
 

 

 

 

Abstract 

 

A key challenge of facial expression recognition (FER) 

is to develop effective representations to balance the 

complex distribution of intra- and inter- class variations. 

The latest deep convolutional networks proposed for FER 

are trained by penalizing the misclassification of images via 

the softmax loss. In this paper, we show that better FER 

performance can be achieved by combining the deep metric 

loss and softmax loss in a unified two fully connected layer 

branches framework via joint optimization. A generalized 

adaptive (N+M)-tuplet clusters loss function together with 

the identity-aware hard-negative mining and online 

positive mining scheme are proposed for identity-invariant 

FER. It reduces the computational burden of deep metric 

learning, and alleviates the difficulty of threshold 

validation and anchor selection. Extensive evaluations 

demonstrate that our method outperforms many state-of-art 

approaches on the posed as well as spontaneous facial 

expression databases. 

 

1. Introduction 

Facial expression is one of the most expressive nonverbal 

communication channels for humans to convey their 

emotional state [5]. Therefore, automatic facial expression 

recognition (FER) is important in a wide range of 

applications including human-computer interaction (HCI), 

digital entertainment, health care and intelligent robot 

systems [20]. 

Researchers have achieved great progress in recognizing 

the posed facial expressions collected under tightly 

controlled environment. Since the most promising face-

related applications occur in more natural conditions, it is 

our goal to develop a robust system that can operate well in 

the real word. Despite the significant efforts, FER remains 

a challenge in the presence of pose and illumination 

variations as well as inter-subject variations (i.e., identity-

specific attributes) [42]. These identity-specific factors 

degrade the FER performance of new identities unseen in 

the training data. Since spontaneous expressions only 

involve subtle facial muscle movements, the extracted 

expression-related information from different classes can 

be dominated by the sharp-contrast identity-specific 

geometric or appearance features which are not useful for 

FER. As shown in Fig. 1, example x1 and x3 are of happy 

faces whereas x2 and x4 are not of happy faces. ݂ሺݔ௜ሻ	are the 

image representations using the extracted features. For 

FER, we desire that two face images with the same 

expression label are close to each other in the feature space, 

while face images with different expressions are farther 

apart from each other, i.e., the distance D2 between 

examples x1 and x3 should be smaller than D1 and D3, as in 

Fig. 1(b). However, the learned expression representations 

may contain irrelevant identity information as illustrated in 

Fig. 1(a). Due to large inter-identity variations, D2 usually 

has a large value while the D1 and D3 are relatively small.  

To further improve the discriminating power of the ex-

pression feature representations, and address the large intra-

subject variation in FER, a potential solution is to incorpo-

rate the deep metric learning scheme within a convolutional 

neural network (CNN) framework. The fundamental phi-

losophy behind the widely-used triplet loss function [7] is 

to require one positive example closer to the anchor exam-

ple than one negative example with a fixed gap τ. Thus, dur-

ing one iteration, the triplet loss ignores the negative exam-

ples from the rest of classes. Moreover, one of the two ex-

amples from the same class in the triplets can be chosen as 
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Figure 1.  Illustration of representations in feature space learned by

(a) existing methods, and (b) the proposed method. 
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the anchor point. However, there exist some special cases 

that the triplet loss function with impropriate anchor may 

judge falsely, as illustrated in Fig. 3(a). This means the per-

formance is quite sensitive to the anchor selection in the tri-

plets input. We adapted the idea from the (N+1)-tuplet loss 

[37] and coupled clusters loss (CCL) [22] to design a 

(N+M)-tuplet clusters loss function which incorporates a 

negative set with N examples and a positive set with M ex-

amples in a mini-batch. A reference distance T is introduced 

to force the negative examples to move away from the cen-

ter of positive examples and for the positive examples to 

simultaneously map into a small cluster around their center 

cା. The circles of radius ሺܶ + ഓమሻ andሺܶ − ഓమሻ centered at the 

cାform the boundary of the negative set and positive set re-

spectively, as shown in Fig. 3(d). By doing this, our ap-

proach can handle complex distribution of intra- and inter-

class variations, and free the anchor selection trouble in 

conventional deep metric learning methods. Furthermore, 

the reference distance T and the margin τ can be learned 

adaptively via the propagation in the CNN instead of the 

manually-set hyper-parameters. We also propose a simple 

and efficient mini-batch construction scheme that uses dif-

ferent expression images with the same identity as the neg-

ative set to avoid the expensive hard-negative example 

searching, while mining the positive set online. Then, the 

(N+M)-tuplet clusters loss guarantees all the discriminating 

negative samples are efficiently used per update to achieve 

an identity-invariant FER. 

We jointly optimize the softmax loss and (N+M)-tuplet 

clusters loss to explore the potential of both the expression 

labels and identity labels information. Considering the dif-

ferent characteristics of each loss function and their tasks, 

we design two branches of fully connected (FC) layers, and 

a connecting layer to balance them. The features extracted 

by the expression classification branch can be fed to the fol-

lowing metric learning processing. This enables each 

branch to focus better on their own task without embedding 

much information of the other. As shown in Fig. 2, the in-

puts are two facial expression image set: one positive set 

(images of the same expression from different subjects) and 

one negative set (images of other expressions with the same 

identity of the query example). The deep features and dis-

tance metrics are learned simultaneously in a network.  

The three major contributions in this paper are: 1) We 

propose a generalized (N+M)-tuplet clusters loss function 

with adaptively learned reference threshold which can be 

seamlessly factorized into a linear-fully connected layer for 

an end-to-end learning. 2)  With the identity-aware negative 

mining and online positive mining scheme, we learn dis-

tance metrics with fewer input passes and distance calcula-

tions, without sacrificing the performance for identity-in-

variant FER. 3) We optimize the softmax loss and (N+M)-

tuplet clusters loss jointly in a unified two-branch FC layer 

metric learning CNN framework based on their character-

istics and tasks. In experiments, we demonstrate that the 

proposed method achieves promising results not only out-

performing several state-of-art approaches in posed facial 

expression dataset (e.g., CK+, MMI), but also in spontane-

ous facial expression dataset (namely, SFEW). 

2. Related work 

FER focus on the classification of seven basic facial ex-

pressions which are considered to be common among hu-

mans [40]. Much progress has been made on extracting a 

set of features to represent the facial images [13]. Geomet-

ric representations utilize the shape or relationship between 

facial landmarks. However, they are sensitive to the facial 

landmark misalignments [35]. On the other hand, appear-

ance features, such as Gabor filters, Scale Invariant Feature 

Transform (SIFT), Local Binary Patterns (LBP), Local 

Phase Quantization (LPQ), Histogram of Oriented Gradi-

ents (HOG) and the combination of these features via mul-

tiple kernel learning are usually used for representing facial 

textures [3, 15, 49, 51]. Some methods such as active ap-

pearance models (AAM) [41] combine the geometric and 

appearance representations to provide better spatial infor-

mation. For a comprehensive survey, we refer readers to 

[34]. Due to the limitations of handcrafted filters, extracting 

purely expression-related features is difficult.  

    The developments in deep learning, especially the suc-

cess of CNN, have made high-accuracy image classification 

possible in recent years. It has also been shown that care-

fully designed neural network architectures perform well in 

FER [29]. Despite its popularity, current softmax loss-

based network does not explicitly encourage intra-class 

compactness and inter-class separation. The emerging deep 

metric learning methods have been investigated for person 

recognition and vehicle re-identification problems with 

large intra-class variations, which suggests that deep metric 

learning may offer more pertinent representations for FER. 

Compared to traditional distance metric learning, deep met-

ric learning learns a nonlinear embedding of the data using 

the deep neural networks.  The initial work is to train a Si-

amese network with contrastive loss function [4]. The pair-

wise examples are fed into two symmetric sub-networks to 

predict whether they are from the same class. Without the 

Positive examples

Negative examples

Two-branch FC layer

JointMetric Learning Network

(N+M)-tuplet cluster loss & Softmax loss

Positive Set

Negative Set

Figure 2. Frame work of our facial expression recognition model 

used for training. The deep convolutional network aims to map the 

original expression images into a feature space that the images of 

the same expression tend to form a cluster while other images tend 

to locate far away. 
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interactions of positive pairs and negative pairs, the Sia-

mese network may fail to learn effective metrics in the pres-

ence of large intra- and inter-class variations. One improve-

ment is the triplet loss approach [7], which achieved prom-

ising performance in both re-identification and face recog-

nition problems. The inputs are triplets, each consisting of 

a query, a positive example and a negative example. Spe-

cifically, it forces the difference of the distance from the 

anchor point to the positive example and from the anchor 

point to the negative example to be larger than a fixed mar-

gin ߬. Recently, some of its variations with faster and stable 

convergence have been developed. The most similar model 

of our proposed method is the (N+1)-tuplet loss [37]. We 

use ݔାand ିݔto denote the positive and negative examples 

of a query example ݔ, meaning that ݔାis the same class of ݔ, while ିݔis not. Considering (N+1) tuplet which includes ݔ ,ݔା	and N-1 negative examples		{ݔ௝ି }௝ୀଵேିଵ, the loss is: 

ܮ  ቀݔ, ,ାݔ ൛ݔ௝ି ൟ௝ୀଵேିଵ; ݂ቁ ൫ͳ݃݋݈ = + ∑௝ୀଵேିଵ expሺܦሺ݂, ݂ାሻ + τ − ,ሺ݂ܦ ௝݂ି ሻሻ൯          (1) 

 

where	݂ሺ·ሻ is an embedding kernel defined by the CNN, 

which takes ݔ  and generates an embedding vector ݂ሺݔሻ . 

We write it as ݂  for simplicity, with 	݂  inheriting all 

superscripts and subscripts. 	Dሺ·,·ሻ is defined as the 

Mahalanobis or Euclidean distance according to different 

implementations. The philosophy in this paper also shares 

commonality with the coupled clusters loss [22], in which 

the positive example center cା  is set as the anchor. By 

comparing each example with this center instead of each 

other mutually, the evaluation times in a mini-batch are 

largely reduced.  

    Despite their wide use, the above-mentioned frameworks 

still suffer from the expensive example mining to provide 

nontrivial pairs or triplets, and poor local optima. In 

practice, generating all possible pairs or triplets would 

result in quadratic and cubic complexity, respectively and 

the most of these pairs or triplets are less valuable in the 

training phase. Also, the online or offline traditional mini-

batch sample selection is a large additional burden. 

Moreover, as shown in Fig. 3(a), (b) and (c), all of them are 

sensitive to the anchor point selection when the intra- and 

inter-class variations are large. The triplet loss, (N+1)-tuplet 

loss and CCL are 0, since the distances between the anchor 

and positive examples are indeed smaller than the distance 

between the anchor and negative examples for a margin τ. 

This means the loss function will neglect these cases during 

the back propagation. We need much more input passes 

with properly selected anchors to correct it. The fixed 

threshold in the contrastive loss was also proven to be sub-

optimal for it failed to adapt to the local structure of data. 

Li et al. proposed [21] to address this issue by learning a 

linear SVM in a new feature space. Some works [9, 43] 

used shrinkage-expansion adaptive constraints for pair-

wise input, which optimized by alternating between SVM 

training and projection on the cone of all positive 

semidefinite (PSD) matrices, but their mechanism cannot 

be implemented directly in deep learning. 

    A recent study presented objective comparisons between 

the softmax loss and deep metric learning loss and showed 

that they could be complementary to each other [12]. 

Therefore, an intuitive approach for improvement is 

combining the classification and similarity constraints to 

form a joint CNN learning framework. For example, [39, 

47] combining the contrastive and softmax losses together 

to achieve a better performance, while [52] proposed to 

combine triplet and softmax loss via joint optimization. 

These models improve traditional CNN with softmax loss 

because similarity constraints might augment the 

information for training the network. The difficult learning 

objective can also effectively avoid overfitting. However, 

all these strategies apply the similarity as well as 

classification constraints directly on the last FC layer, so 

that harder tasks cannot be assigned to deeper layers, (i.e., 

more weights) and interactions between constraints are 

implicit and uncontrollable. Normally, the softmax loss 

converges much faster than the deep metric learning loss in 

multi-task networks. This situation has motivated us to 

construct a unified CNN framework to learn this two loss 

function simultaneously in a more reasonable way. 

3.  (N+M)-tuplet clusters loss 

We give a simple description of our intuition to introduce 

a reference distance T to control the relative boundary (T−	τʹ	 ) and ሺܶ + ഓమሻ  for the positive and negative examples 

respectively, as shown in Fig. 3(d). We rewrite the (N+1)-

tuplet loss function in Eq.(1) as follows: 
 

Figure 3. Failed case of (a) triplet loss, (b) (N+1)-tuplet loss, and

(c) Coupled clusters loss. The proposed (N+M)-tuplet clusters loss

is illustrated in (d). 
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Indeed, the exp D �, �% -T + I

*
 term used to pull the 

positive example together and the 		exp T-I
*
+ D(�, �0

-)  

term used to push the negative examples away have an 

“OR” relationship. The relatively large negative distance 

will make the loss function ignore the large absolute 

positive distance. One way to alleviate large intra-class 

variations is to construct an “AND” function for these two 

terms.  

We also extend the triplet loss to incorporate N negative 

examples and M negative examples. Considering a multi-

classification problem, the triplet loss and CCL only 

compare the query example with one negative example, 

which only guarantees the embedding vector of the query 

one to be far from a selected negative class instead of every 

class. The expectation of these methods is that the final 

distance metrics will be balanced after sufficient number of 

iterations. However, towards the end of the training, 

individual iteration may exhibit zero errors due to the lack 

of discriminative negative examples causing the iterations 

to be unstable or slow in convergence.  

The identity labels in FER database largely facilitate the 

hard-negative mining to alleviate the effect of the inter-

subject variations. In practice, for a query example, we 

compose its negative set with all the different expression 

images of the same person. Moreover, randomly choosing 

one or a group of positive examples is a paradigm of the 

conventional deep metric methods, but some extremely 

hard positive examples may distort the manifold and force 

the model to be over-fitting. In the case of spontaneous 

FER, the expression label may erroneously be assigned due 

to the subjectivity or varied expertise of the annotators [2, 

50]. Thus, an efficient online mining for M randomly-

chosen positive examples should be designed for large 

intra-class variation datasets. We find the nearest negative 

example and ignore those positive examples with a larger 

distance. Algorithm 1 shows the detail. In summary, the 

new loss function is expressed as follows: 
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The simplified geometric interpretation is illustrated in 

Fig. 3(d). Only if the distances from online mined positive 

examples to the updated c% smaller than (� − )

*
) and the  

distances to the updated c+ than (� + )

*
), the loss can get a 

zero value. This is much more consistent with the principle 

used by many data cluster and discriminative analysis 

methods. One can see that the conventional triplet loss and 

its variations become the special cases of the (N+M)-tuplet 

clusters loss under our framework. 

 

For a batch consisting of X queries, the input passes 

required to evaluate the necessary embedding feature 

vectors in our application are X, and the total number of 

distance calculations can be 2 � + � ∗ �. Normally, the 

N and M are much smaller than X. In contrast, triplet loss 

requires CW
X  

passes and 2CW
X 	times calculations, (N+1)-tuplet 

loss requires � + 1 ∗ �  passes and � + 1 ∗ �P  times 

calculations. Even for a dataset with a moderate size, it is 

intractable to load all possible meaningful triplets into the 

limited memory for model training. 

    By assigning different values for T and �, we define a 

flexible learning task with adjustable difficulty for the 

network. However, the two hyper-parameters need manual 

tuning and validation. In the spirit of adaptive metric 

learning for SVM [21], we formulate the reference distance 

to be a function	T ·,· 	related with each example instead of 

a constant. Since the Mahalanobis distance matrix M in 

Eq.(4) itself is quadratic, and can be calculated 

automatically via a linear fully connected layer as in [36], 

we assume T �3,�P  as a simple quadratic form, i.e., 

T �3,�P =Q

*
�Z�� + �Zz + � , where �Z = �3

Z
�P
Z
∈ ℝPa , 

� =
�bQbQ �bQb*
�b*bQ �b*b*

∈ ℝPa×Pa , �Z = �bQ
Z �b*

Z ∈ ℝPa , � ∈ ℝ, 

�3	and	�P ∈ ℝ
Pa  are the representations of two images in 

the feature space. 

 

           D(�3,�P)= �3 − �P J
P = �3 − �P

f�(�3 − �P)           (4) 
 

Due to the symmetry property with respect to �3 and �P, we 

can rewrite T �3,�P  as follows: 

 

     T �3,�P =	
Q

*
�3
Z
��3 +

Q

*
�P
Z
�� + �3

Z
��P + �

Z �3 + �P + �    (5) 

 

Algorithm 1 Online positive mining 

Input 

query example and its randomly selected  

positive set �#
%

#23
J , and negative set{�0

.}023
4  

  1. map examples to feature plane with CNN to get: 

�#
%

#23	
J ���	{�0

.}023
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  2. calculate the positive cluster center c%= Q

n
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  3. calculate the distance from c% to each  
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  4. search for the nearest negative distance: 
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Output 
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where �= �bQbQ=	�b*b* 	and � = �bQb*= �b*bQ  are both the 

�×�  real symmetric matrices (not necessarily positive 

semi-definite), c = ωbQ = ωb* is a d-dimensional vector, and 

b is the bias term. Then, a new quadratic formula 

H(�
1
,�
2
)=T(�

1
,�
2
) − D(�

1
,�
2
) is defined to combine the 

reference distance function and distance metric function. 

Substituting Eq.(4) and Eq.(5) to H(�3,�P), we get: 
 

H(�3,�P)=	
3

P
�3
Z
� − 2� �3 +

3

P
�P
Z
� − 2� �P 

                          +�3
Z
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Z �3 + �P + �            (6) 
     

  H(�3,�P)=	Q
*
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Z
��3 +

Q

*
�P
Z
��P + �3

Z
��P + �

Z �3 + �P + �     (7)   

 

where A= � − 2�  and B= � + 2� . Suppose A is positive 

semi-definite (PSD) and B is negative semi-definite (NSD), 

A and B can be factorized as �x
f �x  and 	�y

f �y . Then 

H(�3,�P) can be formulated as follows:	 
 

H(�3,�P)=	
3

P
�3
Z
�z
f�x�3 +

3

P
�Z�x

f �x�P + �3
Z
�y
f �y�P 

+�Z �3 + �P + � 

 

=	
3

P
�x�3

Z �x�3 +
3

P
�x�P

Z �x�P + �y�3
Z �y�P  

+�Z�3 + �
Z�P + �                                 (8)                                   

 

Motivated by the above, we propose a general, 

computational feasible loss function. Following the 

notations in the preliminaries and denote (�x, �y, �)
f as W, 

we have: 
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 (9) 
Given the mined N+M* training examples in a mini-batch, 

� · 	 is a label function. If the example �}  is from the 

positive set, � �} = −1, otherwise,	� �} =1. Moreover, 

we simplify the  )
*
		to be the constant 1, and changing it to 

any other positive value results only in the matrices being 

multiplied by corresponding factors. Our hinge-loss like 

function is: 
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.

023
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We optimize Eq.(12) using the standard stochastic gradient 

descent with momentum. The desired partial derivatives of 

each example are computed as: 
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��

�W�
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��

�W�
�~Q

�W�
�~Q
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where �}
�  represents the feature map of the example �} at 

the �Z�	layer. Eq.(11) shows that the overall gradient is the 

sum of the example-based gradients. Eq.(12) shows that the 

partial derivative of each example with respect to the 

feature maps can be calculated recursively. So, the 

gradients of network parameters can be obtained with back 

propagation algorithm.  

    In fact, as a straightforward generalization of 

conventional deep metric learning methods, the (N+M)-

tuplet clusters loss can be easily used as a drop-in 

replacement for the triplet loss and its variations, as well as 

used in tandem with other performance-boosting 

approaches and modules, including modified network 

architectures, pooling functions, data augmentations or 

activation functions. 

4. Network architecture 

The proposed two-branch FC layer joint metric learning 

architecture with softmax loss and (N+M)-tuplet clusters 

loss, denoted as 2B(N+M)Softmax, is illustrated in Fig. 4. 

The convolutional groups of our network are based on the 

inception FER network presented in [28]. We adopt the 

parametric rectified linear unit (PReLU) to replace the 

conventional ReLU for its good performance and 

generalization ability when given limited training data. In 

addition to providing the sparsity to gain benefits discussed 

in Arora et al. [1], the inception layer also allows for 

Figure 4. The proposed network structure. In the testing phase, only the convolutional groups and expression classification branch with 

softmax are used to recognize a single facial expression image. 
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improved recognition of local features. The locally applied 

smaller convolution filters seem to align the way that 

human process emotions with the deformation of local 

muscles. Note that we did not specifically search for the 

architectures that obtain the absolute best accuracies on 

some datasets. Our goal is to confirm our generalized metric 

learning loss function and the unified two-branch FC layer 

joint learning framework perform well.   

    Combing the (N+M)-tuplet clusters loss and softmax loss 

is an intuitive improvement to reach a better performance. 

However, conducting them directly on the last FC layer is 

sub-optimal. The basic idea of building a two-branch FC 

layers after the deep convolution groups is combining two 

losses in different level of tasks. We learn the detailed 

features shared between the same expression class with the 

expression classification (EC) branch, while exploiting 

semantic representations via the metric learning (ML) 

branch to handle the significant appearance changes from 

different subjects. The connecting layer embeds the 

information learned from the expression label-based detail 

task to the identity label-based semantical task, and 

balances the scale of weights in two task streams. This type 

of combination can effectively alleviate the interference of 

identity-specific attributes. The inputs of connecting layer 

are the output vectors of the former FC layers- FC2 and FC3, 

which have the same dimension denoted as Dinput. The 

output of the connecting layer, denoted as FC4 with 

dimension Douput, is the feature vector fed into the second 

layer of the ML branch. The connecting layer concatenates 

two input feature vectors into a larger vector and maps it 

into a Doutput dimension space: 

 

                    ��� = �� ��P	; ��X = ��
���P + ��

���X        (13) 

 

where P is a 2(������×�������)  matrix, P1 and P2 are 

������×�������	matrices. 

    Regarding the sampling strategy, every training image is 

used as a query example in an epoch. In practice, the 

softmax loss will only be calculated for the query example. 

The importance of two loss functions is balanced by a 

weight α. During the testing stage, this framework takes one 

facial image as input, and generates the classification result 

through the EC branch with the softmax loss function. 

5. Experiments and analysis 

5.1. Preprocessing 

     For a raw image in the database, face registration is a 

crucial step for good performance. The bidirectional 

warping of Active Appearance Model (AAM) [30] and a 

Supervised Descent Method (SDM) called IntraFace model 

[45] are used to locate the 49 facial landmarks. Then, face 

alignment is done to reduce in-plane rotation and crop the 

region of interest based on the coordinates of these 

landmarks to a size of 60×60. The limited images of FER 

datasets is a bottleneck of deep model implementation. 

Thus, an augmentation procedure is employed to increase 

the volume of training data and alleviate the chance of over-

fitting. We randomly crop the 48×48 size patches, flip them 

horizontally and transfer them to grayscale images. All the 

images are processed with the standard histogram 

equalization and linear plane fitting to remove unbalanced 

illumination. Finally, we normalize them to a zero mean 

and unit variance vector. In the testing phase, a single center 

crop with the size of 48×48 is used as input data. 

5.2. Implementation Details 

Following the experimental protocol in [28,48], we pre-

train our convolutional groups and EC branch FC layers on 

the FER2013 database [9] for 300 epochs, optimizing the 

softmax loss using stochastic gradient decent with a 

momentum of 0.9. The initial network learning rate, batch 

size, and weight decay parameter are set to 0.1, 128, 0.0001, 

respectively. If the training loss increased more than 25% 

or the validation accuracy does not improve for ten epochs, 

the learning rate is halved and the previous network with 

the best loss is reloaded. Then the ML branch is added and 

the whole network is trained by 204,156 frontal viewpoints 

(-45° to 45°) face images selected from the CMU Multi-pie 

[10] dataset. There contains 337 people displaying disgust, 

happy, surprise and neutron. The size of both the positive 

and negative set are fixed to 3 images. The weights of two 

loss functions are set equally. We select the highest 

accuracy training epoch as our pre-trained model.  

    In the fine-tuning stage, the positive and negative set size 

are fixed to 6 images (for CK+ and SFEW) or 5 images (for 

MMI). For a query example, the random searching is 

employed to select the other 6 (or 5) same expression 

images to form the positive set. Identity labels are required 

for negative mining in our method. CK+ and MMI have the 

subject IDs while the SFEW need manually label. In 

practice, an off-the-shelf face recognition method can be 

used to produce this information. When the query example 

lacks some expression images from the same subject, the 

corresponding expression images sharing the same ID with 

the any other positive examples are used. The tuplet-size is 

set to 12, which means 12×(6+6) =144 (or 12×(5+5) =120) 

images are fed in each training iteration. We use Adam [19] 

for stochastic optimization and other hyper-parameters 

such as learning rate are tuned accordingly via cross-

validation. All the CNN architectures are implemented with 

the widely used deep learning tool “Caffe [14].” 

5.3. Experimental Evaluations 

To evaluate the effectiveness of the proposed method, 

extensive experiments have been conducted on three well-

known publicly available facial expression databases: CK+,  

MMI and SFEW. For the fair comparison, we follow the 
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protocol used by previous works [28,48]. Three baseline 

methods are employed to demonstrate the superiority of the 

novel metric learning loss and two-branch FC layer network 

respectively, i.e., adding the (N+M)-tuplet clusters loss or 

(N+1)-tuplet loss with softmax loss after the EC branch, 

denoted as 1B(N+1)Softmax or 1B(N+M)Softmax, and 

combining the (N+1)-tuplet loss with softmax loss via the 

two-branch FC layer structure, as 2B(N+1)Softmax. We do 

not compare with the triplet loss here, because the number 

of triplets grows cubically with the number of images, 

which makes it impractical and inefficient. With randomly 

selected triplets, the loss failed to converge during the 

training phase. 

The extended Cohn-Kanade database (CK+) [26] 

includes 327 sequences collected from 118 subjects, 

ranging from 7 different expressions (i.e., anger, contempt, 

disgust, fear, happiness, sadness, and surprise). The label is 

only provided for the last frame (peak frame) of each 

sequence. We select and label the last three images, and 

obtain 921 images (without neutral). The final sequence-

level predictions are made by selecting the class with the 

highest possibility of the three images. We split the CK+ 

database to 8 subsets in a strict subject independent manner, 

and an 8-fold cross-validation is employed. Data from 6 

subsets is used for training and the others are used for 

validation and testing. The confusions matrix of the 

proposed method evaluated on the CK+ dataset is reported 

in Table 1. It can be observed that the disgust and happy 

expressions are perfectly recognized while the contempt 

expression is relatively harder for the network because of 

the limited training examples and subtle muscular 

movements. As shown in Table 3, the proposed 

2B(N+M)Softmax outperforms the human-crafted feature-

based methods, sparse coding-based methods and the other 

deep learning methods in comparison. Among them, the 

3DCNN-DAP, STM-Explet and DTAGN utilized temporal 

information extracted from sequences. Not surprisingly, it 

also beats the baseline methods obviously benefit from the 

combination of novel deep metric learning loss and two-

branch architecture. 

The MMI database [32] includes 31 subjects with frontal-

view faces among 213 image sequences which contain a 

full temporal pattern of expressions, i.e., from neutral to one 

of six basic expressions as time goes on, and then released. 

It is especially favored by the video-based methods to 

exploit temporal information. We collect three frames in the 

middle of each image sequence and associate them with the 

labels, which results in 624 images in our experiments. We 

divide MMI dataset into 10 subsets for person-independent 

ten-fold cross validation. The sequence-level predictions 

are obtained by choosing the class with the highest average 

score of the three images. The confusion matrix of the 

proposed method on the MMI database is reported in Table 

2. As shown in Table 3, the performance improvements in 

this small database without causing overfitting are 

impressive. The proposed method outperforms other works 

that also use static image-based features and can achieve 

comparable and even better results than those video-based 

approaches. 

 
Table 3. Recognition accuracy comparison on the CK+ database 

[26] in terms of seven expressions, and MMI database [32] in 

terms of six expressions. 

 
Methods CK+  MMI  

MSR [33] 91.4% N/A 

ITBN [44] 91.44% 59.7% 

BNBN [25] 96.7% N/A 

IB-CNN [11] 95.1% N/A 

3DCNN-DAP [23] 92.4% 63.4% 

STM-Explet [24] 94.19% 75.12% 

DTAGN [16] 97.25% 70.2% 

Inception [28] 93.2% 77.6% 

1B(N+1)Softmax 93.21% 77.72% 

2B(N+1)Softmax 94.3% 78.04% 

1B(N+M)Softmax 96.55% 77.88% 

2B(N+M)Softmax 97.1% 78.53% 

 

The static facial expressions in the wild (SFEW) database 

[6] is created by extracting frames from the film clips in the 

AFEW data corpus. There are 1766 well-labeled images 

(i.e., 958 for training, 436 for validation and 372 for testing) 

being assigned to be one of the 7 expressions. Different 

from the previous two datasets, it targets for unconstrained 

facial expressions, which has large variations reflecting 

real-world conditions. The confusion matrix of our method 

on the SFEW validation set is reported in Table 4. The 

Table 1. Average confusion matrix obtained from proposed 

method on the CK+ database [26]. 

 

Table 2. Average confusion matrix obtained from proposed 

method on the MMI database [32]. 

 

 Predict 

AN CO DI FE HA SA SU 

 AN 91.1% 0% 0% 1.1% 0% 7.8% 0% 

CO 5.6% 90.3% 0% 2.7% 0% 5.6% 0% 

DI 0% 0% 100% 0% 0% 0% 0% 

FE 0% 4% 0% 98% 2% 0% 8% 

HA 0% 0% 0% 0% 100% 0% 0% 

SA 3.6 0% 0% 1.8% 0% 94.6% 0% 

SU 0% 1.2% 0% 0% 0% 0% 98.8% 

 

A
c
t
u

a
l
 

 Predict 

AN DI FE HA SA SU 

 AN 81.8% 3% 3% 1.5% 10.6% 0% 

DI 10.9% 71.9% 3.1% 4.7% 9.4% 6% 

FE 5.4% 8.9% 41.4% 7.1% 7.1% 30.4% 

HA 1.1% 3.6% 0% 92.9% 2.4% 0% 

SA 17.2% 7.8% 0% 1.6% 73.4% 0% 

SU 7.3% 0% 14.6% 0% 0% 79.6% 

 

A
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recognition accuracy of disgust and fear are much lower 

than the others, which is also observed in other works. As 

illustrated in Table 5, the CNN-based methods dominate the 

ranking list. With the augmentation of deep metric learning 

and two-branch FC layer network, the proposed method 

works well in the real world environment setting. Note that 

Kim et al. [18] employed 216 AlexNet-like CNNs with 

different architectures to boost the final performance. Our 

network performs about 25M operations, almost four times 

fewer than a single AlexNet. With the smaller size, the 

evaluation time in testing phase takes only 5ms using a 

Titan X GPU, which makes it applicable for real-time 

applications. 

Overall, we can see that joint optimizing the metric 

learning loss and softmax loss can successfully capture 

more discriminative expression-related features and 

translate them into the significant improvement of FER 

accuracy. The (N+M)-tuplet clusters loss not only inherits 

merits of conventional deep metric learning methods, but 

also learns features in a more efficient and stable way. The 

two-branch FC layer can further give a boost in 

performance. Some nice properties of the proposed method 

are verified by Fig. 5, where the training loss of 

2B(N+M)Softmax converges after about 40 epochs with a 

more steady decline and reaches a lower value than those 

baseline methods as we expect. As Fig. 6 illustrates, the 

proposed method and the baseline methods achieve better 

performance in terms of the validation accuracy on the 

training phase. 

Table 5. Recognition accuracy comparison on the SFEW database 

[6] in terms of seven expressions. 

  
Methods Validation  

Kim et al. [18] 53.9% 

Yu et al. [48] 55.96% 

Ng et al. [31] 48.5% 

Yao et al. [46] 43.58% 

Sun et al. [38] 51.02% 

Zong et al.  [53] N/A 

Kaya et al.[17] 53.06% 

Mao et al.[27] 44.7% 

Mollahosseini [28] 47.7% 

1B(N+1)Softmax 49.77% 

2B(N+1)Softmax 50.75% 

1B(N+M)Softmax 53.36% 

2B(N+M)Softmax 54.19% 

6. Conclusion 

We derive the (N+M)-tuplet clusters loss and combine it 

with softmax loss in a unified two-branch FC layer joint 

metric learning CNN architecture to alleviate the attribute 

variations introduced by different identities on FER. The 

efficient identity-aware negative-mining and online 

positive-mining scheme are employed. After evaluating 

performance on the posed and spontaneous FER dataset, we 

show that the proposed method outperforms the previous 

softmax loss-based deep learning approaches in its ability 

to extract expression-related features. More appealing, the 

(N+M)-tuplet clusters loss function has clear intuition and 

geometric interpretation for generic applications. In future 

work, we intend to explore the use of it to the person or 

vehicle re-identifications. 
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Table 4. Average confusion matrix obtained from proposed 

method on the SFEW validation set [6]. 

 
 Predict 

AN DI FE HA NE SA SU 

 AN 66.24% 1.3% 0% 6.94% 9.09% 5.19% 10.69% 

DI 21.74% 4.35% 4.35% 30.34% 13.04% 4.35% 21.74% 

FE 27.66% 0% 6.38% 8.51% 10.64% 19.15% 27.66% 

HA 0% 0% 0% 87.67% 6.85% 1.37% 4.11% 

NE 5.48% 0% 2.74% 1.37% 57.53% 5.48% 27.4% 

SA 22.81% 0% 1.75% 7.02% 8.77% 40.35% 19.3% 

SU 1.16% 0% 2.33% 5.81% 17.44% 0% 73.26% 
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Figure 5. The training loss of different methods on SFEW 

validation set. 

 

Figure 6. The validation accuracies of different methods on 

SFEW validation set. 
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