). Manual annotatfon o
YT —Y!|is smaller than a threshold. We use0.02and  the database is availablé [1,110], which is used as input for
10~ as the difference threshold, as proposedin [2]. our experiments. All images are resized via bicubic interpo
lation to have the same sclera radius (we choose as targetra-
3. Baseline Reconstruction Method and Iris  diusthe average sclera radis 105 of the whole database,
Comparators given by the groundtruth). Then, images are aligned by ex-
tracting a region of 232231 around the pupil center (cor-
The reconstruction method described in Secfion 2 is responding to about 1:4R). If extraction is not possible
evaluated against bilinear and bicubic interpolation, el w (for example if the eye is close to an image side), the image
as the eigen-patch hallucination method.of [2]. In the fatte s discarded. After this procedure, 1,872 images remain,
method, input LR patches are projected to collocated LR \yhich will be used for our experiments.
training patches via PCA eigen-transformation. Once the  The dataset of aligned images has been divided into two
optimal reconstruction weights of a given patch are obtine sets, a training set comprised of images from the first 116
in the LR manifold, the corresponding HR patch is super- sers (/=925 images) used to train the hallucination meth-
res_o!ved using the same weights, but with collocated HR g5 and a test set from the remaining 133 users (947 im-
training patches. Contrarily to the method of Seclibn 2, the gges) which is used for validation. We perform verification
reconstruction weights are obtained only from LR training_ experiments with the iris comparators in the test set. We
patches, and they are simply transferred to the HR mani-consider each eye as a different user. Genuine comparison
folq. Thus, the HR manifold is not used to find the optimal tj51s are obtained by comparing each image of a user to
weights. N N _ _ the remaining images of the same user, avoiding symmetric
We also conduct iris recognition experiments using tWo comparisons. Impostor trials are obtained by comparing the
different systems based on 1D Log-Gabor filters (LG) [18] st image of a user to th#""? image of the remaining users.
and the SIFT operatdr[17]. In LG, the iris region s first un- \wjith this procedure, we obtain 2,607 genuine and 19,537
wrapped to a normalized rectangle ofs>Z40 pixels using impostor scores.
the Daugman’s rubber sheet model [8] and next, a 1D Log-
Gabor wavelet is applied plus phase binary quantization to4.2. Results
4 levels. Comparison between binary vectors is done using
the normalized Hamming distance [8], which incorporates
noise mask, so only significant bits are used. In the SIFT
method, SIFT key points are directly extracted from the iris

region (without unwrapping), and the recognition metric is q led i d DUt LR i f
the number of matched key points, normalized by the aver- own-sampled Images are used as inpu Images, from
which hallucinated HR images are extracted. This simu-

age number of detected key-points in the two images under o .
comparison. The LG implementation is from Libor Masek lated doyvn—sampllng IS thg approqch followed n most of
code [18], using its default parameters (optimized for CA- the previous super-reso]uﬂon studies .[24]’ mainly due to
SIA images, which we employ here as well). The SIFT Fhe I"?‘Ck of datapases with onv-resolutlon and correspond-
method uses a free toolkit for feature extraction and match-"9 high-resolution reference images. We test until a down-

ingﬂ with the adaptations described [n [4] (particularly, it sampling factor of 16 (corresponding to a LR image size

includes a post-processing step to remove spurious matchpf 15x15). We also extract the_z normalized iris region (size
ing points using geometric constraints). The iris regiod an 20x240) from both the hallucinated HR and the reference

corresponding noise mask for feature extraction and match—;']R 'Tag?tz’ as V\f’eS" a?_ L 3ant_?_hs IFT ffeatures, accf:(irr]dlnhg To
ing is obtained by manual annotation of the database used. ¢ 290r1thms of Sectionl . The performance of the hal-
lucination algorithm is measured by computing the Peak

Lhttp://vision.ucla.edu/ vedaldi/codefsift/assetsisifiex.html Signal-to-Noise Ratio (PSNR, in dBs) and the Structural

The 947 test images are used as our high resolution
(HR) reference images. We then down-sample these im-
ages via bicubic interpolation by a factor 2f (i.e. the
image is resized td/(2n) of the original HR size), and the
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Figure 4. Hallucination results with different down-saimglfactors (left: PSNR, right: SSIM). Best seen in color.

I Fullimage I Unwrapped iris region |

115x115 | 57x57 | 29x29 | 15x15 || 115x115 | 57x57 | 29x29 | 15x15

method (1/2) @4y | ws) | @ane) | (@2 @as | @s) | (116)
bilinear psnr 33 28.36 | 24.86 | 22.39 36.94 31.64 | 28.18 | 25.16
ssim 0.91 0.79 0.69 0.64 0.96 0.85 0.74 0.63

bicubic psnr 34.04 29.18 | 25.33 | 22.86 38.22 3235 | 28.74 | 25.64
ssim 0.93 0.8 0.7 0.64 0.97 0.87 0.75 0.64

PCA psnr 34.2 29.9 26.7 24.3 38.8 32.7 29.6 27

ssim 0.92 0.8 0.71 0.66 0.97 0. 88 0.77 0.66
M-LINE k=75 | psnr 33.1 26.8 24.7 24.7 37.8 29.6 26.9 27.1
ssim 0.9 0.65 0.57 0.63 0.96 0.77 0.62 0.63
M-LINE k=150 | psnr 32.6 25 26.2 25 37.3 27.7 28.5 27.5
ssim 0.89 0.56 0.65 0.66 0.96 0.69 0.7 0.66
M-LINE k=300 | psnr 31.7 26.7 26.8 25 36.4 29.3 29.3 27.6
ssim 0.87 0.65 0.69 0.67 0.95 0.77 0.74 0.67
M-LINE k=600 | psnr 29.3 28.8 27 249 33.9 31.5 29.6 27.6
ssim 0.77 0.75 0.71 0.67 0.91 0.84 0.76 0.67
M-LINE k=900 | psnr 29.4 29.3 27 24.8 33.9 32 29.7 27.5
ssim 0.78 0.77 0.71 0.67 0.91 0.86 0.76 0.67

Table 1. Hallucination results with different down-samplifactors for the different reconstruction methods (ayenzalues of test dataset).

Similarity index (SSIM) between the hallucinated HR im- that the advantages of employing M-LINE are evident at
age and the corresponding HR reference image. Resultsvery low resolutions (image size of ¥35). Here, PSNR
are shown in Tablg]1 and Figuré 4. We also compare ourof M-LINE is 0.7 dB better than of PCA (on the whole im-
method with bicubic and bilinear interpolation, as well as age), and 2.14 dB better than bicubic interpolation. Ata LR
the eigen-patch (PCA) method 6fi [2]. Figlide 3 shows the image size of 2929, M-LINE is still better than PCA in
hallucinated images. In PCA and M-LINE, we employ a 0.3 dB, and 1.67 dB better than bicubic. If down-sampling
patch size of 1/4 of the LR image size. This value is moti- is not so severe (i.e. image size of KIBL5 or 5% 57),
vated by [2], where better results were obtained in generalPCA becomes the best performing method. Regarding the
with bigger patch sizes. The patch size is defined in propor-neighbor numbe& of M-LINE, it can be observed that a
tion to the dimensions of the LR image to ensure that they bigger set is preferred, with higher PSNR and SSIM values
cover the same relative size across different scalingfacto obtained forK > 300. For K = 75 or K = 150, it can
Overlapping between patches is 1/3 of the patch size. Thebe seen from Figuilgl 4 than the performance of M-LINE is
M-LINE method is tested using different valuesf from much poorer than the other methods, specially at intermedi-
K=75 (small neighbors set) tfi=900 (which corresponds ate down-sampling factors. If we look Figlife 3, we observe
to nearly the whole training set of images). that smaller values ok produces sharper reconstructed im-

ages, while a biggelX produces blurrierimages. Thisis ex-

From the results of Tablg 1 and Figlide 4, it can be seen
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Figure 5. Verification results (EER) of the two scenarios lrygd. Best seen in color.

I Scenario 1 I Scenario 2 |
115x115 | 57x57 29% 29 15x15 115x115 | 57x57 | 29x29 15x 15
w2 | @4 | ws | @ie | w2 | w4 | ws | wie)
method LG COMPARATOR
bilinear 0.69% 0.69% 1.61% | 10.39% 0.61% 0.76% | 2.38% | 11.03%
bicubic 0.69% 0.68% 1.42% 9.59% 0.73% 0.65% 1.88% | 11.25%
PCA 0.76% 0.8% 1.11% 7.29% 0.73% 0.69% | 1.18% 4.79%
M-LINE k=75 0.72% 0.93% 2.07% 9.38% 0.79% 0.99% 2.49% 4.97%
M-LINE k=150 0.76% 1.15% 1.53% 8.5% 0.76% 1.53% 1.71% 4.37%
M-LINE k=300 0.8% 0.85% 1.26% 8.08% 0.8% 1.07% | 1.26% 4.26%
M-LINE k=600 0.8% 0.81% 1.15% 7.56% 0.87% 0.8% 1.38% | 4.02%
M-LINE k=900 0.8% 0.79% 1.11% 7.25% 0.84% 0.73% 1.26% 4.02%
method SIFT COMPARATOR
bilinear 4.05% 10.42% | 28.23% | 50.52% 3.01% 4.26% | 14.82% | 41.66%
bicubic 3.51% 7.41% | 24.99% | 47.33% 3.13% 3.08% 11.6% | 36.37%
PCA 4.17% 4.74% | 15.65% | 36.67% 3.9% 3.11% | 7.46% 18.98%
M-LINE k=75 4.13% 7.55% | 17.62% | 32.99% 4.04% 8.71% | 17.16% | 20.87%
M-LINE k=150 3.93% 8.95% | 14.43% | 33.7% 4.14% 10.85% | 11.9% | 17.54%
M-LINE k=300 4.12% 7.51% | 13.73% | 35.69% 3.81% 8.27% 9.73% | 17.76%
M-LINE k=600 4.18% 6.11% | 13.61% | 37.17% 4.16% 5.32% | 7.47% 18.13%
M-LINE k=900 4.51% 5.18% | 13.72% | 36.56% 4. 7% 4.77% 8.34% | 18.85%

Table 2. Verification results (EER) with different down-galimg factors for the different reconstruction methods.

pected, since a bigger value &fimplies that more patches
are being averaged (under their respective weights), so the
output image patch will be smoother.

Next, we report verification experiments using halluci-
nated HR images. We consider two scenarig&nrolment
samples taken from original HR input images, and query
samples from hallucinated HR images; ajdoth enrol-
ment and query samples taken from hallucinated HR im-
ages. The first case simulates a controlled enrolment sce-
nario with good quality images, while the second case sim-
ulates a totally uncontrolled scenario (albeit for simipjic
enrolment and query samples have similar resolution in our
experiments). Results are given in Table 2 and Figlire 5.
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The following observations can be made from these results:

e While PCA and M-LINE have similar or worse per-
formance than bilinear/bicubic interpolations at small
down-sampling factors, their performance is much
more better at very low resolutions, highlighting the
benefits of trained reconstruction methods. In addi-
tion, M-LINE goes one step further, outperforming
PCA when the image resolution is very small. Regard-
ing performance of the individual comparators, SIFT
is much more sensitive to resolution reduction. While
EER of the LG comparator is kept a#4% in scenario
2, SIFT goes above 17%.



l Scenario 1 I Scenario 2 I
115x115 | 57x57 | 29x29 | 15x15 115x115 | 57x57 | 29x29 | 15x15
w2 | w4 | s | @ie | @2 | w4a | Wws) | (11e)
method FUSION LG+SIFT COMPARATORS

bilinear 0.61% 0.76% | 1.65% | 10.28% 0.61% 0.76% | 2.3% | 10.98%
bicubic 0.69% 0.7% 1.36% | 9.59% 0.61% 0.7% 1.73% | 10.97%

PCA 0.65% 0.7% 1.12% | 7.25% 0.65% 0.7% 1.03% | 4.49%

M-LINE k=75 (LG, SIFT) 0.69% 0.82% 1.9% 9.28% 0.66% 1% 2.3% 4.88%
M-LINE k=150 (LG, SIFT) 0.69% 1.07% | 1.51% | 8.09% 0.65% 1.27% | 1.65% | 4.11%
M-LINE k=300 (LG, SIFT) 0.73% 0.84% | 1.23% 7.9% 0.65% 1% 1.23% | 3.96%
M-LINE k=600 (LG, SIFT) 0.7% 0.73% | 1.07% | 7.52% 0.76% 0.8% 1.09% | 3.69%
M-LINE k=900 (LG, SIFT) 0.73% 0.76% | 1.07% | 7.21% 0.73% 0.76% | 1.07% | 3.83%
M-LINE k=900 (LG), k=75 (SIFT) 0.73% 0.73% 1% 7.18% 0.76% 0.73% | 1.19% | 3.83%
M-LINE k=900 (LG), k=150 (SIFT)|| 0.77% | 0.76% | 1.11% | 7.25% || 0.76% | 0.73% | 1.23% | 3.68%
M-LINE k=900 (LG), k=300 (SIFT)|[ 0.73% | 0.73% | 1.11% | 7.21% || 0.73% | 0.76% | 1.15% | 3.58%

Table 3. Fusion results (EER) of the LG and SIFT comparators.
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Figure 7. Fusion results (DET curves). Results are givesdenario 2 and LR image size of 235 only. Best seen in color.
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Figure 6. Fusion results (EER) of the two scenarios employed
Best seen in color.

e Interestingly, the preferred neighbor numbg&r of
M-LINE is different for each matcher. While LG
prefers a bigger seti{ > 300), SIFT shows better
results with a smaller set. This contradicts the re-
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sults with PSNR/SSIM indicators, where a bhigger set
was preferred. These general-scene quality indicators
are widely employed in the super-resolution literature,
but they are more tailored to measure visual enhance-
ment; however, the aim of applying super-resolution to
biometrics is enhancing recognition performance [19].
For this reason, looking at the recognition performance
is necessary, since the performance of an individual
comparator may not follow.

Both scenarios has a relatively similar performance up
to a certain down-sampling factor. But at low res-
olutions, both comparators show a much more bet-
ter performance in scenario 2. In the latter scenario,
both gallery and probe images undergo the same down-
sampling and reconstruction procedure. In scenario 1,
the gallery image employed is the original HR image,



which seems to have fairly different feature proper- LR patch in the LR space. This approach is compared to
ties than corresponding reconstructed LR images (atbilinear/bicubic interpolation, and to the mentioned noeth
least with the feature extraction methods used here).of [2], which is based on projecting input LR patches to
Similarly, performance is not degraded until a down- the LR training set using a PCA eigen-transformation. We
sampling factor of 1/8, suggesting that the size of also carry out iris verification experiments on the recon-
stored query images can be kept low without jeopardiz- structed images using two iris comparators based on Log-
ing performance, as well as the size of the test image Gabor (LG) wavelets and SIFT key-points. Experimental
if it has to be sent through a communication channel. results show that the M-LINE method has a superiority over
the other reconstruction methods when the resolution of the
We then carry out fusion experiments using linear lo- image is very small (1515 in this paper), with an EER of
gistic regression. GiverN comparators{=2 in our case)  ~4% using the LG comparator, and an EER-&.6% af-
which output the scores{;, s2;, ...sn;) for an input trialj, ter the fusion of the two comparators. Another observation
alinearfusionisif; = ag+a1-s1;+az-sz;+...+an-snj- is that performance of the comparators is not degraded sig-
The weightsug, a1, ...an are trained via logistic regression nificantly until input images are down-sampled by 1/8 (im-
as described in [3]. We use this trained fusion approach be-age size of 2929), meaning that stored query images or
cause it has shown better performance than simple fusiontransmitted test images can be kept low without sacrificing
rules (like the mean or the sum rule) in previous works, as performance.
in the one reported above. Results are given in Table 3 and The PCA and M-LINE methods evaluated here assume
Figure[6. Since the preferred neighbor numbémnf M- that the low- and high-resolution manifolds have similar
LINE is different for each matcher, we have tested both the Jocal geometrical structure, hence the same reconstructio
case wheré is the same for both comparators, and also weights are used in both manifolds. While this simplifies
the case where the LG comparator ugés900 and SIFT  the problem, it is not usually the case, since the degradatio
varies fromK'=75 and 150. As it can be observed, M-LINE process of the LR image results in one-to-many relationship
also outperforms PCA here when the image has very lowbetween low- and high-resolution patches. To cope with
resolution. While the best EER with LG only #84%, its this effect, we are exploring the update strategy of the LR
fusion with SIFT pushes the EER until3.6%, even if the  dictionary proposed in the M-LINE method [14], which is
individual performance of SIFT is'17.5%. We further an-  not implemented in this paper. Another directions include
alyze the benefit of M-LINE w.r.t. the other reconstruction evaluating the resiliency of other iris recognition algioms
methods in Figurgl7, where we plot the DET curves (sce- [22] as well as employing low-resolution imagery captured
nario 2) of the individual comparators, and of the fusion of in visible range (e.g. with smart-phones).
the two systems for an input LR image size of<IE. In
this extreme case of very low resolution, it can be ObsefvedAcknowIedgements
that the performance of PCA (green curves) is systemati-
Ca”y improved by M-LINE for nea”y any FRR/FAR value. Author F. A.-F. thanks the Swedish Research Council for
The improvement of M-LINE w.r.t. the other methods is funding his research. Authors acknowledge the CAISR pro-
even more pronounced at high security regions (low FAR), gram and the SIDUS-AIR project of the Swedish Knowl-
where the iris modality is usually employéd [6]. edge Foundation.
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