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Abstract

Iris recognition research is heading towards enabling
more relaxed acquisition conditions. This has effects on the
quality and resolution of acquired images, severely affect-
ing the accuracy of recognition systems if not tackled ap-
propriately. In this paper, we evaluate a super-resolution
algorithm used to reconstruct iris images based on iter-
ative neighbor embedding of local image patches which
tries to represent input low-resolution patches while pre-
serving the geometry of the original high-resolution space.
To this end, the geometry of the low- and high-resolution
manifolds are jointly considered during the reconstruction
process. We validate the system with a database of 1,872
near-infrared iris images, while fusion of two iris compara-
tors has been adopted to improve recognition performance.
The presented approach is substantially superior to bilin-
ear/bicubic interpolations at very low resolutions, and it
also outperforms a previous PCA-based iris reconstruction
approach which only considers the geometry of the low-
resolution manifold during the reconstruction process.

1. Introduction

Low image resolution can reduce the effectiveness of iris
biometric systems to recognize individuals. Unfortunately,
this problem arises in a number of real-world biometric ap-
plications that are becoming ubiquitous, such as those mak-
ing use of surveillance or smart-phone cameras [13]. In this
context, super-resolution (SR) techniques can be used to en-
hance the quality of low resolution iris images to improve
the recognition performance of existing systems.

Two main categories of SR methods are distinguished
in the literature: reconstruction- and learning-based [21].
Reconstruction-based methods fuse several low resolution
(LR) images to obtain a high resolution (HR) image, with
the disadvantage that multiple LR images are needed as in-
put. On the other hand, learning-based methods use coupled
dictionaries to learn the mapping relations between LR and
HR image pairs in order to hallucinate a HR image from
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Figure 1. Block diagram of patch-based hallucination.

the observed LR one. Learning-based methods have the
advantage of only needing one image as input, and gen-
erally allows to achieve higher magnification factors than
reconstruction-based methods [21].

Super-resolution in biometrics is relatively recent, with
a lot of research in face reconstruction [24]. Despite the
vast literature on image SR, one reason of such limited
research might be that most SR approaches are general-
scene, designed to produce overall visual enhancement, but
the aim of biometrics is a better recognition accuracy [19].
Therefore, adaptation of super-resolution techniques to the
particularities of images from a specific biometric modal-
ity is needed to achieve a more efficient up-sampling [5].
Reconstruction-based methods to improve iris images from
videos include for example the work [11], where authors
compute the pixel-wise average of a number of aligned iris
images, or the work [15], where authors apply PCA to un-
wrapped iris images in order to highlight the variance infor-
mation among the pixel intensity vectors, and then compute
the pixel-wise average of the resulting images. Both meth-
ods select as input images the frames with best quality from
a given iris video stream. Learning-based methods include
for example [23], which uses Multi-Layer Perceptrons, or
[9], which employs frequency analysis. A major limita-
tion of these two learning-based works is that they try to
develop a prototype iris using combination of complete im-
ages. Patch-based methods, which models a local patch us-
ing collocated patches from the training dictionary, instead
of using the whole image, have been also proposed. The
work [12] for example employs Markov networks for this
purpose, while the work [2] employs PCA. In these meth-
ods, each patch is hallucinated separately, having its own
optimal reconstruction coefficients, which provides better
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quality reconstructed prototypes with better local detailand
lower distortions. Local methods are also generally superior
in recovering texture than global methods, which is essen-
tial due to the prevalence of texture-based methods in ocular
biometrics [20].

Existing iris super-resolution methods assume that low-
and high-resolution manifolds of iris images have similar
local geometrical structure, hence learn local models on
the low-resolution manifold, which are then used to com-
bine the high-resolution patches. For example, the previ-
ous work [2] uses PCA to project the low-resolution patches
onto a low-dimensional sub-space. The weights suitable to
reconstruct the low-resolution patch are then used to syn-
thesize the high-resolution patch. However, the geometrical
structure of the low-resolution manifold is distorted by the
one-to-many relationship between low- and high-resolution
patches [16]. Therefore, the reconstruction weights esti-
mated on the low-resolution manifold do not correlate well
with the actual weights needed to reconstruct the unknown
high-resolution patch. In this work, we iteratively seek
for the optimal neighbourhood on the high-resolution man-
ifold, which is not affected by the degradation process.
This method first approximates the high resolution patch
using weights approximated on the low-resolution mani-
fold, and then exploits the geometrical structure of the high-
resolution manifold to improve the reconstruction quality
[14]. Incorporating the HR space to the regularization pro-
cess has the advantage that this space is unaffected by the
image degradation process.

In our experiments, we employ the CASIA-IrisV3-
Interval database [7] of NIR iris images. Prior to the hallu-
cination process, iris images are aligned with respect to the
pupil center, since alignment is critical for the performance
of SR systems. We conduct verification experiments with
two iris comparators based on Log-Gabor wavelets [18] and
SIFT key-points [17]. Log-Gabor exploit texture informa-
tion globally (across the entire iris image), while SIFT ex-
ploit local features (in discrete key points), therefore our
motivation is to employ features that are diverse in nature,
and reveal if they behave differently. Despite the patch-
based SR approach used is not new [14], we contribute with
its implementation to iris images, and particularly with the
application (and fusion) of these two iris comparators to the
reconstructed images. Reported results demonstrate the su-
periority of the presented method at very low resolutions
w.r.t. bicubic/bilinear interpolations and the PCA method
of [2]. The best individual matcher achieves an EER of
∼4% for an iris image size of only 15×15, with the fu-
sion of the two systems pushing down this value to∼3.6%.
In addition, the improvement of the presented method w.r.t.
the other methods is even more pronounced at high secu-
rity regions (low FAR), where the iris modality is usually
employed [6].,

Figure 2. Example of images of the CASIA Interval v3 database
with the annotated circles modeling iris boundaries and eyelids.

2. Low Resolution Iris Reconstruction

The method employed is based on the reconstruction al-
gorithm for face images of [14], which is described next.
Given an input low resolution (LR) imageX, the goal is
to reconstruct its high resolution (HR) counterpartY. The
LR image can be modeled as the HR image manipulated
by blurring (B), warping (W ) and down-sampling (D) as
X = DBWY +n (wheren represents additive noise). For
simplicity, the warp matrix and noise are usually ommited,
leading toX = DBY .

In local patch-based methods, input LR images are first
separated intoN = Nv × Nh overlapping patchesX =
{x1,x2, · · · ,xN} according to the predefined patch size
and overlap pixels. ParametersNv andNh are the verti-
cal and horizontal number of patches respectively. Since
we will consider square images in our experiments, we can
assume thatNv = Nh. Each individual LR patchxi is
then hallucinated separately, producing the corresponding
HR patchyi. Patch-based approaches provide better qual-
ity reconstructed prototypes than global approaches, with
better local detail and lower distortions. The structure of
the hallucination method employed is shown in Figure 1.

2.1. Training Dictionary

Two super sets of basis patchesHi andLi are com-
puted for each patchxi from collocated patches of a train-
ing database ofM high resolution images{H}. Super
setHi =

{

h1
i ,h

2
i , · · · ,h

M
i

}

is obtained from collocated
patches of{H}. By degradation (low-pass filtering and
down-sampling), a low-resolution database{L} is obtained
from {H}, and the other super setLi =

{

l1i , l
2
i , · · · , l

M
i

}

is
obtained similarly, but from{L}.

2.2. Multilayer Locality-Constrained Iterative
Neighbour Embedding (M-LINE)

This work assumes that input images reside on a low-
dimensional manifold where we try to find the optimal com-
bination weights suitable to synthesize a high-resolution
representation. The authors in [2] proposed a global ap-
proach where all entries in the dictionary are used to esti-
mate the optimal weights. This, however, results in over-
smooth reconstructed images which lacks important texture
detail, which is essential for iris recognition, especially at
very low-resolutions. Moreover, the authors in [16] empiri-
cally show that the structure of the low- and high-resolution
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Figure 3. Resulting HR hallucinated images for different down-sampling factors. The original HR image is also shown (bottom right).

manifold is not well preserved, especially at very low reso-
lutions.

The M-LINE method was originally proposed for face
super-resolution [14] toi) to preserve the neighbourhood
selected for neighbour embedding, andii) mitigate the in-
consistencies between the low- and high-resolution mani-
folds. The first problem is addressed by iteratively update of
the neighbours used for neighbour embedding by exploiting
the geometrical structure of the high resolution manifold,
which is not affected by noise due to resolution degradation.
The second step involves updating the low-resolution dic-
tionary to reduce the modality gap between low- and high-
resolution patches contained within the dictionary, although
this step is not yet implemented for our experiments here.

The first estimate of the high-resolution patchvi,0 is ini-
tialized by up-scaling the low-resolution patchxi using bi-
cubic interpolation. This iterative method has a loop in-
dexed byj ∈ [0, J − 1]. For every iterationj, the supports
of Hi that minimizes the distance

d = ||vi,j −Hi(s)||
2
2 (1)

is computed usingK-nearest neighbours (K¡M ). The com-
bination weights are then derived using

w∗

i,j = argminw∗

i,j
(
∥

∥xi − Li (s)w
∗

i,j

∥

∥

2

2
+

+τ
∥

∥d (s)⊙w∗

i,j

∥

∥

2

2
)

(2)

whereτ is a regularization parameter. Operator⊙ denotes
the element-wise multiplication, and it is used to penalize
the reconstruction weights with the distances betweenvi,j

and its closest neighbors in the training dictionaryHi. Note
that Equation 2 jointly considers the LR manifold (viaxi,
Li (s)) and the HR counterpart (viad (s)). This optimiza-
tion problem can be solved by an analytic solution [14]. The
estimated high-resolution patch is then updated using

vi,j+1 = Hi(s)w
⋆
i,j (3)

and the loop is then repeated. The final estimate of the high-
resolution patch is then derived using

yi = vi,J (4)
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We employ τ=1e−5 and J=4, as recommended in
[14]. Finally, once the overlapping reconstructed patches
{y1,y2, · · · ,yN} are obtained, they are stitched together
by averaging, resulting in the reconstructed HR imageY′.

2.3. Image Re-projection

Inspired by [2], we incorporate a re-projection step to
Y′ in order to reduce artifacts and make the output image
Y more similar to the input imageX. The imageY′ is
re-projected toX viaYt+1 = Yt − υU (B (DBYt −X))
whereU is the up-sampling matrix. The process stops when
|Yt+1−Yt| is smaller than a threshold. We useυ=0.02 and
10−5 as the difference threshold, as proposed in [2].

3. Baseline Reconstruction Method and Iris
Comparators

The reconstruction method described in Section 2 is
evaluated against bilinear and bicubic interpolation, as well
as the eigen-patch hallucination method of [2]. In the latter
method, input LR patches are projected to collocated LR
training patches via PCA eigen-transformation. Once the
optimal reconstruction weights of a given patch are obtained
in the LR manifold, the corresponding HR patch is super-
resolved using the same weights, but with collocated HR
training patches. Contrarily to the method of Section 2, the
reconstruction weights are obtained only from LR training
patches, and they are simply transferred to the HR mani-
fold. Thus, the HR manifold is not used to find the optimal
weights.

We also conduct iris recognition experiments using two
different systems based on 1D Log-Gabor filters (LG) [18]
and the SIFT operator [17]. In LG, the iris region is first un-
wrapped to a normalized rectangle of 20×240 pixels using
the Daugman’s rubber sheet model [8] and next, a 1D Log-
Gabor wavelet is applied plus phase binary quantization to
4 levels. Comparison between binary vectors is done using
the normalized Hamming distance [8], which incorporates
noise mask, so only significant bits are used. In the SIFT
method, SIFT key points are directly extracted from the iris
region (without unwrapping), and the recognition metric is
the number of matched key points, normalized by the aver-
age number of detected key-points in the two images under
comparison. The LG implementation is from Libor Masek
code [18], using its default parameters (optimized for CA-
SIA images, which we employ here as well). The SIFT
method uses a free toolkit for feature extraction and match-
ing1, with the adaptations described in [4] (particularly, it
includes a post-processing step to remove spurious match-
ing points using geometric constraints). The iris region and
corresponding noise mask for feature extraction and match-
ing is obtained by manual annotation of the database used,

1http://vision.ucla.edu/ vedaldi/code/sift/assets/sift/index.html

as shown in Figure 2 (more information is provided in the
experimental setup).

4. Experimental Framework

4.1. Database and Protocol

We use the CASIA Interval v3 iris database [7]. It has
2,655 NIR images of 280×320 pixels from 249 contribu-
tors captured in 2 sessions with a close-up iris camera, to-
talling 396 different eyes (the number of images per con-
tributor / per session is not constant). Manual annotation of
the database is available [1, 10], which is used as input for
our experiments. All images are resized via bicubic interpo-
lation to have the same sclera radius (we choose as target ra-
dius the average sclera radiusR=105 of the whole database,
given by the groundtruth). Then, images are aligned by ex-
tracting a region of 231×231 around the pupil center (cor-
responding to about 1.1×R). If extraction is not possible
(for example if the eye is close to an image side), the image
is discarded. After this procedure, 1,872 images remain,
which will be used for our experiments.

The dataset of aligned images has been divided into two
sets, a training set comprised of images from the first 116
users (M=925 images) used to train the hallucination meth-
ods, and a test set from the remaining 133 users (947 im-
ages) which is used for validation. We perform verification
experiments with the iris comparators in the test set. We
consider each eye as a different user. Genuine comparison
trials are obtained by comparing each image of a user to
the remaining images of the same user, avoiding symmetric
comparisons. Impostor trials are obtained by comparing the
1st image of a user to the2nd image of the remaining users.
With this procedure, we obtain 2,607 genuine and 19,537
impostor scores.

4.2. Results

The 947 test images are used as our high resolution
(HR) reference images. We then down-sample these im-
ages via bicubic interpolation by a factor of2n (i.e. the
image is resized to1/(2n) of the original HR size), and the
down-sampled images are used as input LR images, from
which hallucinated HR images are extracted. This simu-
lated down-sampling is the approach followed in most of
the previous super-resolution studies [24], mainly due to
the lack of databases with low-resolution and correspond-
ing high-resolution reference images. We test until a down-
sampling factor of 16 (corresponding to a LR image size
of 15×15). We also extract the normalized iris region (size
20×240) from both the hallucinated HR and the reference
HR images, as well as LG and SIFT features, according to
the algorithms of Section 3. The performance of the hal-
lucination algorithm is measured by computing the Peak
Signal-to-Noise Ratio (PSNR, in dBs) and the Structural
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Figure 4. Hallucination results with different down-sampling factors (left: PSNR, right: SSIM). Best seen in color.

Full image Unwrapped iris region

115×115 57×57 29×29 15×15 115×115 57×57 29×29 15×15
method (1/2) (1/4) (1/8) (1/16) (1/2) (1/4) (1/8) (1/16)

bilinear psnr 33 28.36 24.86 22.39 36.94 31.64 28.18 25.16
ssim 0.91 0.79 0.69 0.64 0.96 0.85 0.74 0.63

bicubic psnr 34.04 29.18 25.33 22.86 38.22 32.35 28.74 25.64
ssim 0.93 0.8 0.7 0.64 0.97 0.87 0.75 0.64

PCA psnr 34.2 29.9 26.7 24.3 38.8 32.7 29.6 27
ssim 0.92 0.8 0.71 0.66 0.97 0.88 0.77 0.66

M-LINE k=75 psnr 33.1 26.8 24.7 24.7 37.8 29.6 26.9 27.1
ssim 0.9 0.65 0.57 0.63 0.96 0.77 0.62 0.63

M-LINE k=150 psnr 32.6 25 26.2 25 37.3 27.7 28.5 27.5
ssim 0.89 0.56 0.65 0.66 0.96 0.69 0.7 0.66

M-LINE k=300 psnr 31.7 26.7 26.8 25 36.4 29.3 29.3 27.6
ssim 0.87 0.65 0.69 0.67 0.95 0.77 0.74 0.67

M-LINE k=600 psnr 29.3 28.8 27 24.9 33.9 31.5 29.6 27.6
ssim 0.77 0.75 0.71 0.67 0.91 0.84 0.76 0.67

M-LINE k=900 psnr 29.4 29.3 27 24.8 33.9 32 29.7 27.5
ssim 0.78 0.77 0.71 0.67 0.91 0.86 0.76 0.67

Table 1. Hallucination results with different down-sampling factors for the different reconstruction methods (average values of test dataset).

Similarity index (SSIM) between the hallucinated HR im-
age and the corresponding HR reference image. Results
are shown in Table 1 and Figure 4. We also compare our
method with bicubic and bilinear interpolation, as well as
the eigen-patch (PCA) method of [2]. Figure 3 shows the
hallucinated images. In PCA and M-LINE, we employ a
patch size of 1/4 of the LR image size. This value is moti-
vated by [2], where better results were obtained in general
with bigger patch sizes. The patch size is defined in propor-
tion to the dimensions of the LR image to ensure that they
cover the same relative size across different scaling factors.
Overlapping between patches is 1/3 of the patch size. The
M-LINE method is tested using different values ofK, from
K=75 (small neighbors set) toK=900 (which corresponds
to nearly the whole training set of images).

From the results of Table 1 and Figure 4, it can be seen

that the advantages of employing M-LINE are evident at
very low resolutions (image size of 15×15). Here, PSNR
of M-LINE is 0.7 dB better than of PCA (on the whole im-
age), and 2.14 dB better than bicubic interpolation. At a LR
image size of 29×29, M-LINE is still better than PCA in
0.3 dB, and 1.67 dB better than bicubic. If down-sampling
is not so severe (i.e. image size of 115×115 or 57×57),
PCA becomes the best performing method. Regarding the
neighbor numberK of M-LINE, it can be observed that a
bigger set is preferred, with higher PSNR and SSIM values
obtained forK ≥ 300. ForK = 75 or K = 150, it can
be seen from Figure 4 than the performance of M-LINE is
much poorer than the other methods, specially at intermedi-
ate down-sampling factors. If we look Figure 3, we observe
that smaller values ofK produces sharper reconstructed im-
ages, while a biggerK produces blurrier images. This is ex-
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Figure 5. Verification results (EER) of the two scenarios employed. Best seen in color.

Scenario 1 Scenario 2

115×115 57×57 29×29 15×15 115×115 57×57 29×29 15×15
(1/2) (1/4) (1/8) (1/16) (1/2) (1/4) (1/8) (1/16)

method LG COMPARATOR
bilinear 0.69% 0.69% 1.61% 10.39% 0.61% 0.76% 2.38% 11.03%
bicubic 0.69% 0.68% 1.42% 9.59% 0.73% 0.65% 1.88% 11.25%
PCA 0.76% 0.8% 1.11% 7.29% 0.73% 0.69% 1.18% 4.79%

M-LINE k=75 0.72% 0.93% 2.07% 9.38% 0.79% 0.99% 2.49% 4.97%
M-LINE k=150 0.76% 1.15% 1.53% 8.5% 0.76% 1.53% 1.71% 4.37%
M-LINE k=300 0.8% 0.85% 1.26% 8.08% 0.8% 1.07% 1.26% 4.26%
M-LINE k=600 0.8% 0.81% 1.15% 7.56% 0.87% 0.8% 1.38% 4.02%
M-LINE k=900 0.8% 0.79% 1.11% 7.25% 0.84% 0.73% 1.26% 4.02%

method SIFT COMPARATOR
bilinear 4.05% 10.42% 28.23% 50.52% 3.01% 4.26% 14.82% 41.66%
bicubic 3.51% 7.41% 24.99% 47.33% 3.13% 3.08% 11.6% 36.37%
PCA 4.17% 4.74% 15.65% 36.67% 3.9% 3.11% 7.46% 18.98%

M-LINE k=75 4.13% 7.55% 17.62% 32.99% 4.04% 8.71% 17.16% 20.87%
M-LINE k=150 3.93% 8.95% 14.43% 33.7% 4.14% 10.85% 11.9% 17.54%
M-LINE k=300 4.12% 7.51% 13.73% 35.69% 3.81% 8.27% 9.73% 17.76%
M-LINE k=600 4.18% 6.11% 13.61% 37.17% 4.16% 5.32% 7.47% 18.13%
M-LINE k=900 4.51% 5.18% 13.72% 36.56% 4.7% 4.77% 8.34% 18.85%

Table 2. Verification results (EER) with different down-sampling factors for the different reconstruction methods.

pected, since a bigger value ofK implies that more patches
are being averaged (under their respective weights), so the
output image patch will be smoother.

Next, we report verification experiments using halluci-
nated HR images. We consider two scenarios:1) enrolment
samples taken from original HR input images, and query
samples from hallucinated HR images; and2) both enrol-
ment and query samples taken from hallucinated HR im-
ages. The first case simulates a controlled enrolment sce-
nario with good quality images, while the second case sim-
ulates a totally uncontrolled scenario (albeit for simplicity,
enrolment and query samples have similar resolution in our
experiments). Results are given in Table 2 and Figure 5.

The following observations can be made from these results:

• While PCA and M-LINE have similar or worse per-
formance than bilinear/bicubic interpolations at small
down-sampling factors, their performance is much
more better at very low resolutions, highlighting the
benefits of trained reconstruction methods. In addi-
tion, M-LINE goes one step further, outperforming
PCA when the image resolution is very small. Regard-
ing performance of the individual comparators, SIFT
is much more sensitive to resolution reduction. While
EER of the LG comparator is kept at∼4% in scenario
2, SIFT goes above 17%.
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Scenario 1 Scenario 2

115×115 57×57 29×29 15×15 115×115 57×57 29×29 15×15
(1/2) (1/4) (1/8) (1/16) (1/2) (1/4) (1/8) (1/16)

method FUSION LG+SIFT COMPARATORS
bilinear 0.61% 0.76% 1.65% 10.28% 0.61% 0.76% 2.3% 10.98%
bicubic 0.69% 0.7% 1.36% 9.59% 0.61% 0.7% 1.73% 10.97%
PCA 0.65% 0.7% 1.12% 7.25% 0.65% 0.7% 1.03% 4.49%

M-LINE k=75 (LG, SIFT) 0.69% 0.82% 1.9% 9.28% 0.66% 1% 2.3% 4.88%
M-LINE k=150 (LG, SIFT) 0.69% 1.07% 1.51% 8.09% 0.65% 1.27% 1.65% 4.11%
M-LINE k=300 (LG, SIFT) 0.73% 0.84% 1.23% 7.9% 0.65% 1% 1.23% 3.96%
M-LINE k=600 (LG, SIFT) 0.7% 0.73% 1.07% 7.52% 0.76% 0.8% 1.09% 3.69%
M-LINE k=900 (LG, SIFT) 0.73% 0.76% 1.07% 7.21% 0.73% 0.76% 1.07% 3.83%

M-LINE k=900 (LG), k=75 (SIFT) 0.73% 0.73% 1% 7.18% 0.76% 0.73% 1.19% 3.83%
M-LINE k=900 (LG), k=150 (SIFT) 0.77% 0.76% 1.11% 7.25% 0.76% 0.73% 1.23% 3.68%
M-LINE k=900 (LG), k=300 (SIFT) 0.73% 0.73% 1.11% 7.21% 0.73% 0.76% 1.15% 3.58%

Table 3. Fusion results (EER) of the LG and SIFT comparators.
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• Interestingly, the preferred neighbor numberK of
M-LINE is different for each matcher. While LG
prefers a bigger set (K > 300), SIFT shows better
results with a smaller set. This contradicts the re-

sults with PSNR/SSIM indicators, where a bigger set
was preferred. These general-scene quality indicators
are widely employed in the super-resolution literature,
but they are more tailored to measure visual enhance-
ment; however, the aim of applying super-resolution to
biometrics is enhancing recognition performance [19].
For this reason, looking at the recognition performance
is necessary, since the performance of an individual
comparator may not follow.

• Both scenarios has a relatively similar performance up
to a certain down-sampling factor. But at low res-
olutions, both comparators show a much more bet-
ter performance in scenario 2. In the latter scenario,
both gallery and probe images undergo the same down-
sampling and reconstruction procedure. In scenario 1,
the gallery image employed is the original HR image,
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which seems to have fairly different feature proper-
ties than corresponding reconstructed LR images (at
least with the feature extraction methods used here).
Similarly, performance is not degraded until a down-
sampling factor of 1/8, suggesting that the size of
stored query images can be kept low without jeopardiz-
ing performance, as well as the size of the test image
if it has to be sent through a communication channel.

We then carry out fusion experiments using linear lo-
gistic regression. GivenN comparators (N=2 in our case)
which output the scores (s1j , s2j, ...sNj) for an input trialj,
a linear fusion is:fj = a0+a1 ·s1j+a2 ·s2j+...+aN ·sNj .
The weightsa0, a1, ...aN are trained via logistic regression
as described in [3]. We use this trained fusion approach be-
cause it has shown better performance than simple fusion
rules (like the mean or the sum rule) in previous works, as
in the one reported above. Results are given in Table 3 and
Figure 6. Since the preferred neighbor numberK of M-
LINE is different for each matcher, we have tested both the
case whereK is the same for both comparators, and also
the case where the LG comparator usesK=900 and SIFT
varies fromK=75 and 150. As it can be observed, M-LINE
also outperforms PCA here when the image has very low
resolution. While the best EER with LG only is∼4%, its
fusion with SIFT pushes the EER until∼3.6%, even if the
individual performance of SIFT is∼17.5%. We further an-
alyze the benefit of M-LINE w.r.t. the other reconstruction
methods in Figure 7, where we plot the DET curves (sce-
nario 2) of the individual comparators, and of the fusion of
the two systems for an input LR image size of 15×15. In
this extreme case of very low resolution, it can be observed
that the performance of PCA (green curves) is systemati-
cally improved by M-LINE for nearly any FRR/FAR value.
The improvement of M-LINE w.r.t. the other methods is
even more pronounced at high security regions (low FAR),
where the iris modality is usually employed [6].

5. Conclusion

More relaxed acquisition environments are pushing the
iris modality towards the use of low resolution imagery.
Here, we apply an iris super-resolution reconstruction
method based on Multilayer Locality-Constrained Iterative
Neighbour Embedding of local image patches (M-LINE)
[14] to increase the resolution of near-infrared (NIR) iris
images. Previous works on patch-based iris reconstruc-
tion only consider the LR manifold to reconstruct input LR
patches, and the reconstruction weights are simply trans-
ferred to the HR manifold [2]. In the method described
in this paper, on the contrary, reconstruction starts in the
HR manifold (which is unaffected by the image degrada-
tion process), and distances to the HR training dictionary
are used to penalize the reconstruction weights of the input

LR patch in the LR space. This approach is compared to
bilinear/bicubic interpolation, and to the mentioned method
of [2], which is based on projecting input LR patches to
the LR training set using a PCA eigen-transformation. We
also carry out iris verification experiments on the recon-
structed images using two iris comparators based on Log-
Gabor (LG) wavelets and SIFT key-points. Experimental
results show that the M-LINE method has a superiority over
the other reconstruction methods when the resolution of the
image is very small (15×15 in this paper), with an EER of
∼4% using the LG comparator, and an EER of∼3.6% af-
ter the fusion of the two comparators. Another observation
is that performance of the comparators is not degraded sig-
nificantly until input images are down-sampled by 1/8 (im-
age size of 29×29), meaning that stored query images or
transmitted test images can be kept low without sacrificing
performance.

The PCA and M-LINE methods evaluated here assume
that the low- and high-resolution manifolds have similar
local geometrical structure, hence the same reconstruction
weights are used in both manifolds. While this simplifies
the problem, it is not usually the case, since the degradation
process of the LR image results in one-to-many relationship
between low- and high-resolution patches. To cope with
this effect, we are exploring the update strategy of the LR
dictionary proposed in the M-LINE method [14], which is
not implemented in this paper. Another directions include
evaluating the resiliency of other iris recognition algorithms
[22] as well as employing low-resolution imagery captured
in visible range (e.g. with smart-phones).
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