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Abstract

Fingerprint recognition has been extensively used in nu-

merous civilian applications ranging from border control to

everyday identity verification. The threats to current sys-

tems emerge from two facts that can be attributed to poten-

tial loss in accuracy due to damaged external fingerprints

and attacks on the sensors by creation of an artefacts (e.g.

silicone finger) simply by lifting the latent fingerprints. In

the growing need for attack resistant biometric fingerprint

recognition that can be operated without supervision, a new

generation of sensors has been investigated, which can cap-

ture the subsurface fingerprint pattern. In this work, we

explore a subsurface fingerprint imaging technique by em-

ploying a custom-built in-house Full-Field Optical Coher-

ent Tomography (FF-OCT) sensor for capturing the subsur-

face fingerprint. Further, we evaluate a newly constructed

database of 200 unique fingerprint samples collected in 2

different sessions with 6 layers of fingerprint images corre-

sponding to 6 subsurface fingerprints. We also propose a

framework based on quality metrics to fuse the subsurface

fingerprint images to achieve a robust verification accuracy,

which has resulted in Equal Error Rate (EER) of 0%. We

also provide an extensive set of experiments to gauge the

reliability of subsurface fingerprint recognition and deduce

a set of important conclusions for the path forward in FF-

OCT subsurface fingerprint imaging.

1. Introduction

Fingerprint based verification or identification of indi-

viduals has become an ubiquitous mode of access con-

trol for various applications that range from civilian border

crossing controls to everyday use of smartphone unlocking.

The preference towards observing the biometric fingerprint

characteristic for secure access control can be largely at-

tributed to the accuracy and reliability proven over the last

decades. Added to that, the low cost factor involved in pro-
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ducing the fingerprint sensors has contributed in large scale

deployment of fingerprint based recognition systems.

While fingerprint recognition is well adopted and used

in various spheres, a number of key problems have raised

concerns in the recent past. The traditional problem of cuts,

abrasions and burns on the fingerprint leads to a temporal

or permanent loss of the fingerprint pattern, which result in

low quality fingerprints obtained with optical sensors (e.g.

sensors based on frustrated total internal reflection). The

problem arises when such cuts and burns lead to procuring

spurious minutia points or at the very least result in a case

that no minutiae are detected. In order to handle such a sce-

nario where a particular fingerprint pattern is not observ-

able, multiple finger instances can be employed such that

one of them at-least can establish the identity claim. With

regards to recently discussed threats to fingerprint based

systems, attackers have demonstrated the use of lifted prints

from latent fingerprints to successfully create an artefacts,

which can in turn be used as presentation attack instrument.

Thus the need for reliable and robust fingerprint sensors has

been stressed. Such sensors are expected to: (1) Handle the

challenges of disappeared external fingerprints due to any

reason and, (2) Have reliable fingerprint acquisition method

to determine the liveness of the fingerprint.

1.1. Related Works

A limited set of works have proposed hardware based

approaches to handle failure to capture problems arising

due to skin surface properties or due to the loss of the

outer fingerprints as a result of injuries and also addressed

presentation attacks with artefacts (e.g. silicone fingers)

[2, 5, 16, 9, 15]. Multispectral imaging (MSI) is one of

the subsurface techniques proposed and available commer-

cially that generates a subsurface fingerprint image from

images collected at different wavelength, illumination and

polarization settings[14].

In contrast, optical coherence tomography (OCT) is able

to capture subsurface in vivo images from deeper layers of

the living tissue, such as a fingertip [8]. This is important

since it enables imaging of the so-called internal finger-
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prints. An image of an internal fingerprint pattern will not

be impacted by cuts or abrasions since the stratum corneum,

a thick skin layer on top of a finger, shields it from mechani-

cal and other damages [10]. First, OCT has been used in fin-

gerprint sensing domain to demonstrate presentation attack

detection (a.k.a. spoof attack detection) [7] following which

the first images of internal fingerprints were acquired [6].

Later images of sweat glands [12] and even blood micro-

circulation have been demonstrated [17, 11]. However the

caveat with OCT systems that have been used for fingerprint

imaging is that they have to acquire 3D data, sampled ap-

proximately equally in all the directions, before being able

to reconstruct a 2D (en face) subsurface image, like that of

an internal fingerprint. Unless expensive laser sources are

used, the typical acquisition time for 256× 256 en face im-

age can take over 4 seconds. The fastest OCT-based system

that was used for fingerprint imaging was able to acquire

such image in 1 second [4]. However, the system is ex-

pensive and the associated data processing doubles the to-

tal acquisition time. Full-field OCT (FF-OCT) on the other

hand is an inexpensive OCT variant that uses a camera and

a spatially incoherent light source. Use of the camera al-

lows acquiring en face image with much faster speed than

possible with standard OCT systems. To this end FF-OCT

based fingerprint sensors were developed working in the in-

frared [2] and near-infrared [3] spectral regions. The FF-

OCT sensors can in principle be used to acquire the full

volumetric (3D) data by translating the reference reflector in

small steps between the en face images. However, instead

the full volume we strategically pick only a couple of en

face images recorded at different depths below the surface

in order to reduce the acquisition time to a minimum. In-

ternal fingerprints have the same topography as the external

(conventional) fingerprint pattern, which is convenient since

standard algorithms for minutiae extraction and fingerprint

comparison can be employed, even though they might not

be optimal for the captured sample. The internal fingerprint

in OCT images corresponds to the viable epidermis [1] that

is below the stratum corneum, although it is sometimes re-

ferred to as the papillary layer, which is intertwined with

the viable epidermis and is almost at the same depth. Apart

from the conventional fingerprint that is recorded from the

top of the stratum corneum and apart from sweat ducts that

can be recorded from the inside of the stratum corneum, a

low contrast fingerprint pattern could also be captured in-

side the stratum corneum. This might be convenient since

it relaxes the need to capture the internal fingerprint whose

depth is known to change from finger-to-finger. Subsurface

fingerprint is a general term used for a fingerprint acquired

below the surface and we will use it here in that sense when

referring to fingerprint samples acquired inside the stratum

corneum or from the internal fingerprint (viable epidermis)

or both and further refer it as layers/depth.

1.2. Contributions

Motivated by the limited works to study the biometric

applicability of OCT sensors for biometric recognition, in

this work we analyse the subsurface fingerprint data cap-

tured from the newly designed, in-house Full-Field Opti-

cal Coherent Tomography (FF-OCT) system comprised of a

novel silicon camera [3]. The FF-OCT sensor has superior

imaging and resolving ability to obtain high quality sub-

surface fingerprints in a reasonable amount of time (< 1

second for 6 subsurface images at different depths). Fur-

ther, with the set of a large scale database consisting of 200

unique subsurface fingerprints acquired using the FF-OCT

sensor, we demonstrate high recognition accuracy with sub-

surface fingerprints. As described above, the depth of an

internal fingerprint can change from data subject to data

subject and finger instance to finger instance making a re-

liable recognition from an internal fingerprint a challenge.

In order to address this issue, in this work, we acquire a set

of 6 subsurface images from different depths (in the range

of 70 − 420µm) in the newly constructed database. Given

the range and number of images acquired, it is likely that

the internal fingerprint will be captured at least in one of

the images. However, in cases when the internal finger-

print is deeper than 420 µm, and thus, not recorded, a low-

contrasted fingerprint from inside of the stratum corneum

might be captured. Even though the internal fingerprint

gives better images, when it is very deep (> 500µm), the

contrast gets very low due to light absorption and scatter-

ing inside a finger. Our task was therefore to find a set of

imaging depths that has the most diagnostic value in a large-

scale database. Thus we present a detailed analysis of the

recognition accuracy obtained from a number of different

subsurface images (hereafter referred as layers/depth) and

thereby, determine the suitability of subsurface fingerprints

for reliable recognition in a large scale database. As we

have a number of depth images, we also present a fusion

approach to choose a set of best possible images to form a

robust image whose features are further extracted for com-

parison. Extensive experiments are carried out using a set

of newly defined protocols to evaluate the created database

and to demonstrate the merits of the FF-OCT imaging for

the subsurface fingerprint recognition. The key contribu-

tions of this work can be outlined as:

• Presents a new large-scale database of FF-OCT

subsurface fingerprint images collected from 200

unique finger instances captured in two different ses-

sions. The database consists of subsurface finger-

prints imaged at 6 different depth with Full-Field

Optical Coherent Tomography (FF-OCT) resulting

in a number of layers corresponding to depth of

70µm, 140µm, 210µm, 280µm, 350µm and 420µm.

• Presents an extensive analysis on the newly collected

FF-OCT fingerprint database to determine the suit-
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ability of different layers of subsurface fingerprints to

achieve reliable performance and recognition accuracy

with a set of newly developed protocols.

• Presents a new framework based on estimated quality

for fusing the FF-OCT image data from the set of im-

ages pertaining to different subsurface depth. Further,

we present an analysis of the performance when dif-

ferent subsurface images are fused to obtain a single

subsurface fingerprint.

• As a final contribution of this work, we evaluate

applicability of cross-depth comparison accuracy for

recognizing the subsurface fingerprint and thereby

exploring the ability to compare various subsurface

fingerprints. To the best of authors’ knowledge,

this is the first work to explore such a problem of

matching subsurface fingerprints at various depths of

imaging (70µm, 140µm, 210µm, 280µm, 350µm and

420µm).

In the rest of this paper, Section 2 presents the details

of the custom built in-house FF-OCT sensor. Section 3

presents the details of the newly collected FF-OCT finger-

print database using the FF-OCT sensor. Further, Section 4

presents the detailed analysis of the database in terms of the

biometric performance and Section 5 deduces the key ob-

servations and remark while listing the potential works in

future.

2. FF-OCT Fingerprint Sensor

Schematics of the recently designed in-house FF-OCT

sensor for acquiring the subsurface fingerprints is shown

in Figure 2. The details of the system are presented in

[3]. Briefly, it is comprised of an imaging interferome-

ter, LED operating at 850nm and a silicon camera Q −
2A750 − CXP,Adimec. The camera was specifically de-

signed for FF-OCT and thus, it has an unusually high full

well capacity of 2 million electrons. A window is used

to press a finger against such that the external layer is flat-

tened and thereby reduce the involuntary motion and jitter

during the time of capture. The FF-OCT sensor is able

to record 1.72 cm × 1.72 cm en face images in 0.12 sec.

with the spatial sampling rate of 2116 dpi and sensitivity

of 93 dB. Subsurface images at different depths were ac-

quired by stepping the reference reflector between the im-

ages and the time it took to record 6 subsurface images was

only 0.8 seconds.

Figure 2: Schematic of the FF-OCT sensor. Spatially in-

coherent LED is collimated and injected into the imaging

interferometer. Light reflected and scattered from a finger

is imaged on the camera together with the reference beam.

More details in [3]

3. Database

To demonstrate applicability and superiority of the re-

cently designed sensor, fingerprint images from FF-OCT

sensor was acquired from 200 unique fingers. The data

was collected from the subjects in the age-group 20-40

years (including 3 people of age 70 years) who are typi-

cally not used to manual labour that may damage the ex-

ternal fingerprint. Further, the database was collected with

a uniform ratio of male and female subjects. Each of the

unique finger was captured in two different sessions result-

ing in a total of 400 images from 200 unique fingerprint

instances. Each finger was imaged using the FF-OCT sen-

sor resulting in 6 subsurface images that can be consid-

ered as 6 separate layers of 7.5µm thickness captured at the

following depths: 70µm, 140µm, 210µm, 280µm, 350µm

and 420µm. Thus, the database consists of 6 images per-

Layer	1 Layer	2 Layer	3 Layer	4 Layer	5 Layer	6

Figure 1: Sample fingerprint images captured at various subsurface depth using the FF-OCT device. The Layer-1 to Layer-6

corresponds to images acquired at the depth of 70µm to 420µm in the steps of 70µm. The varying intensity across different

layers can be noticed due to attenuation of the light by various tissues in the subsurface of the fingerprint. The lowest intensity

can be observed in Layer-6 as most of the light is attenuated in the deepest imaging range corresponding to 420µm.
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taining to a particular fingerprint imaged at 6 different

depth.

Figure 1 presents a sample fingerprint captured

at 6 different depth below the surface starting from

70µm, 140µm, 210µm, 280µm, 350µm and 420µm repre-

sented by Layer − 1, Layer − 2, Layer − 3, Layer −
4, Layer − 5 and Layer − 6 respectively. It can be care-

fully observed from the Figure 1 that the details of subsur-

face image at different depth varies. The first layer presents

a rich information of sweat ducts and fingerprint minu-

tiae. The second layer presents the information very sim-

ilar to the subsurface fingerprint at 70µm depth denoted by

Layer − 1 but the details of sweat-ducts diminish. As the

depth of imaging is increased as indicated by Layer−3 and

Layer−4 the strong pattern of internal fingerprint appears.

4. Experiments and Results

This section presents the experimental protocols and the

obtained results from the newly collected database from

the FF-OCT sensor. As the newly collected fingerprint

database has two samples collected per fingerprint, one

sample per fingerprint is used for enrolment and the other

sample is used as probe. Further, in-order to fully leverage

the database, we swap the reference and probe sample to ob-

tain another set of scores. Thus, the total of number of gen-

uine comparison scores equals to 200 × 2 = 400 while the

number of impostor scores equals to 200×199×2 = 79600.

In this work, we employ VeriFinger Fingerprint SDK [13]

to obtain the templates and to compare the templates as the

software has to date been widely deployed in civilian appli-

cations. All results from the experiments in this work are

reported in terms of False Match Rate (FMR %) and False

Non-Match Rate (FNMR %) and represented in Detection

Error Trade-off (DET) curves. Further, the Equal Error Rate

(EER %) is also reported in similar terms.

As the sensor was only recently designed and corre-

spondingly the database is newly obtained, we intend to

evaluate the usability of different images pertaining to dif-

ferent depth in terms of biometric verification significance.

Thus, we propose a new set of protocols to evaluate the FF-

OCT subsurface fingerprint database as given below:

• Protocol-1 : Same Layer (Subsurface) Evaluation

• Protocol-2 : Fused Layer (Subsurface) Evaluation

• Protocol-3 : Cross Layer (Subsurface) Evaluation

4.1. Protocol-1 : Same Layer Evaluation

This set of experiments is designed to evaluate the ro-

bustness of subsurface images obtained from various depths

from each finger instance. The main motivation for this pro-

tocol stems from the fact that the fingerprint information can

be densely available or sparsely available depending on the

depth of imaging (70− 420µm in our case). Added to that,

the internal fingerprint can be at different depth for different

fingers and also partially visible at a certain depth in a non-

uniform manner as illustrated in the Figure 1. Thus, this set

of experiments deduce the strength of various depth images

to achieve good biometric performance. According to this

protocol, image from a particular depth (say Layer − 1) is

enrolled from session 1 and the image from the correspond-

ing depth (Layer − 1) from session 2 is probed. Table 1

presents the set of results obtained by enrolling various lay-

ers from session 1 versus corresponding layers from session

2. The set of obtained DET curves can be seen in the Fig-

ure 4. As it can be deduced from the Table 1, following

observations can be made:

• Layer−2 and Layer−3 corresponding to subsurface

fingerprint provide very high accuracy ( EER of 2.08%

and 2.27% respectively).

• Layer − 6 corresponding to the deepest imaged sub-

surface results in a high EER of 11.15%.

• Figure 3 presents the images and the corresponding

features extracted. As it can be seen, the number

of features extracted from Layer − 6 is significantly

lower than the number of features obtained in Layer−
1 which can be attributed to the high EER obtained for

images compared from Layer − 6. Further, the sub-

surface image is not optimal since light absorption and

scattering degrades image quality and SNR, as seen on

the last row of the Figure 3.

4.2. Protocol-2 : Fused Layer Evaluation

As there is a number of layers available from the sub-

surface imaging of finger corresponding to different depth

of imaging, one can fuse the information from various sub-

surface fingerprints to form a robust representation of the

fingerprint with strong pattern and high Signal-to-Noise-

Ratio (SNR). Thus, in this set of experiments, we form a

fused subsurface fingerprint image by using the set of se-

lected subsurface images on the basis of the overall fin-

gerprint quality determined by Neurotech VeriFinger SDK

[13]. Given a set of different images from Layer − 1 to

Layer − 6 as given by I = {L1, L2, L3, L4, L5, L6}, we

compute the quality factor for each image using the Neu-

rotech VeriFinger SDK [13].

Qi = Quality{L1, L2, L3, L4, L5, L6} (1)

i represents the layer number or the depth of the

subsurface image of a fingerprint corresponding to

range 70µm, 140µm, 210µm, 280µm, 350µm and 420µm.

Based on the set of computed quality values from Neurotech

VeriFinger SDK [13], we select three subsurface images re-

sulting in a high quality value as given by:

{Lq1, Lq2, Lq3} ← argmax{Q1, Q2, . . . Q6} (2)
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Layer	1 Layer	2 Layer	3 Layer	4 Layer	5 Layer	6

Figure 3: Illustration of minutiae template extraction from VeriFinger SDK [13] across 6 different layers of a fingerprint

corresponding to different depths of imaging (Layer-1 corresponds to subsurface image at 70µm and Layer-6 corresponds to

subsurface fingerprint at 420µm). Top row presents the image data from different depth and bottom rows depict the features

extracted and overlaid on fingerprint. The bottom most row presents the fingerprint in binary template and the extracted

features overlaid. It can be observed that the number of minutiae diminishes as deeper fingerprints are imaged.

Table 1: Verification performance obtained for Protocol-1 and Protocol-2.

Protocol
EER (%)

Layer-1 Layer-2 Layer-3 Layer-4 Layer-5 Layer-6

Layer v/s Layer 2.57 2.08 3.00 2.27 6.24 11.15

Fused Layer v/s Layer 2.07 1.72 1.44 0.93 2.14 3.08

Fused Layer v/s Fused Layer 0.00
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Figure 4: Verification performance of fingerprint samples

obtained at various depth of imaging.

The layers denoted by {Lq1, Lq2, Lq3} represent the se-

lected layers according to maximum quality values repre-

sented as q1, q2 and q3. The selected subsurface images are

further provided to Neurotech VeriFinger SDK [13] to gen-

erate the generalized template with the proprietary fusion

algorithm. The obtained image with all the chosen sub-

surface images fused is employed to extract the template.

The template obtained from the fused subsurface image is

compared against the template extracted from independent

subsurface images. Thus, in this protocol, we conduct two

experiments where fused subsurface fingerprints from ses-

sion 1 is compared against different subsurface images from

session 2. In the second set of experiments, the fused sub-

surface image from session 1 is compared against the fused

subsurface image from session 2. The results obtained from

this set of experiments are presented in the Table 1. The key

observations and remarks from this set of experiments are

listed below:

• Comparing the fingerprint template from fused subsur-

face images of session-1 against the subsurface image

corresponding to Layer − 4 of session 2 yields a very

low EER (0.93%) indicating the efficiency of the fu-

sion approach.

• A significant gain can be observed in comparing the

image from Layer − 6 against the fused image where

a relative reduction of 72% can be seen with an ob-

tained EER of 3.08%. The obtained EER signifies the

importance of the template based on the fused image

to compare against fingerprint from different depth of

subsurface layer.

• In the second set of experiments where the fused image

from session 1 is used to extract the template and com-

pared against the template from fused image of session
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of imaging

2, an EER of 0% is achieved. The corresponding DET

curve can be seen in the Figure 4 where the superior

performance is evidently seen. Along the similar lines

of observation, the probability density function of the

genuine and impostor scores indicate the zero overlap

for the fused image template comparison as depicted

in Figure 6.

• Figure 5a presents the significance of the fused sub-

surface approach where the median value of genuine

scores is much higher than the scores obtained from

Layer to Layer template comparison. Specifically,

the genuine scores are clearly higher as compared to

genuine scores obtained for comparisons of Layer −
4, Layer − 5 and Layer − 6. In the similar terms,

Figure 5b presents the box-plot of the impostor scores

across different layers of comparison and it can be ob-

served that the impostor scores are significantly re-

duced justifying the higher gain in the performance of

with the proposed fusion approach.

Further, to obtain the fused templates, the quality threshold

of the Neurotech VeriFinger SDK [13] was set to 0 with-

out which a number of subsurface fingerprint images were

rejected. This can mainly be attributed to the fact that the

Neurotech VeriFinger SDK [13] is tuned to optical finger-

prints as compared to FF-OCT fingerprints.

4.3. Protocol-3 : Cross Layer Evaluation

Table 2: Verification performance obtained for Protocol-3

Note - The distance between templates is not symmetric and thus, there is a small

difference in EER when two different layers are compared in reversed order.

Protocol
EER (%)

Layer-1 Layer-2 Layer-3 Layer-4 Layer-5 Layer-6

Layer-1 2.57 2.73 4.50 5.70 10.13 14.78

Layer-2 2.79 2.08 4.17 7.41 11.40 14.18

Layer-3 4.08 4.28 3.00 6.48 10.30 15.36

Layer-4 5.36 7.21 5.48 2.27 7.49 14.61

Layer-5 10.21 10.65 10.58 7.66 6.24 13.85

Layer-6 14.89 13.89 17.25 14.73 13.82 11.15

The experiments in this protocol are mainly designed to

gauge the robustness of subsurface fingerprint comparison

across different depths of imaging. This protocol is particu-

larly relevant on the following arguments:

• When the external fingerprint is damaged due to minor

injuries due to abrasions, cuts or burns, the subsurface

fingerprint can be employed to recognize individuals

with undamaged subsurface fingerprints. As the in-

formation from a subsurface fingerprint is minimally

disturbed under the above mentioned conditions, it is

essential to determine the suitability of the images at

different depth and to compare against the previously

acquired (before external damage) image. Further, it

has to be noted that the details observed in a subsurface

fingerprint are directly impacted by the depth of imag-

ing. Thus it is essential to measure the reliability of

subsurface fingerprints for biometric performance and

thereby, we measure the biometric performance across

the different depth of subsurface imaging ranging from

70µm to 420µm.

• As OCT images can be used to determine the live-

ness of the presented fingerprint, in accordance to gen-

eral physiology, subsurface layers should be minimally

shifted if not exactly aligned. Thus, any subsurface
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Figure 5: Comparison of genuine and impostor scores across different depth of imaging along with the scores from fused

template.
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fingerprint exhibiting the anomaly at different depth

can aid in detecting presentation attacks. Alternatively,

analysing the comparison scores amongst the set of

subsurface images could potentially indicate the live-

ness.
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Figure 7: Structural similarity index measured across dif-

ferent layers with Layer-1 being the reference.

In order to meet the goals mentioned above, it is essen-

tial to first measure the reliability provided by multiple sub-

surface images in fingerprint. Thus, in this protocol, we

enrol the image from session 1 corresponding to a partic-

ular subsurface (layer), say Layer − n and probe all the

fingerprint images relating to other layers/subsurface. For

instance, Layer−1 is enrolled and Layer−2 to Layer−6

are compared. Table 2 presents the verification performance

in terms of EER for various cross-layer evaluation and Fig-

ure 8 presents the DET curves obtained when the enrolment

image is changed to different layers and probed against the

number of other layers. The key observations are listed as

below:

• The comparison of templates from Layer − 1 to

Layer − 2 result in lowest error rates (< 3%) as the

subsurface fingerprint are highly correlating. The qual-

ity of subsurface fingerprint images from the two lay-

ers are not significantly degraded by light absorption

and scattering in a finger and thereby templates are

matched with high scores.

• Figure 3 presents a sample illustration of the features

extracted from different layers of image corresponding

to different depth in the fingerprint. As it can be seen,

the number of features obtained in Layer−1, Layer−
2 and Layer−3 are high in number and stable in terms

of locations.

• It can also be noted that the EER increases as the sep-

aration between the layers increases resulting in sub-

surface images of depths with very few patches cor-

relating. The key reasons for this can be attributed to

the change of the appearance of a subsurface finger-

print with the increasing depth [3] as well as increase

in image degradation due to the light absorption and

scattering. The lower similarity among the subsurface

layers is quantitatively measured using Structural Sim-

ilarity Index Metric (SSIM) by considering the sub-

surface image at depth of 70µm as reference and the

obtained scores are presented in Figure 7. From the

figure, it can be noted that the structural similarity de-

creases as the depth of the subsurface fingerprint im-

ages increases due to the change in the anatomy and

image degradation.

• The comparison between Layer − 6 and Layer −
3, Layer − 1 increases the EER by a magnitude of

order 5x (2.57% to 15.36%) as compared to EER ob-

tained between Layer − 1 for instance.

5. Conclusions and Remarks

With the growing concern for presentation attacks

against biometric systems and the need for resistant and

fool-proof fingerprint capture devices with the ability to

handle minor external injuries on fingerprint, a new gen-

eration of sensors based on Optical Coherence Tomogra-

phy has shown promising results. The ability to image the

subsurface fingerprint by the use of full field optically co-

herent tomography sensor has been demonstrated to detect

artefacts and to handle minor changes in external pattern

by capturing the subsurface fingerprint. In this work, we

have presented a new fingerprint database collected using

FF-OCT sensor with 200 unique finger instances with 6 lay-

ers pertaining to various depth of imaging. An extensive

analysis of the fingerprint database was presented and key

observations were listed in the corresponding sections (refer

Section 4). Further, we have also presented a new approach

of fusing the layers corresponding to various depth of im-

ages which is further used to extract robust templates for

comparison. In the first set of experiments, we have shown

the performance of independent layer of fingerprint images

using a commercial-off-the-shelf SDK from Neurotechnol-

ogy such that the significance of each layer is established.

Further we have demonstrated the applicability of the pro-

posed approach of fusion by experimentally validating the

superior performance resulting in EER = 0%. As a final

contribution, we have evaluated the cross-layer fingerprint

comparison where the different subsurface fingerprint im-

age is compared against other subsurface fingerprints im-

ages at various depth bringing out the observation on rele-

vant subsurface depth for accurately verifying the subjects.

As a set of conclusive remarks, this work lists the fol-

lowing observations and future works:

• The promising nature of FF-OCT fingerprint imaging

has been experimentally validated by a set of extensive

experiments with newly collected fingerprint database

of 200 unique fingerprint images. Each of the finger-

print collected in less than 1 second has 6 layers of sub-

surface fingerprints capturing sweat ducts inside the

stratum corneum and a fingerprint pattern inside the
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(b) Reference - Layer-2 (140µm)
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(c) Reference - Layer-3 (210µm)
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Figure 8: Performance obtained when different layers corresponding to different depth are enrolled while rest of the images

from other depth are probed.

stratum corneum and from the viable epidermis (oth-

erwise know as internal fingerprint) collected in two

different sessions.

• The obtained accuracy of EER < 2.5% for finger-

print images Layer − 1, Layer − 2 and Layer − 3

signify the usability of subsurface imaging using FF-

OCT to obtain reliable biometric performance. With

the proposed image fusion approach, the recognition

accuracy is further improved by attaining an EER of

0.93% by comparing the fused image template against

Layer−4. An accurate classification has been demon-

strated by using the fused image template at both ref-

erence and probe part resulting in EER = 0%. The

clear difference in the score distribution has been il-

lustrated with the fused image approach as depicted in

Figure 5.

• The cross-layer verification indicates the challenging

nature due to availability of partial internal fingerprint

in the subsurface layers (it might be curved despite the

fact that the external (surface) fingerprint is flat). Com-

paring the fingerprint pattern imaged from deep layers

against corresponding layers results in EER = 11%

and comparing them against the lower depth subsur-

face fingerprint (70µm) results in an EER = 15%

(refer Table 2).

• It has to be noted that the current work has employed

the database with fairly large size of 200 unique fin-

gerprint images and the results come with the caveat

to study on a larger group, ethnicity and number of

different sessions to validate the findings derived from

this work.
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