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Abstract

We propose a novel image set classification technique

using linear regression models. Downsampled gallery im-

age sets are interpreted as subspaces of a high dimen-

sional space to avoid the computationally expensive train-

ing step. We estimate regression models for each test image

using the class specific gallery subspaces. Images of the

test set are then reconstructed using the regression mod-

els. Based on the minimum reconstruction error between

the reconstructed and the original images, a weighted vot-

ing strategy is used to classify the test set. We performed ex-

tensive evaluation on the benchmark UCSD/Honda, CMU

Mobo and YouTube Celebrity datasets for face classifica-

tion, and ETH-80 dataset for object classification. The

results demonstrate that by using only a small amount of

training data, our technique achieved competitive classi-

fication accuracy and superior computational speed com-

pared with the state-of-the-art methods.

1. Introduction

Image set classification is defined as the problem of

recognition from multiple images [16]. In image set clas-

sification, the gallery or training set consists of one or more

image sets for each class and each image-set contains mul-

tiple images of the same class [16]. The test set also con-

tains a number of images of the same subject which are then

matched with the training image sets by computing some

similarity measure to find the identity of the test subject.

Compared with traditional single image based recogni-

tion, image set classification offers several advantages. For

instance, image sets can effectively handle a wide variety of

appearance variations within images including: viewpoint

changes, occlusions, non-rigid deformation, variations in

∗The first two authors contributed equally to this work

Figure 1. A block diagram of the proposed technique.

illumination and different backgrounds. Because of these

characteristics, image set classification has been applied

in many applications in biometrics including surveillance,

video based face recognition and person re-identification in

a network of security cameras [13]. Several image set clas-

sification techniques have been proposed in the literature.

A few of these techniques, known as parametric methods

[1], model image sets with certain statistical distributions

and then calculate the simlarity between those distributions.

However, these methods require a strong statistical relation-

ship between the test and the training image sets to achieve

good performance. As opposed to these methods, non-

parametric methods represent image sets as linear or non-

linear subspaces [21], [30], [33], [35]. These methods have

shown promising results and are being actively researched.

In this paper, we propose a novel non-parametric ap-

proach for image set classification. The proposed technique

is based on the concept of image reconstruction using Lin-
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ear Regression Classification (LRC) [20] and nearest sub-

space classification. LRC uses the concept that samples of

an image category lie on a linear subspace [2], [3]. In our

proposed technique, the gallery image set of each category

forms a subspace in a high dimensional space while using

the downsampled images of each gallery image set. At test

time, each image in the test image set is represented as a lin-

ear combination of images in each gallery image set. A least

squares based solution is used to estimate the regression

model parameters for each image of the test image set. The

estimated regression model is used to reconstruct the test

image from the gallery subspace. The Euclidean distance

between the actual test image and the reconstructed image

is then used as the distance metric. Next, weighted voting

is used where each image of the test image set casts a vote

for each class in the gallery. Finally, the decision rules in

favor of the class with the highest accumulated weight. Fig-

ure 1 shows the block diagram of the proposed technique.

The performance of the proposed technique has been tested

on four popular image set classification datasets, CMU Mo-

tion of Body (CMU MoBo) Dataset [10], Youtube Celebrity

(YTC) Dataset [15] and UCSD/Honda Dataset [17] for face

recognition, and ETH-80 dataset [18] for object recogni-

tion. We provide comparison with seventeen image set clas-

sification algorithms. The main contributions of this paper

can be summarized as follows:

• A novel extension of LRC for image set classification,

which is capable of producing state of the art results un-

der the challenges of low resolution and less training data.

The technique does not require any training and can eas-

ily be generalized across different datasets.

• Since LRC uses least squares solution, any technique us-

ing LRC is prone to the problem of singular matrix or

singularity. This occurs when the rank is less than the

number of rows in the regressor, a condition known as

rank deficient matrix. While this problem is mostly ig-

nored in the previous works of image set classification,

we present practical and efficient solutions to overcome

the problem of a rank deficient matrix. The solution is

not limited to our technique and can be generalized to

any method using LRC and least squares solutions.

• The techniques performing operations on each image of

the test set are usually very slow and unsuitable for real

time applications. On the other hand our technique uses

an efficient matrix implementation of LRC to achieve the

fastest test time compared to other image set classifica-

tion methods.

The rest of this paper is organized as follows. An

overview of related work is presented in Section 2. Section

3 discusses the proposed technique. Experimental results

and detailed evaluation of the proposed technique against

state-of-the-art approaches are presented in Section 4. The

comparison of computational time of the proposed tech-

nique with other methods is presented in Section 5. The

technique is compared with other latest image set classifi-

cation methods in Section 6 and concluded in Section 7.

2. Related Work

Image set classification techniques can be categorized as

parametric, non-parametric and deep learning based meth-

ods. The parametric methods [1] use a statistical distribu-

tion model to approximate an image set and then uses KL-

divergence to measure the similarity between the two dis-

tribution models. Such methods, however, fail to produce

good results in the case of a weak statistical relationship

between the training and the test image sets.

For non-parametric methods, several different metrics

are used to determine the set to set similarity. Wang et

al. [31] use the Euclidean distance between the sets’ mean

as the similarity metric. Cevikalp and Triggs [4] present

two models to learn set samples. The set to set distance

using an affine hull model is called Affine Hull Image Set

Distance (AHISD) while that using convex hull model is

termed as the Convex Hull Image Set Distance (CHISD).

Hu et al. [14] used the mean image of image set and affine

hull model to calculate the Sparse Approximated Nearest

Points (SANP) for image sets in order to determine the dis-

tance between the training image set and test image set.

Chen et al. [6] iteratively trained separate models for dif-

ferent poses in the training set while enforcing sparsity con-

straints. Chen et al. [7] is an extension of [6], which uses

a non-linear kernel to improve the performance. The non-

availability of all the poses in all videos decreases final clas-

sification accuracy. Some non-parametric methods (e.g.,

[11], [29], [30], [31]) use a point on a geometric surface

to represent the complete image set. The image set can also

be represented either by a combination of linear subspaces

or on a complex non-linear manifold. For linear subspaces,

the cosine of the smallest angle between any vector in one

subspace and any other vector in the other subspace is com-

monly used as the similarity metric between image sets.

Discriminant analysis is commonly used to represent im-

age sets on the manifold surface e.g., Discriminative Canon-

ical Correlations (DCC) [16], Manifold Discriminant Anal-

ysis (MDA) [29], Graph Embedding Discriminant Analy-

sis (GEDA) [11] and Covariance Discriminative Learning

(CDL) [30]. Chen [5] assumed a virtual image in a high

dimensional space and used its distance from training and

test image sets for classification. Feng et al. [8] extended

the work of [5] by using the information which maximizes

the distance between the test set and unrelated training sets.

However, for these methods, the dimension of the feature

vectors should be much larger than the combined number

of images in the gallery and the test sets. Due to this lim-
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itation, these methods only work for very small test sets.

Zhang et al. [34] used constraint based learning and hash-

ing function to model image sets in terms of binary codes.

Lu et al. [19] used deep learning to learn non-linear mod-

els and exploit discriminative and class specific information

for classification. Hayat et al. [12], [13] proposed a deep

learning based approach called the Adaptive Deep Network

Template (ADNT). In their technique, a deep autoencoder

is used to define class-specific models for training sets. The

weights of an autoencoder are initialized with a Gaussian

Restricted Boltzmann Machine (GRBM). For classification,

each image of the test set is reconstructed using a learnt

class-specific model and the reconstruction error is used as

a measure to identify the test image set. ADNT has been

demonstrated to achieve state-of-the-art performance, but it

relies on hand crafted LBP features and requires fine tun-

ing of several parameters for achieving good performance.

Moreover, deep learning methods require a large number of

training images and are computationally expensive.

Our technique reconstructs images in the test image set

using LRC from the gallery image matrix and is much faster

than ADNT, both at training and test times. The proposed

technique does not have any constraints on the number of

images in the test set. Moreover, our technique can produce

state of the art results using lower resolution raw images and

much fewer training data, compared to other techniques.

3. Proposed Technique

Let N be the number of gallery images in each unique

class C of the gallery set Kc. Each image is converted to

grayscale and downsampled to a resolution of a × b to be

represented as knc ∈ R
a×b, where c = 1, 2, 3, ..., C and n =

1, 2, 3, ..., N . Each gallery image is transformed through

column concatenation to a vector such that knc ∈ R
a×b →

qnc ∈ R
T×1, where T = ab. Based on the concept that a

linear subspace is formed by patterns from the same class

[2], a class specific model Qc is constructed for each class c

by horizontally concatenating the image vectors of class c.

Qc = [q1cq
2

cq
3

c ...q
N
c ] ∈ R

T×N , c = 1, 2, 3, ..., C (1)

In this way, each class c is represented by a vector sub-

space Qc called the regressor for class c. Each vector

qnc , n = 1, 2, 3, ..., N, of the regressor Qc spans a subspace

of RT×1 .

Let the problem be to classify the unknown class µ of

a test image set Yµ with M number of images, to one of

the classes c = 1, 2, 3, ..., C. Similar to the gallery images,

each image of the test image set is converted to grayscale

and downsampled to the resolution of a × b to be repre-

sented as ymµ ∈ R
a×b where µ is the unknown class and

m = 1, 2, 3, ...,M . Each downsampled image is trans-

formed through column concatenation to a vector such that

ymµ ∈ R
a×b → xm

µ ∈ R
T×1, where T = ab. The image

vectors xm
µ ,m = 1, 2, 3, ...,M are concatenated horizon-

tally to create the test matrix Xµ

Xµ = [x1

µx
2

µx
3

µ...x
M
µ ] ∈ R

T×M , (2)

where µ is the unknown class. If Xµ belongs to the cth class

then it should be possible to represent the image vectors of

Xµ as a linear combination of the gallery images from the

same class i.e.,

xm
µ = Qcγ

m
c , m = 1, 2, ...,M, c = 1, 2, ..., C (3)

where γm
c ∈ R

N×1 is a vector of parameters. For the unique

solution of Equation (3) to exist, the condition T ≥ N must

hold. Given that the condition holds, γm
c can be estimated

for test image vector xm
µ and regressor Qc by using the least

squares method [9], [25], [26]:

γm
c = (Q′

cQc)
−1Q′

cx
m
µ , m = 1, 2, ...,M c = 1, 2, ..., C

(4)

where Q′

c is the transpose of Qc. The image vector xm
µ can

be reconstructed for the class c using the parameters vector

γm
c and the regressor Qc:

x̂m
c = Qcγ

m
c , m = 1, 2, ...,M c = 1, 2, ..., C (5)

x̂m
c = Qc(Q

′

cQc)
−1Q′

cx
m
µ (6)

where x̂m
c is the reconstructed image vector for xm

µ from the

regressor Qc. x̂m
c can also be interpreted as the projection

of xm
µ on the cth subspace.

Instead of solving Equation (6) individually for each im-

age vector xm
µ , it can be formulated in the matrix form to

efficiently utilize the computational power of modern com-

puters:

Xµ = QcΓc, c = 1, 2, ..., C (7)

where Γc ∈ R
N×M is a matrix of parameters. Γc can be

calculated by using the least square estimation.

Γc = (Q′

cQc)
−1Q′

cXµ, c = 1, 2, ..., C (8)

X̂c = QcΓc, c = 1, 2, ..., C (9)

X̂c = Qc(Q
′

cQc)
−1Q′

cXµ (10)

where X̂c ∈ R
T×M is the matrix of reconstructed image

vectors for Xµ from the regressor Qc. The reconstruction

error between each test image xm
µ and the reconstructed im-

age x̂m
c is calculated using the Euclidean distance:

dmc =
∥∥xm

µ − x̂m
c

∥∥
2
, c = 1, 2, ..., C, m = 1, 2, ...,M

(11)

We tested different voting strategies. We empirically

found that weighted voting consistently provides better per-

formance on all the datasets. In weighted voting, each im-

age m of the test image set casts a vote θmc for each class
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c to determine the class of the test image set Xµ. We ex-

perimented using the Euclidean distance, the inverse of the

Euclidean distance, the square of inverse Euclidean distance

and exponential of the Euclidean distance as weights. How-

ever, the best performance was achieved when using the

exponential of the Euclidean distance in weighted voting.

Hence, the weight of vote θmc of each image m is defined

by the following equation:

θmc = e−αdm

c , c = 1, 2, ..., C, m = 1, 2, ...,M (12)

where α is a constant. The accumulated weight for each

class c from each image of test set is given by:

Θc =

M∑

m=1

θmc , c = 1, 2, ..., C (13)

The class c which gets the maximum accumulated weight

from all the images xm
µ of the test image set Xµ is decided

as the class of the test image set:

µ = arg max
c

(Θc) c = 1, 2, ..., C (14)

Algorithm 1 provides the proposed image set classification

technique.

3.1. The Problem of Singularity

As mentioned before, for Equation (3) and Equation (7)

to be well conditioned, the total number of pixels T = ab

in downsampled gallery image vectors qnc must be greater

than or equal to the number of gallery images N in each

regressor Qc i.e., T ≥ N . However, even if this condition

holds, it is possible for regressor Qc to be singular as one

or more of the rows of Qc may come out to be linearly de-

pendent on other rows. In this case, regressor Qc is called

rank deficient due to the fact that r < T , where r is the rank

of Qc. Therefore, it is not possible to use Equation (4) and

Equation (8) to calculate the parameters vector γc or param-

eters matrix Γc. In this paper we present two solutions for

this problem:

3.1.1 Perturbation

The singularity of the regressor Qc can be overcome by reg-

ularizing the regressor Qc by adding a small perturbation

term [30]. We empirically found that by adding a matrix ε

with uniform random values in the range −0.5 ≤ ǫ ≤ +0.5
removes the singularity of the regressor Qc i.e.,

Q∗

c = Qc + ε, ε ∈ R
T×Nand ∀ǫ ∈ ε, −0.5 ≤ ǫ ≤ +0.5

(15)

Note that Equation (15) is implemented before any prepro-

cessing and the values in matrix Qc are in the range of 0 to

255. In this way, the maximum possible change in the value

of any pixel is 0.5. We observed that there was no deteriora-

tion in the classification accuracy when using this method.

Algorithm 1: The Proposed Image Set Classification

Technique

Input : Gallery image sets Kc, where

c = 1, 2, 3, ...C. Test image set Yµ.

Output: Class µ of test image set Yµ.

Gallery Formation:

for c in 1 to C do

for n in 1 to N do

qnc ∈ R
T×1 = downsample images to a× b

and vectorize, where T = ab
end

Qc ∈ R
T×N = [q1cq

2

cq
3

c ...q
N
c ]

end

Testing:

for m in 1 to M do

xm
µ ∈ R

T×1 = downsample images to a× b

and vectorize, where T = ab
end

Xµ ∈ R
T×M = [x1

µx
2

µx
3

µ...x
M
µ ]

for c in 1 to C do

for m in 1 to M do

γm
c = (Q′

cQc)
−1Q′

cx
m
µ

x̂m
c = Qcγ

m
c

dmc =
√∑T

((xm
µ − x̂m

c )2)

θmc = e−αdm

c

end

Θc =
∑M

m=1
θmc

end

µ = arg max
c

(Θc)

3.1.2 Basic Solution using QR decomposition

In our second solution, we overcome the problem of sin-

gularity by computing a basic solution for Equation (3) or

Equation (7) using QR decomposition [23], [27] of the re-

gressor Qc with the condition that the number of non-zero

components in the solution vector γc ≤ r, where r is the

rank of the regressor Qc. This method does not remove

the singularity of the regressor Qc, however, the results ob-

tained with this method are accurate for the purpose of our

image reconstruction technique.

3.2. Fast Linear Image Reconstruction

A substantial decrease in the processing time can be

achieved when using Equations (7), (8), (9) and (10) com-

pared to the use of Equations (3), (4), (5) and (6). The pro-

cessing time can further be reduced by calculating the in-

verse matrix of the regressor Qc using the Moore-Penrose

pseudoinverse [22], [27] at the time of gallery formation. In

this way, the calculations at test time reduce to two matrix

operations (Algorithm 2). Let Q̃c be the pseudoinverse of
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the regressor Qc calculated at the time of gallery formation,

then Equation (7) can be solved at test time as:

Γc = Q̃cXµ (16)

X̂c = Qc(Q̃cXµ) (17)

In numerical analysis theory, the least squares solution us-

ing pseudoinverse is numerically less precise than using QR

decomposition. However, we did not observe any degrada-

tion in the accuracy when using the pseudoinverse. Nearly

two times gain in computational efficiency was achieved by

the fast linear image reconstruction for ETH-80 dataset (re-

fer to Section 5). The gain in computational efficiency is

more substantial for larger datasets.

4. Experiments and Analysis

Extensive experiments were carried out to demonstrate

the performance of our technique. We evaluated our

technique on three commonly used and challenging video

databases, namely CMU Motion of Body dataset (CMU

MoBo) [10], Youtube Celebrity dataset (YTC) [15] and

Honda/UCSD dataset [17] for face recognition. ETH-80

dataset [18] was used for the task of object recognition.

We compared our technique with several prominent im-

age set classification methods. These techniques include

Face Recognition using Temporal Image Sequence (TIS)

[32], Discriminant Canonical Correlation Analysis (DCC)

[16], Manifold-Manifold Distance (MMD) [31], Manifold

Discriminant Analysis (MDA) [29], the Linear version of

the Affine Hullbased Image Set Distance (AHISD) [4], the

Convex Hullbased Image Set Distance (CHISD) [4], Graph

Embedding Discriminant Analysis (GEDA) [11], Sparse

Approximated Nearest Points (SANP) [14], Covariance

Discriminant Learning (CDL) [30], Regularized Nearest

Points (RNP) [33], Mean Sequence Sparse Representation

Classification (MSSRC) [21], Set to Set Distance Metric

Learning (SSDML) [35] and Adaptive Deep Network Tem-

plate (ADNT) [13]. We also compared our results with the

Dual Linear Regression based Classifier (DLRC) [5], Multi-

Manifold Deep Metric Learning (MMDML) [19], Pairwise

Linear Regression Classifier (PLRC) [8] and Simultaneous

Feature and Sample Reduction (SFSR) [34]. We followed

the standard experimental protocols which are also followed

by [13], [14], [16], [29], [30] and [31]. For comparison, we

referenced the recognition results of [4], [11], [13], [14],

[16], [21], [29], [30], [31], [32], [33] and [35] reported in

[13]. The results of DLRC [5], MMDML [19], PLRC [8]

and SFSR [34] are referenced from the respective papers.

It is not feasible to compare with [19] and [34] on Youtube

Celebrity Dataset because of the significantly different test-

ing protocol used in [19] and [34]. For the results of [5] and

[8] on unreported datasets, we used the implementations of

these methods provided by the authors of the respective pa-

Algorithm 2: Algorithm for Fast image reconstruction

and Classification

Input : Gallery image sets Kc, where

c = 1, 2, 3, ...C. Test image set Yµ.

Output: Class µ of test image set Yµ.

Gallery Formation:

for c in 1 to C do

for n in 1 to N do

qnc ∈ R
T×1 = downsample images to a× b

and vectorize, where T = ab
end

Qc ∈ R
T×N = [q1cq

2

cq
3

c ...q
N
c ]

Q̃c = pseudoinverse(Qc)
end

Testing:

for m in 1 to M do

xm
µ ∈ R

T×1 = downsample images to a× b

and vectorize, where T = ab
end

Xµ ∈ R
T×M = [x1

µx
2

µx
3

µ...x
M
µ ]

for c in 1 to C do

Γc = Q̃cXµ

X̂c = QcΓc

Dc =

√∑T
((Xµ − X̂c)2)

Θc =
∑M

m=1
e−αDc

end

µ = arg max
c

(Θc)

pers. We optimized the number of training and testing im-

ages in [5] and [8] for the optimal performance.

4.1. CMU MoBo Dataset

The CMU Motion of Body Database (CMU MoBo) [10]

contains videos of 25 individuals walking on a treadmill,

captured from six different viewpoints. Only the videos

from the front camera are used for the purpose of image

set classification. All the subjects except the last one has

four different videos following different walking patterns.

The original purpose of this database was to advance bio-

metric research on human gait analysis [10]. We used the

video sequences of the first 24 individuals, as they contain

all four walking patterns, which is similar to the previous

works [5], [8], [13]. The frames of each video were consid-

ered as an image set. Similar to [4], [13], [14] and [31], we

randomly selected the video of one walking pattern of each

individual as the gallery image set and the other three walk-

ing patterns were considered as the test set. As mentioned

in Section 3, the number of images should be less than or

equal to the number of pixels in the downsampled images.

In practice, the number of images should be considerably
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Methods↓ \ Datasets→ MoBo YTC Honda ETH-80

TIS [32] 96.81 ± 1.97 50.21 ± 3.59 88.21 ± 3.86 75.50 ± 4.83

DCC [16] 88.89 ± 2.45 51.42 ± 4.95 92.56 ± 2.25 91.75 ± 3.74

MMD [31] 92.50 ± 2.87 54.04 ± 3.69 92.05 ± 2.25 77.50 ± 5.00

MDA [29] 80.97 ± 12.28 55.11 ± 4.55 94.36 ± 3.38 77.25 ± 5.46

AHISD [4] 92.92 ± 2.12 61.49 ± 5.63 91.28 ± 1.79 78.75 ± 5.30

CHISD [4] 96.52 ± 1.18 60.42 ± 5.95 93.62 ± 1.63 79.53 ± 5.32

GEDA [11] 84.86 ± 3.24 52.48 ± 4.45 91.28 ± 5.82 79.50 ± 5.24

SANP [14] 97.64 ± 0.94 65.60 ± 5.57 95.13 ± 3.07 77.75 ± 7.31

CDL [30] 90.00 ± 4.38 56.38 ± 5.31 98.97 ± 1.32 77.75 ± 4.16

RNP [33] 96.11 ± 1.43 65.82 ± 5.39 95.90 ± 2.16 81.00 ± 3.16

MSSRC [21] 97.50 ± 0.88 59.36 ± 5.70 97.95 ± 2.65 90.50 ± 3.07

SSDML [35] 95.14 ± 2.20 66.24 ± 5.21 86.41 ± 3.64 81.00 ± 6.58

DLRC [5] 91.60 ± 2.78 65.55 ± 5.16 92.31* 86.5 ± 6.0323

MMDML [19] 97.8 ± 1.0 — 100.00 ± 0.0 94.5 ± 3.5

ADNT [13] 97.92 ± 0.73 71.35 ± 4.83 100.00 ± 0.0 98.12 ± 1.69

PLRC [8] 93.74 ± 4.3 61.28 ± 6.37 89.74* 87.72 ± 5.67

SFSR [34] 96.0* — 96.8* —

Ours 98.33 ± 1.27 66.45 ± 5.07 100.00 ± 0.0 94.75 ± 4.32

Table 1. Average classification accuracies and standard deviations on CMU MoBo (MoBo) [10], YouTube Celebrity (YTC) [15],

UCSD/Honda (Honda) [17] and ETH-80 [18] datasets. Both algorithms for the proposed technique have the same accuracy.

* Indicates use of different experimental protocol as authors have reported results for only one fold experiments.

lower than the number of pixels. We randomly selected a

small number of frames i.e., 50 from each gallery video.

The face from each frame was automatically detected using

the Viola and Jones face detection algorithm [28]. Simi-

lar to [13], the images were resampled to the resolution of

40×40 and converted to grayscale. Histogram equalization

was applied to increase the contrast of images. Different

to [5], [8], [13], we did not use any LBP features, and per-

formed experiments on raw images. We used α = 0.2 in

Equation (12). The experiments were repeated for 10 times

with different random selections for the gallery and the test

sets. We also used different random selections of the gallery

images in each round to make our testing environment more

challenging. We achieved the best classification accuracy

on MoBo dataset among all compared techniques. Table 1

provides the average accuracy of our technique along with

a comparison with other methods.

4.2. YouTube Celebrity Dataset

The Youtube Celebrity (YTC) Dataset [15] contains

1910 video clips of 47 celebrities and politicians. This is

the largest dataset used for image set classification. These

noisy real world videos, downloaded from YouTube, have

low resolution and are recorded at high compression rates.

The Viola and Jones algorithm [28] failed to detect faces for

a large number of frames. Therefore, similar to [13], the In-

cremental Learning Tracker [24] was used to track the faces

in video clips. Although the cropped face region was not

uniform across frames, we decided to use the automatically

tracked faces without any refinement. As proposed in [13],

[14], [29], [30], [31], five fold cross validation was used for

experiments. The datset was divided into five folds while

minimizing the overlap between the various folds. Each

fold contains 423 video clips with 9 video clips per individ-

ual. Out of 9 video clips per individual, three videos were

randomly selected as the gallery set while the remaining six

were used as six separate test image sets. All the tracked

face images were resampled to the resolution of 30 × 30
and converted to grayscale, following the protocol of [13].

Histogram equalization was applied to enhance the contrast

of images. For the gallery image set we randomly selected

20 images from each of the three gallery videos per indi-

vidual per fold. If any gallery video clip had less than 20

frames, all the images of that video were used for gallery

formation. In this way each gallery set had a maximum

of 60 images. We used α = 10.5 in Equation (12). Our

technique achieved the highest accuracy among all the para-

metric and non-parametric methods. Deep Learning based

ADNT [13] has a better classification accuracy, however,

it should be noted that our method uses significantly less

training data compared to [13] and is much faster than [13]

(refer to Section 5). Moreover our technique does not re-

quire any parameter fine tuning or training which makes it

more suitable for real life applications. Table 1 summa-

rizes the average accuracies of the different techniques on

YouTube Celebrity dataset.

4.3. UCSD/Honda Dataset

The UCSD/Honda Dataset [17] consists of 59 videos of

20 individuals. The number of videos for each individ-

ual varies from one to five. The database was originally

developed to provide a standard video database to evalu-
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Datasets ↓ Methods ↓ Resolution used by [13] 20× 20 Resolution 15× 15 Resolution

MoBo
ADNT [13] 97.92 ± 0.73 91.81 ± 2.40 90.56 ± 3.13

Ours 98.33 ± 1.27 98.75 ± 1.38 99.31 ± 1.18

YTC
ADNT [13] 71.35 ± 4.83 61.06 ± 5.67 57.66 ± 4.85

Ours 66.45 ± 5.07 64.40 ± 5.22 65.25 ± 5.05

Honda
ADNT [13] 100.00 ± 0.00 100.00 ± 0.00 99.74 ± 0.81

Ours 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

ETH-80
ADNT [13] 98.12 ± 1.69 88.75 ± 6.26 90.25 ± 4.63

Ours 94.75 ± 4.32 95.50 ± 4.04 92.75 ± 6.39*

Table 2. Average classification accuracies and standard deviations on the low resolutions of our technique compared with ADNT [13].

* The slight decrease in performance is due to the nearly equal number of gallery images and the number of pixels (refer to Section 3 for details).

ate face tracking and recognition algorithms [17]. All the

videos contain significant head rotations and pose varia-

tions. Moreover some of the video sequences also contain

partial occlusions in some frames. We followed the same

experimental protocol as [13], [14], [17], [29] and [31]. The

face from each frame of videos was automatically detected

using Viola and Jones face detection algorithm [28]. Simi-

lar to [13], the detected faces were downsampled to the res-

olution of 20 × 20 and converted to grayscale. Histogram

equalization was applied to increase the contrast of images.

The images were standardized by subtracting the mean and

dividing by the standard deviation. We randomly selected

one video from each of the 20 individuals as the gallery

image set while the remaining 39 videos were used as the

test image sets. In order to keep the number of gallery im-

ages considerably less than the number of pixels (refer to

section 3), we randomly selected a small number of frames

i.e., 50 from each gallery video. We used α = 0.2 in Equa-

tion (12). To improve the consistency in scores we repeated

the experiment 10 times with different random selections of

gallery images, gallery image sets and test image sets. Our

technique achieved a perfect classification accuracy while

using a significantly less number of gallery images. Table 1

summarizes the average identification rates of our technique

compared to other image set classification techniques.

4.4. ETH80 Dataset

The ETH-80 dataset [18] consists of eight object cate-

gories and each object category has ten different image sets.

Each image set consists of 41 images of the object taken

from different view angles. The cropped images containing

only the object without any border area were used. The im-

ages were resized to the resolution of 32× 32 to follow the

protocol of [13]. The images were converted to grayscale

and were standardized by subtracting the mean and divid-

ing by the standard deviation. Similar to [13], [16], [29] and

[30], five image sets of each object category are randomly

selected as the gallery set while the other five are consid-

ered to be independent test image sets. We used α = 0.2
in Equation (12). We repeated the experiments 10 times for

different random selections of gallery and test sets. The per-

formance of our technique is comparable to the state of the

art deep learning technique [13]. Table 1 summarizes the

results of our technique compared to other methods.

4.5. Experiments at low resolution

We carried out further experiments at lower resolutions

to demonstrate the efficacy of our technique. We also com-

pared the performance of our technique with ADNT [13] us-

ing low resolution data. We kept all other experimental set-

tings and protocols the same as in the previous sections. For

[13], we used the implementation provided by the authors

and kept all parameters settings the same as recommended

in their paper. Table 2 shows the average classification ac-

curacies which demonstrates the superior performance of

our technique at low resolution. On MoBo dataset, the per-

formance improves at lower resolution. The change in the

performance of our technique for Youtube Celebrity dataset

is negligible as compared to the degradation in performance

of ADNT [13]. For Honda dataset, the classification accu-

racy remains a perfect score with the change in resolution.

On ETH-80 Dataset, we achieved the best performance at

20×20 resolution. This is due to the fact that at 15×15 reso-

lution, the number of gallery images is nearly equal to num-

ber of pixels (refer to Section 3 for details). By reducing the

number of gallery images at 15×15 resolution, we achieved

an average classification accuracy of 95.25%. Overall, there

is no significant change in the classification accuracy of

our technique with the change in resolution. Compared to

ADNT [13], our technique consistently achieved better per-

formance using low resolution data. This shows that our

technique is more suitable to applications where the data is

of very low resolution e.g., CCTV surveillance.

5. Computational Time Analysis

The proposed technique achieves the fastest timing per-

formance as compared to other techniques. Table 3 shows

the training time for various methods and the test time re-

quired to classify an image set on the ETH-80 dataset using

a modern CPU with 8 GB RAM. The proposed technique

requires no training. Although our technique reconstructs

each image of the test image set from all the gallery image
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Methods ↓
Total Training

Time

(seconds)

Test Time per

image set (seconds)

TIS [32] NR 0.045

DCC [16] 13.36 0.311

MMD [31] NR 8.43

MDA [29] 1.22 0.005

AHISD [4] NR 0.095

CHISD [4] NR 0.213

GEDA [11] 2.7 0.068

SANP [14] NR 105.7

CDL [30] 76.21 1.40

RNP [33] NR 0.027

MSSRC [21] NR 4.78

SSDML [35] 21.92 0.577

ADNT [13] 278.8 0.026

Ours NR 0.0046

Ours (Fast) NR 0.0028
Table 3. Computational Time Analysis on ETH-80 dataset. NR

shows that the method does not require training.

sets, but due to the efficient matrix representation (refer to

Section 3 and Section 3.2), we achieved timing efficiency

superior to the other methods.

6. Discussion

The techniques of [5] and [8] are based on linear mod-

els. However, our technique is remarkably different from

[5], [8]. The works of [5] and [8] consider test image set as

a subspace of a high dimensional space and use the distance

between the test and training image sets to determine the

class of the test image set. On the contrary, we treat each

image in the test image set independently and consider them

as points in a high dimensional space. To determine the dis-

tance between subspaces, [5] estimates a virtual image by

using the last image of each image set along with the vari-

ations between the training and test sets [8]. The distance

of image sets from the virtual image is used as the distance

metric. The work of [8] is an extension of [5] where in-

stead of the last image of each image set, the mean image

is used along with the concept of related and unrelated sub-

spaces. On the other hand, we reconstruct each test image

from the gallery subspaces and use weighted voting with the

Euclidean distances between the original and reconstructed

test images. Weighted voting increases the robustness of our

system to any noise and outliers in the test image set. Both

[5] and [8] can only work for small test sets due to the lim-

itation that the combined number of images in the test and

the training image sets should be much less than the number

of features in the feature vectors. In addition to the gallery

image sets, they also use test image sets as regressors, which

render them prone to the problem of rank deficient matrix

at test time. Our technique does not impose any constraints

on the number of images in the test set and can work with

any number of test images. Moreover, we performed all

of our experiments on raw images to demonstrate the gen-

eralizability of our technique. In contrast to [5], [8], once

any singularity is removed in the regressor Qc at the time of

the gallery formation (refer to Section 3.1), our technique is

immune to the problem of rank deficient matrix at test time.

Our technique can process whole image sets simultaneously

and also has the capability to process one image at a time

and update the class decision in real time which makes it

suitable for live video surveillance (e.g., CCTV).

The accuracy of the proposed technique is superior to all

parametric and non-parametric methods. The deep learning

technique ADNT [13] has a better accuracy on the Youtube

Celebrity dataset and the ETH-80 dataset at high resolu-

tions. However, ADNT needs a lot of training data and re-

lies on handcrafted LBP features. ADNT uses Restricted

Boltzman Machine for parameter initialization and requires

a lot of fine tuning. On the other hand, our technique uses

only a fraction of the training data and achieves compara-

ble results, using only the raw images. Moreover, our tech-

nique has produced superior results at lower resolutions,

compared to ADNT, and is ten times faster than ADNT at

test time. Our technique can also be easily generalized to

new data. The capability to work with less training data and

at low resolution deems our technique suitable for scenarios

where only scarce training data is available and where fast

decisions are required.

7. Conclusion

In this work, a novel image set classification technique

is proposed. The proposed technique uses linear regression

to reconstruct images of the test image set from gallery im-

age sets and uses the accumulative weighted reconstruction

error to decide for the class of the test image set. The tech-

nique requires less training data compared to other image

set classification methods and can work effectively at very

low resolution. Extensive experimental analysis has been

presented on a number of popular and challenging datasets

to demonstrate the superior performance of our technique.

Through the efficient matrix implementation, the proposed

technique achieves the fastest performance time. The tech-

nique can easily be scaled from processing one frame at a

time (for live video acquisition) to processing all of the test

data at once (for faster performance). All these factors make

our technique ideal for image set classification applications.
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