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Abstract

We present a novel approach to person tracking within

the context of entity association. In large-scale distributed

multi-camera systems, person re-identification is a chal-

lenging computer vision task as the problem is two-fold: de-

tecting entities through identification and recognition tech-

niques; and connecting entities temporally by associating

them in often crowded environments. Since tracking es-

sentially involves linking detections, we can reformulate it

purely as a re-identification task. The inherent advantage of

such a reformulation lies in the ability of the tracking algo-

rithm to effectively handle temporal discontinuities in multi-

camera environments. To accomplish this, we model human

appearance, face biometric and location constraints across

cameras. We do not make restrictive assumptions such as

number of people in a scene. Our approach is validated by

using a simple and efficient inference algorithm. Results on

two publicly available datasets, CamNeT and DukeMTMC,

are significantly better compared to other existing methods.

1. Introduction

With the increase in the number of deployed surveillance

cameras, there is an increase in the workload of video oper-

ators to manually analyze and understand video content to

monitor long term activity and behavior characterization of

people in a scene. Automated analysis of large amounts

of data can not only process the data faster but signifi-

cantly improve the quality of surveillance. Automatic re-

identification and tracking in dense crowds will allow con-

tinuous monitoring and analysis of events without relying

on constant human-interaction.

Tracking multiple people across multiple cameras is not

a trivial task, especially in complex and crowded scenarios

with frequent occlusions and interaction of individuals. The

task itself constitutes modeling vast variety of data present

in videos that may include long-term occlusion, different

scene illuminations, camera properties or varying number

of people. In recent years, we can find a lot of literature

on human detection techniques [30, 11, 22] which enable

tracking-by-detection as a useful tracking strategy. The

main idea is to find person detections, estimate the motion

patterns of all targets and link tracklets across time to form

trajectories. However, the linking step, called data associa-

tion, is particularly challenging due to frequent occlusions,

spurious detections and dense crowds. Researchers devel-

oped more sophisticated models such as optimization based

on a discrete-continuous energy [2], modeling social and

grouping behavior [15], and integration of additional mo-

tion constraints such as local flow descriptors [5] to deal

with these issues. However, the underlying features used in

these methods for data association limit the accuracy and do

not work well in crowded environments.

Since multi-target multi-camera tracking involves having

to continuously employ motion based tracking within cam-

eras and a separate process of re-identification for persons

crossing the camera boundaries, our proposed approach

combines the two acts of tracking within and across cam-

eras and reformulates it as a single problem of continu-

ous re-identification. This unification of the two disjoint

tasks presents a much clearer and simpler solution which

has the advantage of not requiring temporally contiguous

sequences of video frames for tracking. The approach there-

fore can handle discretization of continuous video segments

to points of significant changes in activity of targets (like

persons moving from one corner to the center of the cam-

era or exit the camera to reappear later in another camera)

and automatically work with time-based sparseness in video

data. Our method infers the camera topology inherently

from the motion patterns observed in the environment and

also exploits appearance based features to improve the per-

formance of data associations for re-identification.
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The availability of large annotated data and recent rise

of deep learning has led us to adapt the Convolutional Neu-

ral Network (CNN) learning methodology to multi-camera

tracking. Our feature learning framework comprises three

parts: (a) Appearance features are extracted from person

detection bounding box; (b) Face-biometric features are ex-

tracted from face bounding box; and (c) Transition proba-

bilities within and across cameras are learned. We model

these constraints and use them to understand and associate

detections in real world environments. This is valuable for a

range of applications including surveillance, activity recog-

nition and behavior characterization.

Given the learned, pairwise data association score, we

link all available detections across frames by computing

most probable associations using the proposed inference

algorithm which is optimally equivalent to a greedy algo-

rithm. The evaluation is performed on two challenging

datasets, CamNeT [32] and DukeMTMC [24].

Our main contributions are as follows:

1. The notion of person tracking is reformulated as an as-

sociation problem. We explicitly address the influence

of human appearance, biometric and location informa-

tion on human re-identification.

2. Our tracking algorithm can handle temporal gaps in the

input video and we show how making the best possible

associations is equivalent to a greedy algorithm.

2. Related Work

2.1. Person Re­identification

Person re-identification or consistent labeling, i.e. the

capability of associating together the views of the same per-

son captured in different places or at different times is an

open problem. Much of the re-identification research in

computer vision is applicable to static images [17, 23, 18].

Zheng et al. [33] used group context by proposing ratio-

occurrence descriptors to capture groups. Few methods

have been developed for videos [27, 6] but they focus on

non-crowd surveillance scenarios, where observations are

sparse and appearance is distinctive. The spatio-temporal

relationships across cameras [3, 28] have also been used for

human re-identification. Some researches like Chen et al.

[4] have made use of prior knowledge about camera topol-

ogy to learn spatio-temporal relationships and appearance

relationships across networked cameras. Likewise, Maz-

zon et al. [20] use prior knowledge about spatial location

of cameras to model potential paths a person can choose to

follow. However, it is not always possible to obtain camera

topology information. In this sense, our approach is more

robust as it does not depend on the availability of camera

topology information.

Figure 1. Block diagram of our proposed method

2.2. Person Tracking

Multi-object tracking methods have been reviewed in-

tensively by W. Luo et al. [19]. However, multi-person

tracking still remains a challenging problem, particularly

in crowded environments. In [12, 21, 13], trajectories are

clustered as a means to learn motion patterns. Another ap-

proach is to develop more complex motion models to bet-

ter predict future trajectories, notably models that consider

human-human interactions [2]. However, an issue with such

models is that they handcraft features for each external in-

fluence such as occlusion, or walking in groups; making

such an approach less scalable. We also observe diminish-

ing returns when taking into account the added complexity

and resulting computation.

2.3. Deep Learning

Convolutional Neural Networks (CNN) are a popular

choice for end-to-end learning of image representations

due to their accuracy and scalability. Many researchers

have used convolutional architectures for supervised learn-

ing tasks and assessing a pair of images for different appli-

cations including face verification [29] and optical flow es-

timation [9]. In [17, 31], deep learning approach is used for

re-identification. Much of the research on re-identification

using deep learning focuses on finding an improved network

architecture, an effective set of features, or similarity func-

tion for comparing features. J. Fan et al. [8] used CNNs

to predict the location and scale of an individual for track-

ing. Given the location, scale, current and previous image

frames, they train CNNs offline to learn spatial and tempo-

ral features. Similarly, A. Alahi et al. in [1], predict trajec-
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tories of people based on their past positions using Long-

Short Term Memory networks (LSTM). However, they as-

sume that the number of people in a scene is known a priori.

In our approach, we do not make such an assumption.

3. Our Approach

In this section, we discuss the proposed steps involved

in effectively learning detection associations and tracking

people. The block diagram of our model is shown in Fig-

ure 1. First, we detect entities at each timestamp. It should

be noted that while the general assumption of having con-

tiguous frames for tracking is beneficial, it is not a neces-

sity and the system we propose can handle temporal gaps

in the video stream. Next, we extract modalities including

appearance, face and location from these detections. Then,

the association probability matrix is constructed based on

the current and previous timestamp detections and pairwise

association scores. Finally, the most probable associations

are linked using the proposed inference algorithm to form

trajectories.

3.1. Multimodal Inference Cues

We employ appearance, face and probable destination

cues, designed to be applicable for re-identification. In

this section, we discuss the feature extraction methodology.

Features are extracted individually for each timestamp for

all detections across cameras.

3.1.1 Appearance features

We first extract appearance-based attributes from person de-

tections. They capture the individual traits and characteris-

tics in the form of appearance. A common denominator for

image representations are Convolutional Neural Networks

(CNN). We use AlexNet model [14] that is pre-trained on

ImageNet [25] as appearance feature extractor. This is done

by removing the top output layer and using the activations

from the last fully connected layer as features (length of

4096).

The AlexNet architecture comprises of five convolu-

tional layers, three fully-connected layers, and three max-

pooling layers following the first, second and fifth convolu-

tional layers. The first convolutional layer has 96 filters of

size 11 × 11, the second layer has 256 filters of size 5 × 5,

the third, fourth and fifth layers are connected to one an-

other without any intervening pooling and have 384, 384
and 256 filters of size 3× 3 respectively. A fully-connected

layer L learns a non-linear function yLi = f(WyL−1

i + b),
where yLi , W and b are the hidden representation of input

xi, weights and bias respectively, and f is the rectified lin-

ear unit activation for hidden layers i.e. f(x) = max(0, x).

3.1.2 Face features

Face biometric is an established biometric for identity

recognition and verification. Face modality can be used for

the purpose of re-identification as it is inherently a contact-

less biometric and can be extracted from a distance. We

use VGG-16 model [26] that is pre-trained on ImageNet for

extracting facial features from face bounding box. This is

done by removing the top output layer and using the acti-

vations from the last fully connected layer as face features

(length of 4096).

VGG-16 is a convolutional neural network; its architec-

ture consists of thirteen convolutional layers and three fully-

connected layers. The filters are of size 3 × 3. Pooling is

applied between the convolutional layers with 2 × 2 pixel

window, with stride 2. Mean subtraction on the training set

is used as a pre-processing step.

3.1.3 Location transition

Here, we describe the location constraint, which is linear

in nature and predicts the most probable paths within and

across cameras. For re-identification and tracking in multi-

ple cameras, the knowledge about probable destination acts

as a prior for a person’s location in another camera view.

We model the transition probability distributions by learn-

ing repetitive patterns that occur in camera networks. It is

likely that individuals exiting a camera view from a partic-

ular grid space will enter another camera view from another

specific grid space.

We model state transition probability distribution as a

Markov chain. Each camera view is divided into n states.

Assuming there are k cameras, the total number of states

N = n× k. A Markov chain is characterized by an N ×N

transition probability matrix P , each entry is in the interval

[0, 1] and the sum of the entries in each row add up to 1.

∀Si, Sj , PSi,Sj
∈ [0, 1] (1)

∀Si,

N∑

j=1

PSi,Sj
= 1 (2)

Thus, by Markov property, we estimate the probability

distribution of transition between states Si and Sj as:

P (Si, Sj) = Pr(Xt = Sj |Xt−1 = Si)

=
|Xt = Sj ∧Xt−1 = Si|∑N

k=1
|Xt = Sk ∧Xt−1 = Si|

(3)

3.2. Inference Algorithm

At every timestep, the problem of re-identification can be

expressed in terms of an association matrix where each row
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Figure 2. Inference Algorithm

represents a previously seen entity and the columns hold

currently active entities. The task of making the best possi-

ble associations for every row to a column based on features

or attributes of the concerned entity can be formulated as a

linear programming problem as below:

max
W

P.W

s.t W ∈ [0, 1], W1 = 1, 1T W = 1
(4)

where P is the association matrix or the probability matrix

that stores the matching probabilities of the entities being

associated and W is the weight matrix to be optimized. Fig-

ure 2 depicts how the proposed inference algorithm works

on the association matrix P. The matching probabilities in

the association matrix are the cosine distances of each mid-

level attribute and face features computed using the pre-

trained AlexNet and VGG-16 models respectively as de-

scribed in the previous section or the location score which

is the transition probability modeling the likely movement

pattern between entities.

The constraint W1 = 1 acts to normalize the matching

probabilities across the columns and enforces them to sum

to 1 for every previous entity. From the formulation of this

constraint, it is apparent that there will only be one maxima

for every previous entity’s set of association probabilities.

This implies that each previous entity would only be asso-

ciated to at most one of the current entities. So choosing val-

ues for the weight matrix W essentially reduces to assigning

a value of 1 for the best associations and consequently, com-

puting the most probable associations is optimally equiva-

lent to a greedy approach of selecting the largest matching

probability sequentially.

Dataset Reference Year

UCY [16] 2007

ETHZ [7] 2008

VIPeR [10] 2008

CamNeT [32] 2015

DukeMTMC [24] 2016

Table 1. Datasets

4. Experiments and Results

4.1. Datasets

During the past few years, many datasets have been col-

lected for the purpose of person re-identification. Mainly

due to the tedious and time-consuming task of video an-

notation, only limited amount of labelled data for tracking

in multi-camera setups is publicly available today. Table

1 shows a list of popular datasets. Since our constraints

depend on time and motion information in the videos,

many commonly evaluated datasets such as VIPeR [10] and

ETHZ [7] cannot be used. We evaluate the proposed ap-

proach on CamNeT and DukeMTMC dataset. In this sec-

tion, we introduce the datasets and the ground truth that was

generated for evaluation.

4.1.1 CamNeT

CamNeT is a non-overlapping camera network tracking

data set for multi-target tracking. It has more than 1600
frames, each of resolution 640 by 480 pixels, 20-30fps

video taken by 8 cameras which cover both indoor and out-

door scenes at a university. The paths of around 10 to 25
people are predefined while several unknown persons move

through the scene. There are 6 scenarios, each of which
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Feature CamNeT: Score(%) DukeMTMC: Score(%)

Attribute 99.37 99.99

Face 96.56 92.07

Location transition 98.28 98.73

Table 2. AUC Scores

Figure 3. Performance accuracy on CamNeT (left) and DukeMTMC (right) datasets.

lasts at least 5 minutes and is within the view of 5 to 8
cameras. For our experiments, we use Scenario 1. Since

the ground truth lacks unique identities, we had to perform

manual tagging and rectify erroneous tracking ground truth.

Annotated data including person identity and timestamp are

provided to the CamNeT dataset maintainers to be hosted

alongside the dataset in their webpage.

4.1.2 DukeMTMC

DukeMTMC dataset was released recently to help acceler-

ate performance of multi-target, multi-camera tracking sys-

tems. It has more than 2 million frames of high resolution

1080p, 60fps video, observing more than 2700 identities

and includes surveillance footage from 8 cameras with ap-

proximately 85 minutes of videos for each camera. Since

only the ground truth for training data is made available so

far, we report results on training set only. We select cameras

1 and 3 for appearance-based multi-camera tracking exper-

iments.

4.2. Evaluation Metric

Since the task in hand is a continuous entity association

problem, existing tracking evaluation metric (Multiple Ob-

ject Tracking Accuracy) is not suitable. Hence, we use a

metric for continuous re-identification evaluation as shown

below.

E =
1

T

T∑

t=1

number of misclassified detections at time t

total number detections at time t

(5)

4.3. Results and Comparison

This section presents the results validating the efficiency

of the proposed approach to match pairs of people detec-

tions as well as its performance when creating trajectories

by means of the proposed inference algorithm.

4.3.1 Data Association

By means of the ROC curve, we first evaluate the perfor-

mance of our approach when computing the probability of

two detections belonging to the same track. The prediction

on CamNeT and DukeMTMC datasets is shown in Figure 3.

Table 2 shows the AUC scores of individual features eval-

uated on CamNeT and DukeMTMC dataset respectively.

Three result groups are depicted: first, when appearance-

based attribute features are extracted (best AUC on Cam-

NeT: 0.993, best AUC on DukeMTMC: 0.999), second,

when using the face features (best AUC on CamNeT: 0.965,

best AUC on DukeMTMC: 0.920), and last, when using the
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Feature CamNeT: Error(%) DukeMTMC: Error(%)

Attribute 2.9 0.01

Face 4.67 12.07

Location transition 4.49 0.5

Table 3. Inference Error Rate

Method Cam 1 Cam 2 Cam 3 Cam 4 Cam 5 Cam 6 Cam 7 Cam 8

Baseline results [24] 366 1929 336 403 292 3370 675 365

Ours 34 47 102 42 69 84 139 12

Table 4. Single-camera fragmentation measure comparison on DukeMTMC dataset

Method XFrag

Baseline results [32] 27

Method in [27] 24

Ours 5

Table 5. Crossing fragments (XFrag) measure comparison on

CamNeT dataset

transition probability (best AUC on CamNeT: 0.982, best

AUC on DukeMTMC: 0.987).

Among the three features, appearance features perform

best, even at low FAR (False Acceptance Rate). For in-

stance, TAR@0.01FAR = 99.99%, TAR@0.001FAR =
99.45%, TAR@0.0001FAR = 83.76% on DukeMTMC

dataset; where TAR is the True Acceptance Rate.

4.3.2 Person Tracking

Table 3 shows the inference error rates for multi-person

multi-camera tracking using the proposed inference algo-

rithm. Since our tracking result is based on re-identification,

we use the following existing performance measures for

comparison:

1. Crossing fragments (XFrag): The number of true asso-

ciations missed by the tracking system.

2. Fragmentation: The number of identity switches in the

tracking result, when the corresponding ground-truth

identity does not change.

We compare our appearance-based tracking results to two

tracking methods evaluated on CamNeT dataset. The first

is the baseline system [32] evaluated considering social

grouping model (SGM), along with temporal and spatial

constraints. The second [27] tracks multiple people by

considering the long-term interdependence of features over

space and time. We show the results in table 5, which in-

dicate that the proposed method outperforms the state-of-

the-art method. In table 4, we compare our DukeMTMC

results with the baseline system performance. The results

show that our approach of continuous entity association for

single-camera tracking is better and contains far less frag-

mentations.

5. Conclusion and Future Work

In this paper, we present an efficient association based

approach for person tracking. We address the difficulty

and challenges of re-identification and association of people

across cameras often in crowded environment. We model

human appearance, face biometric and location transition

and evaluate each feature’s performance individually. We

formulate a continuous evaluation metric for the problem

under consideration. We highlight the efficiency of our sys-

tem by comparing our results with the baseline system’s

performance on CamNeT and DukeMTMC datasets. To the

best of our knowledge, this is the first work towards multi-

person multi-camera tracking by continuous entity associa-

tion.

In our future research, we intend to propagate associa-

tions in order to make a better prediction by learning from

past errors (misassociations). Such an approach can deal

with temporally local difficulties generated by occlusion.
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