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Abstract

With the integration of face recognition technology into

important identity applications, it is imperative that the ef-

fects of facial aging on face recognition performance are

thoroughly understood. As face recognition systems evolve

and improve, they should be periodically re-evaluated on

large-scale longitudinal face datasets. In our study, we

evaluate the performance of two state-of-the-art commer-

cial off the shelf (COTS) face recognition systems on two

large-scale longitudinal datasets of mugshots of repeat of-

fenders. The largest of these two datasets has 147,784 im-

ages of 18,007 subjects with an average of 8 images per

subject over an average time span of 8.5 years. We fit multi-

level statistical models to genuine comparison scores (simi-

larity between images of the same face) from the two COTS

face matchers. This allows us to analyze the degradation

in recognition performance due to elapsed time between a

probe (query) and its enrollment (gallery) image. We ac-

count for face image quality to obtain a better estimate

of trends due to aging, and analyze whether longitudinal

trends in genuine scores differ by subject gender and race.

Based on the results of our statistical model, we infer that

the state-of-the-art COTS matchers can verify 99% of the

subjects at a false accept rate (FAR) of 0.01% for up to 10.5

and 8.5 years of elapsed time. Beyond this time lapse of 8.5

years, there is a significant loss in face recognition accu-

racy. This study extends and confirms the findings of earlier

longitudinal studies on face recognition.

1. Introduction

It is now well established that accuracies of face recog-

nition systems are adversely affected by factors including

facial pose, illumination, expression and aging, collectively

known as PIE-A. While image acquisition conditions and

subject cooperation can accommodate for PIE variations in

controlled capture scenarios, facial aging factors are intrin-

sic and cannot be controlled. A face undergoes various

temporal changes across time, including wrinkles, weight,

(a) 19 and 25 years (0.41) (b) 30 and 35 years (0.39)

(c) 28 and 39 years (0.41) (d) 25 and 32 years (0.40)

Figure 1: Examples of low-scoring genuine face image pairs of four sub-

jects from (a), (b) PCSO and (c), (d) MSP longitudinal mugshot datasets.

Ages at image acquisitions are given along with similarity scores from

COTS-A for each pair. The thresholds for COTS-A at 0.1% and 0.01%

false accept rate (FAR) are 0.42 and 0.49, respectively, for both PCSO and

MSP datasets. Each of the genuine pairs would be falsely rejected at 0.1%

and 0.01% FARs.

facial hair, etc. Figure 1 shows that large time lapse be-

tween two genuine face images can result in false reject er-

rors. Therefore, it is critical to systematically evaluate face

recognition technology on longitudinal face datasets to de-

termine state-of-the-art accuracy with respect to time lapse

between a probe and its enrollment image in the gallery.

A considerable amount of research has been performed

and reported on age-invariant face recognition [6],[7], syn-

thetic aging [8],[9], automatic age estimation from face im-

ages [10], aging analysis [11], and appearance prediction

across ages [12]. In this study, we focus on quantifying the

impact of aging on the performance of face recognition sys-

tems. Studies within this realm traditionally have followed

a methodology of dividing a given population into discrete

age groups and then reporting recognition performance (e.g.

TAR or EER) for each age group independently. Two major
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conclusions have been drawn based on this cross-sectional

analysis: (i) Face recognition performance decreases as the

elapsed time between two images of the same subject in-

creases [1], [3], [4], and (ii) faces of younger individuals

are more difficult to recognize than faces of older individ-

uals [4],[5]. Studies, where arbitrary age group assignment

are considered, make it difficult to compare results from dif-

ferent studies. Additionally, the primary concern with facial

aging is a decrease in genuine similarity scores over time

lapse, which causes an increase in false non-match rates.

Reporting summary performance measures for subsets of a

facial aging dataset does not provide any insight into how

the genuine similarity scores of individuals are changing

over time. Previous facial aging studies [19] primarily used

FG-NET [17] and MORPH [18] face datasets, which are

both limited in terms of the number of subjects and number

of images per subject. FG-NET contains only 1,002 images

from 82 subjects and MORPH contains only 317 subjects

that have at least 5 images over at least 5 years time lapse.

Due to their small size, both in terms of number of subjects

and number of images per subject over time, FG-NET and

MORPH are not suitable for statistical modeling for longi-

tudinal study. For this study, we obtained two large-scale

longitudinal face datasets, denoted as PCSO and MSP (see

Table 1) and report our inference based on these datasets.

While these two datasets, due to privacy issues, are not

available in the public domain, there is no way to carry out a

meaningful longitudinal study without such large-scale data

that is only available from government agencies.

Multilevel statistical models have been adopted for large-

scale longitudinal study of iris [13], fingerprint [16], and

face [2] recognition. Grother et al. analyzed a large-scale

longitudinal dataset of 7,876 subjects to quantify the iris ag-

ing effect on recognition over time in a study called IREX

VI [13]. They concluded that an increase in Hamming

distance due to elapsed time between enrolled and query

images has no significant effect on iris recognition fail-

ures. Some limitations of the IREX VI study were iden-

tified [14], [15]. Yoon and Jain analyzed a longitudinal

fingerprint dataset of 15,597 subjects and found a decreas-

ing trend in genuine match scores; however, the recog-

nition accuracy, at operational FARs between 0.01% and

0.00001%, remained stable up to 12 years (the maximum

time span in the dataset) [16]. Best-Rowden and Jain per-

formed a subject-specific analysis using two longitudinal

face datasets: PCSO dataset containing 147,784 images of

18,007 subjects and LEO dataset1 containing 31,852 images

of 5,636 subjects [2]. Best-Rowden and Jain concluded:

(i) while genuine scores declined significantly over time,

scores for 99% of the population remained above the thresh-

1Face images from this dataset are not available to us and hence, we do

not use this dataset in our study. Without the face images, we could not,

for example, extract the image quality covariate.

old at FAR of 0.01% (0.1%) until 6.5 (8.5) and 5.5 (8.0)

years of elapsed time for PCSO and LEO datasets, respec-

tively, and (ii) subject demographics had marginal effects

on the rates of change in genuine scores over time. Because

these results are tied to the particular COTS face matchers

used in [2], it is imperative to periodically repeat the lon-

gitudinal study utilizing new and improved face matchers

as they evolve, as well as additional large-scale longitudinal

datasets.

This paper repeats and expands on the longitudinal face

study in [2]. The contributions of this paper are as follows:

• Evaluate the performance of two state-of-the-art COTS

face matchers (COTS-A and COTS-B)2 on two longi-

tudinal mugshot datasets (PCSO and MSP)3 from two

different law enforcement sources. COTS-A is a new

version from the same vendor of the COTS-A face

matcher used in [2].

• PCSO and MSP datasets used in this study are the

largest longitudinal face datasets studied to date. See

Table 1 for details on PCSO and MSP datasets.

• Analyze the rate of change in genuine scores due to the

elapsed time between enrollment and probe images, as

well as covariates such as gender, race, and the quality

of the gallery and probe images.

The key differences between this study and [2] are:

• A newer version of the COTS-A face matcher is uti-

lized with significantly improved face recognition per-

formance.

• Evaluation of COTS-A on both PCSO and MSP

datasets, and evaluation of COTS-A and COTS-B on

MSP. In contrast, [2] evaluated two matchers, each on

only a single dataset.

• While [2] used inter-pupillary distance (IPD) and face

frontalness as quality measures, we utilize an over-

all face quality measure, namely, Rank-based Quality

Score (RQS) proposed by Chen et al. [20].

The organization of the paper is as follows. Section 2 de-

scribes the two large-scale longitudinal datasets (PCSO and

MSP) used in this study. In Section 3, we revisit the multi-

level statistical models from [2]. Section 4 makes inferences

from fitting the models on genuine scores from COTS-A

and COTS-B. Section 5 summarizes and concludes our pa-

per.

2COTS-A is one of the top-3 performers in the NIST FRVT 2014.

COTS-B algorithm is based on the deep convolutional networks. These

are state-of-art face matchers which are essential for such a longitudinal

study.
3COTS-B was not evaluated on PCSO dataset because, according to the

vendor, it was trained on PCSO.
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Figure 2: Statistics of the two longitudinal face datasets used in this study

(PCSO and MSP). Histograms denote the number of face images per sub-

ject, and show the time lapse between the enrollment and the latest probe

image of a subject. PCSO dataset contains 147,784 face images of 18,007

subjects and MSP dataset contains 82,450 images of 9,572 subjects.

2. Longitudinal Face Datasets

The two longitudinal face datasets used in this study are

obtained from two different law enforcement sources: (i)

Pinellas County Sheriff’s Office (PCSO) and (ii) Michigan

State Police (MSP). The PCSO longitudinal dataset con-

tains 147,784 mugshots of 18,007 recidivists spanning from

the years 1994 to 2010. The MSP longitudinal dataset con-

tains 82,450 mugshots of 9,572 recidivists spanning from

the years 2002 to 2015. Statistics for these two datasets are

shown in Figure 2.

The criteria used to select the subjects and images are the

following. (i) Each subject has sufficient number of image

acquisitions (at least 5 for PCSO and at least 4 for MSP)

over a minimum of 5 year time span, (ii) each consecutive

image acquisition of a subject is separated by at least one

month, and (iii) the youngest subject is at least 18 years old.

Let Ii,j represent the jth mugshot acquisition of subject i.
Then Ii = {Ii,1, Ii,2, Ii,3, . . . , Ii,Ni

} is the set of Ni total

images for subject i. We order Ii,j by the time of acquisi-

tion, so Ti,1 < Ti,2 < Ti,3 < · · · < Ti,Ni
, where Ti,j is the

date of acquisition of Ii,j . Let Agei,j denote subject i’s age

during the jth face acquisition. In summary,

• Ni ≥ 5 and Ni ≥ 4 for PCSO and MSP, respectively.

• (Ti,Ni
− Ti,1 ≥ 5) years for both PCSO and MSP.

•
(

Ti,(j+1) − Ti,j ≥ 1
)

month for both PCSO and MSP.

• Agei,1 ≥ 18 years for both PCSO and MSP.

3. Multilevel Statistical Model

The large-scale longitudinal datasets described in Sec-

tion 2 contain repeated observations (face acquisitions

and, consequently, genuine scores) for each subject over

Table 1: Statistics of PCSO and MSP datasets.

PCSO MSP

Number of Images 147,784 82,450

Number of Subjects 18,007 9,572

Average no. of images/subject 8 9

Max no. of images/subject 60 48

Average time lapse (years) 8.5 9.0

Max time span (years) 16 14

Average age of subjects (years) 31 33

Youngest age of subject (years) 18 18

Oldest age of subject (years) 83 78

Male/Female ratio (%) 83/17 88/12

Black/White ratio (%) 61/39 52/48

Average IPD (pixels) 113 126

time. Additionally, the datasets are both time-unstructured

(Ti,k 6= Tj,k) and unbalanced (Ni 6= Nj). To study such

hierarchical data, multilevel (or mixed-effects) statistical

models have been widely used to evaluate the correlation

of within-subject response variables across time in many

important fields of research including epidemiology, soci-

ology, psychology, etc.

The models used in this work contain two levels, simi-

lar to those used in [2]. The Level-1 model describes the

changes in genuine scores, Yij , for each subject over time

(within-subject variation), whereas the Level-2 model de-

scribes how these changes differ across subjects (between-

subject variation). Genuine scores are standardized using

z-score normalization so that coefficients obtained from the

models are interpreted as the change in standard deviations

of the genuine distribution per year (e.g. for elapsed time

covariate). The genuine score distributions for COTS-A on

PCSO and MSP and COTS-B on MSP datasets are shown

in Figure 3. We model changes in genuine scores over time,

Yi,j , as a linear function of various covariates, Xi,j ,

Yi,j = π0i + π1iXi,j + εi,j , (1)

where π0i and π1i are subject i’s intercept and slope, re-

spectively. Equation 1 is the Level-1 model which corre-

sponds to within-subject changes in face comparison scores

over time. The Level-1 residual variation, εi,j , represents

the variance in each individual’s comparison scores from

his/her linear longitudinal trend. The slope and intercept

parameters, π0i and π1i, are modeled as a combination of

fixed and random effects. Fixed effects, γ00 and γ10, are

the overall means of the population intercepts and slopes,

whereas random effects, b0i and b1i, are subject i’s devia-

tion from the population means. Therefore, subject i’s slope

and intercept parameters can be written as,
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Table 2: Multilevel models with different covariates

Model Level-1 Model Level-2 Model Covariates

Model BT Yij = π0i + π1i∆Ti,j + εi,j π0i = γ00 + b0i, Time lapse

π1i = γ10 + b1i
Model CGR Yij = π0i + π1i∆Ti,j + εi,j π0i = γ00 + γ01Gendi + γ02Racei + b0i Time lapse, gender, and race

π1i = γ10 + γ11Gendi + γ12Racei + b1i
Model QT Yij = π0i + π1i∆Ti,j + π2iQuali,jj 6=1

π0i = γ00 + γ01Quali,1 + b0i Time lapse, quality

+ π3i∆Ti,jQuali,jj 6=1
+ εi,j π1i = γ10 + γ11Quali,1 + b1i

π2i = γ20 + γ21Quali,1
π3i = γ30 + γ31Quali,1
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Figure 3: Genuine score distributions for (top to bottom) COTS-A on

PCSO, COTS-A on MSP, and COTS-B on MSP datasets.

π0i = γ00 + b0i, (2a)

π1i = γ10 + b1i. (2b)

Equations 2a and 2b constitute the Level-2 model which

models changes in face comparison scores across subjects.

Equations 1 and 2 can be combined to get,

Yij = [γ00 + b0i] + [γ10 + b1i]Xi,j + εi,j . (3)

If the random effects and residual variation are equal to

their expected means of zero, then Equation 3 reduces to

the population-mean trend Yij = γ00 + γ10Xi,j .

The different covariates incorporated in the models are

as follows:

• ∆Ti,j : time lapse between the jth image acquisition

and the enrollment face image of subject i

• Agei,1: age at enrollment of subject i

(a) COTS-A (PCSO dataset) (b) COTS-A (MSP dataset) (c) COTS-B (MSP dataset)

Figure 4: Normal probability plots for level-1 residuals εij from Model

BT fit to COTS-A on (a) PCSO and (b) MSP and COTS-B on (c) MSP

genuine scores.

• Gendi: gender of subject i (0 for female, 1 for male)

• Racei: race of subject i (0 for black, 1 for white)

• Quali,j : face quality metric for jth mugshot image of

subject i. Face quality values used here are obtained

from the methodology proposed by Chen et al. [20].

Quali,1 is the face quality value for enrollment image

and Quali,jj 6=1
is the quality value for the jth probe

image of subject i.

Note that ∆Ti,j and Quali,jj 6=1
are time-varying covari-

ates and affect within-subject variation in genuine scores

(Level-1). On the other hand, Agei,1, Gendi, Racei, and

Quali,1 are time-invariant covariates and affect between-

subject variation in genuine scores (Level-2). Table 2 de-

scribes all models and covariates used in this study.

4. Experimental Results

Genuine scores from COTS-A and COTS-B were ob-

tained by comparing each subject’s enrollment image

(youngest acquisition) to his/her subsequent face images.

Hence, for subject i, there are (Ni − 1) genuine compar-

isons. For PCSO dataset, there are a total of 130,878 gen-

uine and 11.1 billion impostor comparison scores, whereas,

for MSP dataset, there are 82,150 genuine and 4.1 billion

impostor comparison scores. Increasingly complex mod-

els (Table 2) are successively fit to evaluate the variation in

genuine scores over time and the impact of additional co-

variates. Models were fit using the LME4 package in R
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Table 3: Bootstrap parameter estimates of fixed-effects and variance components for COTS-A on PCSO and MSP datasets and COTS-B on MSP dataset.

Estimates where the 95% bootstrap confidence intervals contained zero are highlighted in bold.

PCSO (COTS-A) MSP (COTS-A) MSP (COTS-B)

BT CGR QT BT CGR QT BT CGR QT

γ00 0.7233 0.3958 0.6889 0.5858 0.4914 0.5059 0.5599 0.6847 0.4647

γ10 -0.1429 -0.1170 -0.1399 -0.1076 -0.1006 -0.0945 -0.1036 (-0.0849) -0.0899

γ01 0.4286 0.0595 0.1665 0.1173 0.0424 0.1762

γ11 -0.0087 0.0067 (0.0078) -0.0029 (-0.0084) -0.0058

γ02 -0.0433 0.0858 -0.0929 0.1900 -0.3128 0.2408

γ12 -0.0308 0.0069 -0.0291 0.0104 -0.0251 0.0056

γ20 0.0605 0.0833 0.1380

γ21 (-0.0002) (-0.0001) -0.0064

σ2
ǫ 0.2951 0.2955 0.2587 0.5300 0.5230 0.3878 0.5218 0.5065 0.4034

σ2

0
0.2465 0.2202 0.2322 0.4338 0.4232 0.3878 0.5878 0.5547 0.5258

σ2

1
0.0036 0.0033 0.0032 0.0081 0.0077 0.0067 0.0080 0.0072 0.0068

σ01 -0.0020 -0.0017 -0.0026 -0.0367 -0.0356 -0.0305 -0.0470 -0.0447 -0.0425

AIC 254659 252696 246185 178710 177435 162928 177703 174684 163758

BIC 254717 252794 246371 178765 177527 163103 177758 174776 163932

Deviance 254647 252676 246147 178699 177415 162890 177691 174664 163720

using maximum likelihood estimation. Thresholds at dif-

ferent FAR values are calculated from the full impostor dis-

tributions in order to evaluate how the longitudinal trends in

genuine scores affect the recognition accuracies of COTS-A

and COTS-B.

Inferences from multilevel models are based on the as-

sumption that the residual errors are normally distributed.

Figure 4 shows the normal probability plots (Q-Q plots) of

the residuals, εi,j , from fitting Model BT to genuine scores.

For both datasets, linearity is violated, indicating that the

validity of normality assumption does not hold. When

parametric model assumptions are violated, non-parametric

bootstrap can be performed to obtain confidence intervals

for the parameter estimates [16]. Therefore, non-parametric

bootstrapping is conducted with 1,000 bootstrap sets, ob-

tained by sampling 18,007 and 9,572 subjects with replace-

ment from PCSO and MSP, respectively. The multilevel

models are then fit to each bootstrap set, and the mean pa-

rameter estimates over all 1,000 bootstraps are reported. Ta-

ble 3 gives parameter estimates and variances obtained from

the models after bootstrapping; 95% bootstrap confidence

intervals have been omitted due to space, but parameters for

which confidence intervals contained zero are indicated in

bold. These parameters are statistically zero and the null

hypothesis of the parameter equal to 0 cannot be rejected at

significance level of 0.05.

4.1. Time Lapse

Model BT contains a single covariate, namely the time

lapse between a subject’s enrollment image and probe im-

ages (∆Ti,j). The population-mean trend for Model BT ,

given by γ00 and γ10, estimates that COTS-A genuine

scores decrease by γ10 = 0.1429 and 0.1076 standard

deviations per year for PCSO and MSP datasets, respec-

tively. Similar to COTS-A on MSP, Model BT estimates
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Figure 5: Genuine score distributions for (a) COTS-A0 and (b) COTS-A

face matchers. Thresholds at 0.01% FAR for COTS-A0 and COTS-A face

matchers are 0.53 and 0.49, respectively. The thresholds are shown with

dashed lines.

Table 4: Bootstrap parameter estimates of fixed-effects and variance com-

ponents from Model BT for COTS-A0 and COTS-A on PCSO dataset

COTS-A0 [2] COTS-A

intercept γ00 0.6734 0.7233

slope γ01 -0.1364 -0.1429

σ2
ǫ 0.3912 0.2951

σ2

0
0.3243 0.2465

σ2

1
0.0028 0.0036

σ01 -0.0039 -0.0020

† COTS-A0 is the older version of COTS-A face

matcher used by Best-Rowden and Jain [2].

that COTS-B genuine scores from MSP decrease by 0.1036

standard deviations per year. In other words, this implies

that COTS-A genuine scores decrease by one full stan-

dard deviation of the PCSO (MSP) score distribution after

1/γ10 = 7.0 (9.3) years of elapsed time. Again, similar to

COTS-A on MSP, COTS-B genuine scores decrease by one

full standard deviation of the MSP score distribution after

1/γ10 = 9.7 years of elapsed time.

Table 4 compares the longitudinal performance on PCSO

of the COTS-A face matcher with the previous version of
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Figure 6: Results from Model BT on (a) COTS-A0 and (b) COTS-A match

scores on PCSO dataset. The blue and green bands plot regions of 95% and

99% confidence for subject-specific variations around the population-mean

trend. Hence, Model BT estimates that 95% and 99% of the subject trends

fall within the blue and green bands. Thresholds at 0.01% and 0.1% FAR

for COTS-A0 and COTS-A are shown as red lines.

COTS-A, denoted as COTS-A0, used in [2]. The estimated

slopes from Model BT for COTS-A0 and COTS-A indi-

cate that genuine scores decrease by one standard deviation

of their respective genuine distributions after 7.3 and 6.9

years of elapsed time, respectively. These two estimates are

fairly close for the two versions of COTS-A, but suggest

that COTS-A0 may be slightly more robust to aging.

Following [2], using estimated variation in slope and in-

tercept parameters (σ2
0 , σ2

1 , and σ01), we plot regions that

contain the longitudinal trends for 95% and 99% of the pop-

ulation. The regions are then used to determine when gen-

uine scores for 95% and 99% of the population begin to

drop below thresholds for FARs of 0.01% and 0.1%. In

other words, we estimate the elapsed time in years which is

tolerated by the COTS matchers before the decrease in gen-

uine scores begins to cause errors at different FARs. Best-

Rowden and Jain reported that genuine scores for 99% of

the population remained above the threshold at 0.01% FAR

until 6.5 years for COTS-A0 on the PCSO dataset, whereas,

from Figure 6, we estimate this time lapse to be 10.5 years

for COTS-A. Figure 5 shows that the score distribution for

COTS-A face matcher has a better separation between im-

postor and genuine score distributions, compared to COTS-
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Figure 7: Population-mean trends in COTS-A and COTS-B genuine scores

on PCSO dataset and MSP dataset for the four demographic groups in the

datasets. Trends were obtained from Model CGR.

A0, due to lower thresholds at different FARs and a shift

in the entire genuine distribution, which can accommodate

more for decreasing genuine scores. This may explain the

improved longitudinal performance of COTS-A compared

to COTS A0.

From Figure 6, we find a significant amount of variability

in subject-specific longitudinal trends in COTS-A genuine

scores on PCSO dataset over time. We observed that large

subject-specific variability exists for COTS-A and COTS-B

on MSP dataset as well. Therefore, we consider other co-

variates such as gender and race, and face image quality to

further explain this variability and to obtain a better estimate

of longitudinal trends due to face aging.

4.2. Gender and Race

This section investigates whether variability in subject-

specific longitudinal trends in genuine scores over time

can be explained by subject demographics of gender and

race. Population-mean trends for gender and race, esti-

mated by Model CGR are shown in Figure 7. Two pri-

mary conclusions can be drawn about the effects of de-

mographics on trends in genuine scores over time. Differ-

ences due to demographics are (i) consistent for COTS-A on

both datasets, but (ii) the demographic effects are matcher-

dependent when COTS-A and COTS-B are both evaluated

on the MSP dataset.

For COTS-A on PCSO and MSP, average genuine scores

are significantly lower for females than for males, but rates

of change (slopes) are not statistically different between

males and females. We observe the opposite effect for

COTS-A with respect to race; average genuine scores are

not statistically different between white and black subjects,

but rates of change (slopes) are significantly steeper for

white subjects than for black subjects. These results are

consistent with the effects of demographics on the COTS-

A0 version reported in [2].
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Comparing COTS-A and COTS-B on the MSP dataset,

we observe that trends between males and females are al-

most identical for COTS-B. However, COTS-B average

genuine scores for black subjects are significantly higher

and change at a slower rate than the genuine scores of white

subjects. Hence, for the MSP dataset, COTS-B is most af-

fected by race, while COTS-A is most affected by gender.

Because COTS-A performed consistently on both PCSO

and MSP, the different performance on demographic groups

of COTS-A and COTS-B can likely be attributed to the dis-

tribution of demographic groups in the training sets used for

COTS-A and COTS-B.

4.3. Face Quality

Figure 8 shows mugshot images of subjects from PCSO

and MSP datasets whose longitudinal trends estimated by

Model BT lie outside of the 95% confidence band. A ma-

jority of these subjects have poor quality face images which

can result in low genuine scores. Hence, in this section,

we attempt to obtain better estimates of longitudinal per-

formance by accounting for the varying quality of the face

images. The raw quality values from Chen et al. [20] range

from 0 to 100; for our study, we standardize the quality val-

ues to have a mean of 0 and standard deviation of 1 for ease

of interpretation of the models.

From Table 3, it can be inferred that the model with the

best goodness-of-fit for both PCSO and MSP datasets is

Model QT . Using the equations for Model QT in Table

2, the composite form of Model QT is written as,

Yij = γ00 + γ01Quali,1 + b0i+

(γ10 + γ11Quali,1 + b1i)∆Ti,j+

(γ20 + γ21Quali,1 + b2i)Quali,jj 6=1
+

(γ30 + γ31Quali,1 + b3i)∆Ti,jQuali,jj 6=1
+ εi,j

(4)

Because we standardize the quality values to have a mean

of 0, if we assume average quality of enrollment and probe

images, Equation 4 reduces to,

Yij = [γ00 + b0i] + [γ10 + b1i] ∆Ti,j + εi,j , (5)

which is the same as Equation 3 for time lapse. We

then investigate the change in COTS-A and COTS-B gen-

uine scores over time, assuming average mugshot quality,

by plotting 95% and 99% confidence bands around the

population-mean trends in Figure 9. The elapsed times

when confidence bands cross thresholds at different FARs

are also given in Table 5. Comparing the longitudinal per-

formance estimated by Models BT and QT in Table 5,

COTS-B face matcher is impacted the most by accounting

for varying face image quality. The Pearson coefficients

between the quality values for probe images and genuine

scores are 0.35 for COTS-B on MSP, and 0.16 and 0.04 for

34 (57.09) 37 (60.72) 38 (54.57) 40 (52.40) 47 (52.79)

33 (72.26) 34 (40.22) 37 (39.16) 39 (42.91) 43 (43.17)

44 (65.39) 55 (50.28) 56 (56.64) 57 (49.79) 58 (23.07)

49 (83.61) 55 (28.76) 56 (43.89) 58 (41.87) 59 (56.94)

Enrollment 

Image

Query Images

age in years (quality of image)

(a)

(b)

Figure 8: Examples of subjects, in (a) PCSO dataset and (b) MSP dataset,

whose longitudinal trends estimated by Model BT lie outside of the 95%

confidence band. Age at image acquisition along with quality value of the

image (in parentheses) are given. The mean (standard deviation) of the

quality distributions for PCSO and MSP datasets are 73.89 (10.29) and

76.38 (10.69), respectively.

COTS-A on PCSO and MSP datasets, respectively. This

suggests that COTS-B genuine scores are more correlated

with quality values of probe images which may explain

why the longitudinal performance estimated by Model BT

is lower than that estimated by Model QT for COTS-B. An-

other explanation may be that COTS-B is more sensitive

to low quality images than COTS-A, and hence the perfor-

mance due to aging significantly changes when low gen-

uine scores caused by face image quality are account for in

Model QT .

In summary, assuming average quality mugshot images,

the genuine scores of 99% of the population remain above

the threshold at 0.01% FAR for an elapsed time of 10.5

years for COTS-A on PCSO dataset. Genuine scores of

99% of the population remain above the threshold at 0.01%

FAR for an elapsed time of 10.5 (8.5) years for COTS-A

(COTS-B) on MSP dataset.
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Figure 9: Results from Model QT on COTS-A match scores on (a) PCSO and (b) MSP datasets and (c) COTS-B matches scores on MSP dataset. The blue

and green bands plot regions of 95% and 99% confidence for subject-specific variations around the population-mean trend. Hence, Model QT estimates

that 95% and 99% of the subject trends fall within the blue and green bands. Thresholds at 0.01% and 0.1% FAR for COTS-A and COTS-B are shown as

red lines.

Table 5: Results from Models BT and QT for COTS-A genuine scores

on PCSO and MSP datasets and COTS-B genuine scores on MSP dataset.

Values represent time lapse in years tolerated by the matchers before gen-

uine scores for 95/99% of the population drop below thresholds at 0.01%

and 0.1% FAR.

(a) Model BT

95% Confidence 99% Confidence

0.01% FAR 0.1% FAR 0.01% FAR 0.1% FAR

PCSO (COTS-A) 12.0 15.0 10.5 13.0

MSP (COTS-A) 12.0 14.0 9.5 12.5

MSP (COTS-B) 9.0 12.5 5.5 9.5

(b) Model QT

95% Confidence 99% Confidence

0.01% FAR 0.1% FAR 0.01% FAR 0.1% FAR

PCSO (COTS-A) 12.0 14.5 10.5 12.5

MSP (COTS-A) 12.0 14.0 10.5 12.5

MSP (COTS-B) 10.5 12.0 8.5 10.5

5. Conclusions

We have presented a longitudinal study of face recog-

nition, using two operational longitudinal face datasets of

mugshot images, PCSO (147,784 mugshots of 18,007 sub-

jects, 8 images per subject on average over an average time

lapse of 8 years) and MSP (82,450 images of 9,572 sub-

jects, 9 images per subject on average over an average time

lapse of 9 years). Each subject has at least 5 and 4 im-

ages for PCSO and MSP, respectively, acquired over a time

lapse of at least 5 years. Multilevel statistical models were

used to analyze variations in genuine scores due to covari-

ates such as time lapse, gender, race, and face quality. Face

similarity scores were obtained from state-of-the-art face

matcher, COTS-A, for both PCSO and MSP dataset and

another state-of-the-art face matcher, deep-network based

COTS-B, on MSP dataset. The findings of this paper as

follows:

• Differences due to demographics of gender and race

are (i) consistent for COTS-A evaluated on both

datasets, but (ii) matcher-dependent when COTS-A

and COTS-B are both evaluated on the MSP dataset.

• Accounting for varying face image quality signif-

icantly impacted the estimated longitudinal perfor-

mance for the weaker matcher COTS-B, but did not af-

fect the estimated longitudinal performance of COTS-

A.

• Assuming average quality of mugshot images, we esti-

mate the longitudinal performance of the state-of-the-

art COTS face matchers to be the following: (i) Gen-

uine scores of 99% of the population remain above

the threshold at 0.01% FAR for an elapsed time of

10.5 years for COTS-A on PCSO dataset. (ii) Gen-

uine scores of 99% of the population remain above the

threshold at 0.01% FAR for an elapsed time of 10.5

(8.5) years for COTS-A (COTS-B) on MSP dataset.

These results are summarized in Table 5b also for 0.1%

FAR and 95% of the population.

Future work will include: (i) In this study, we evaluated

face recognition performance over time only in verification

scenarios. This needs to be repeated for face identifica-

tion performance over time. (ii) Analyzing rates of change

of comparison scores for original face images versus rates

of change of comparison scores for age-progressed or age-

simulated face images. A longitudinal study such as ours

needs to be conducted periodically to assess current state-

of-the-art in age-invariant face recognition.
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