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Abstract

To develop accurate inference algorithms on embedded

manifolds such as the Grassmannian, we often employ sev-

eral optimization tools and incorporate the characteristics

of known manifolds as additional constraints. However, a

direct analysis of the nature of functions on manifolds is

rarely performed. In this paper, we propose an alternative

approach to this inference by adopting a statistical pipeline

that first generates an initial sampling of the manifold, and

then performs subsequent analysis based on these samples.

First, we introduce a better sampling technique based on

dart throwing (called the Poisson disk sampling (PDS)) to

effectively sample the Grassmannian. Next, using Grass-

mannian sparse coding, we demonstrate the improved cov-

erage achieved by PDS. Finally, we develop a consensus ap-

proach, with Grassmann samples, to infer the optimal em-

beddings for linear dimensionality reduction, and show that

the resulting solutions are nearly optimal.

1. Introduction

A wide variety of applications in computer vision and

machine learning rely on inference from data defined on

embedded manifolds, such as, the Grassmannian manifold

of subspaces. Examples range from dynamical system mod-

eling [21] and activity recognition [16, 2] to subspace learn-

ing [10, 20] and domain adaptation [7]. In its most generic

form the inference problem can be described as recovering

or analyzing a multi-variate, smooth function f : M 7→ R
d

defined on some manifold M ⊂ R
n. Conventional ap-

proaches in vision employ a variety of optimization tools

to recover f , by incorporating the characteristics of known

manifolds as additional constraints. While convexity of the

quality metric on function recovery is often desired, the na-

ture of that metric on M is rarely analyzed [15]. Hence,
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(a) Sampling on S1, with N = 40 samples.

(b) Sampling on S2, with N = 400 samples.

Figure 1. Motivating the need for better random sample design on

embedded manifolds. Projecting random samples created in the

Euclidean space results in poor coverage of the manifold. In com-

parison, our proposed approach produces highly uniform samples,

thereby leading to improved analysis and optimization.

an alternative approach to this inference is to adopt a statis-

tical pipeline that first generates an initial sampling of M
to create a baseline of knowledge, and then performs subse-

quent analysis based on these samples. Note that, this initial

sampling is independent of the application-specific goals.

The goal of sampling is to produce the maximal amount

of information with the minimal number of samples, since

the function f can be quite complex and M can be large.

Naturally, the quality of initial sampling is crucial to the

efficacy of the inference. Sampling low dimensional, Eu-

clidean domains has been an active research area and a vari-
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ety of techniques have demonstrated that carefully designed

sampling patterns, such as, Blue noise [22, 12] or Poisson

Disk [14, 5, 4, 6] can significantly outperform uniform ran-

dom samples. However, extending these concepts to sam-

pling embedded manifolds, for example, optimizing a loss

function on the Grassmannian, has proven difficult.

A common strategy for sampling manifolds is to gener-

ate random samples in some subset of a euclidean domain

and projecting them onto the manifold. However, since the

projection, in general, is not volume preserving the resulting

samples often cluster and thus need not sufficiently cover

the domain. Consider examples of a circle S1 and a sphere

S2 shown in Figure 1(a) and 1(b) respectively. On the left

we sample a unit line or square and project samples to the

manifolds by the method of normalization. This will map

a point on the line or square to the corresponding point on

the unit circle or sphere. Clearly, these samples do not uni-

formly cover the manifold and create undersampled regions.

The challenge is that the projection will often introduce dis-

tortions that may result in regions with clustered points or

in other cases undersampled regions. Since, in general, pro-

jections are somewhat opaque, it is often difficult to analyze

let alone compensate for these distortions. Nevertheless,

without a more formal analysis of manifold sampling, pro-

jection based techniques are used as is. A good sampling

pattern is expected to have two main properties – (a) the

sampling should be random, i.e. one wants to have an equal

chance of finding features of interest, e.g., local minima in

an optimization problem, anywhere in the domain M; and

(b) the samples should uniformly cover all M to minimize

the distance to the optimal solutions.

In this paper, we introduce Poisson Disk Sampling

(PDS) for the Grassmann manifold and show that just as for

Euclidean domains a PDS sampling of the Grassmannian

can significantly outperform uniform random samples. Mo-

tivated by its success in the Euclidean-domain, we propose

to use the dart throwing technique [3] to generate approxi-

mate PDS samples on the Grassmannian. This is expected

to improve the quality of samples, thus resulting in a higher

chance of finding solutions to optimization problems. We

illustrate this on the right of Figure 1(a) and 1(b), where we

show that the corresponding samples obtained using the dart

throwing algorithm result in a much better coverage. Note

that, one might argue that first generating PDS samples in

Euclidean-domain and then projecting it to Grassmann can

be a good sampling strategy. However, this approach cannot

perform better than the naive random sampling of Grass-

mann as it is well known that PDS properties are lost under

projection and in practice it ends up performing poorly.

In order to study the impact of sample quality on op-

timization problems, we focus on the Grassmann mani-

fold, which is key to a number of optimization problems

in machine learning. In particular, we consider the problem

of linear subspace learning based on different embedding

objectives: Principal Component Analysis (PCA), Local-

ity Preserving Projections (LPP) and Linear Discriminant

Analysis (LDA). In general, these embedding techniques

can be posed as searching for a point on the Grassmannian

that minimizes the corresponding embedding cost. We de-

velop a novel consensus technique based on the generated

samples to compute the low-dimensional embeddings, and

demonstrate that the proposed PDS samples produce solu-

tions close to the true optimum (in terms of the embedding

cost), while outperforming uniform random samples.

Our main contributions are summarized as follows:

• We demonstrate the effectiveness of Poisson disk sam-

pling (PDS) on the Grassmann manifold.

• We propose a dart throwing based algorithm to gener-

ate approximate PDS for the Grassmann manifolds in

different dimensions – Gk
n.

• Using Grassmannian sparse coding, we demonstrate

the improved coverage achieved by PDS.

• We develop a consensus approach, with Grassmann

samples, to infer the optimal embeddings for PCA,

LPP and LDA objectives, and show that the resulting

solutions are nearly optimal.

2. Sampling Euclidean Spaces

We briefly discuss the sampling problem in Euclidean

and review the idea of Poisson Disk Sampling, which we

generalize to the Grassmannian in Section 3.

Uniform sampling in low-dimensional Euclidean spaces

has been of significant interest to both the computer graph-

ics and uncertainty quantification researchers. In many sce-

narios, the Poisson-disk sampling (PDS) process is often

considered to be an optimal choice. Formally, PDS dis-

tributes uniform random point samples on a domain of d-

dimensional space based on a minimum distance criterion

between point samples [6].

Definition A set of N point samples {Si} in the Euclidean

domain D are Poisson disk samples, if S = {Si ∈ D; i =
1, · · ·N} satisfy the following two conditions:

• ∀Si ∈ S, ∀A ⊆ D : P (Si ∈ A) =
∫

A
ds

• ∀Si,Sj ∈ S : ||Si − Sj || ≥ rmin

where rmin is the Poisson disk radius.

The first condition states that the probability of a uniformly

distributed random sample Si ∈ S falling inside a subset

A of D is equal to the area of A. On the other hand, the

second condition enforces the minimum distance constraint
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between point sample pairs. Note, a Poisson sampling pro-

cess enforces the first condition alone, in which case the

number of samples that fall inside any subset A ⊆ D obeys

a discrete Poisson distribution. Though easier to imple-

ment, Poisson sampling often produces distributions where

the samples are grouped into clusters. Consequently, a sam-

pling process that distributes random samples in an even

manner across D is preferred, so that no clustering is ob-

served. The disk condition helps to eliminate the clustering

behavior by preventing samples from being closer than rmin.

The primary ingredient to design and analyze sample

distributions is a suitable spatial statistic. One such mea-

sure in the Euclidean domain is the pair correlation func-

tion [19], which describes the joint probability of having

points at two locations Si and Sj respectively. For example,

the pair correlation function for PDS can be defined as [13]:

G(r) =

{

0 if r < rmin

1 if r ≥ rmin.
(1)

Generalizing the idea of Poisson disk sampling to em-

bedded manifolds requires the definition of an equivalent

spatial statistic, which does not currently exist. Hence, we

propose to generate an approximate PDS distribution us-

ing dart throwing on the Grassmannian based on a valid

geodesic distance metric. While dart throwing techniques

in Euclidean domains have been well-studied [3], their be-

havior on the Grassmannian is unknown.

3. Generating Samples on the Grassmannian

3.1. The Grassmann manifold

The Grassmann manifold denoted by Gk
n is defined as the

space of all k dimensional subspaces in R
n. The application

of interest in this paper is linear dimensionality reduction

schemes, to which the Grassmann manifold naturally lends

itself as the subspaces used for low dimensional projection

dimension can be represented as a point on the Grassman-

nian. In other words, for a set of points in a higher dimen-

sional space ZH ∈ R
n, Zl = STZH , where S ∈ Gk

n, Zl ∈
R

k. For each subspace S ∈ Gk
n, that is represented by an

orthogonal basis, there is a corresponding projection matrix

P = SST ,∈ R
n×n. The set, Pn of all such projection

matrices is diffeomorphic to Gk
n. The advantage of using

this representation is that the Riemannian metric in Pn, is

just the inner product 〈P1,P2〉 = trace(P1P
T
2 ), which is

computed using the Frobenius norm between two n×n ma-

trices of rank k (also referred to as the chordal or extrinsic

distance in literature). The inverse mapping, Π : Pn 7→ Gk
n,

is given by Π(P) = UUT , where P = U∆VT is the

k-rank SVD of P.

Algorithm 1 Dart Throwing on the Grassmann manifold

Require: Dimensions (n, k), number of samples N and rmin,

S = ∅
1: while |S| ≤ N do

2: Throw a Dart i:

• Generate random matrix Zi ∈ R
n×k

• Obtain the corresponding point Q ∈ Gn,k as the QR

decomposition of Zi.

• Assign Si ← Q

3: if dG(Si,Sj) ≤ rmin, ∀Sj ∈ S then

4: Add sample Si to the point set S

5: end if

6: end while

3.2. Dart throwing for Poisson Disk Sampling

One of the most straightforward ways of generating PDS

in Euclidean domains is by using the dart throwing algo-

rithm [3], which generates random candidate points over the

domain, however, accepts each candidate iff it lies at a mini-

mum distance rmin from every previously accepted sample.

A practical variant of the dart throwing algorithm is where

the dart radius is gradually decreased as more samples are

placed. The dart throwing algorithm is therefore inherently

sequential and slow due to its quadratic complexity, but the

quality of the results is nevertheless high.

Furthermore, an important property of any distribution

generated with dart throwing is its progressive nature: Simi-

lar to low-discrepancy sequences, if we put all the generated

points into a list of N elements, and draw only a portion of

that list, the resulting point distribution also covers the en-

tire plane (as opposed to sweeping it), but simply does it

with a lower density. Motivated by these observations, we

employ the dart throwing approach to generate poisson disk

sample directly on Grassmann manifold, referred to hereon

as PDS samples, while the baseline samples are referred to

as random samples.

The algorithm described in 1 describes the procedure to

perform dart throwing on the Grassmann manifold for PDS.

Note that, for all experiments and analysis presented in this

paper, we use the chordal distance to compare the points on

the Grassmannian, defined as

dG(S1,S2) =
1√
2
‖S1S

T
1 − S2S

T
2 ‖F . (2)

The baseline for comparison is generating random samples,

which is equivalent to throwing N darts with an rmin = 0,

i.e. accept all darts as good samples. The computational

complexity of a naive implementation is O(N2) for N
darts. However, more efficient algorithms are available that

can achieve the same in O(N logN) complexity, with spa-

tial data structures such as hashing grids or trees to reduce

the cost of nearest-neighbor lookups [4].
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Figure 2. Visualizing the sample distributions, obtained with uniform random and dart throwing methods, using Multidimensional Scaling.

Sub-sampling is a closely related strategy that can poten-

tially be applied here. The dart throwing algorithm 1, sam-

ples the space directly instead of over-sampling first, and

then picking the best set of samples. This can be achieved

by clustering-like approaches or modified exemplar selec-

tion such as in Manifold Precis [18] in the context of di-

verse sampling from a given dataset. Conceptually, this is

similar to the farthest point optimization [17] techniques in

the sampling literature. Though this approach is known to

satisfy the rmin condition, in the Euclidean space, it tends

to produce clustering patterns unlike the PDS.

4. Sample Quality Evaluation

Analyzing statistical performance of high-dimensional

point sets on embedded manifolds is a challenging task.

For example, there do not exist techniques to estimate spa-

tial statistics, such as pair correlation function [19], on the

Grasmann manifold. Therefore in this section, we develop

proxy strategies to evaluate the quality of samples produced

using the dart throwing algorithm. We first visualize the

sample distribution using Multi-Dimensional Scaling, and

then quantitatively measure the representative power of the

samples, as a proxy for coverage on the manifold.

Visualizing sample distribution in 2D: We employ

Multi-dimensional scaling (MDS) to project Grassmann

samples into 2D for visual comparisons. MDS is designed

to represent high dimensional data in a low dimensional

space while preserving the similarities between data points.

We apply MDS on a pairwise distance matrix for the dart

throwing and random sampling, in order to observe their

difference in quality (see figure 2). The samples obtained

from dart throwing are observed to cover the embedded

space uniformly, as opposed to the random samples which

leave holes in the space. Further, random sampling contains

the undesired grouping behavior of samples, illustrating the

benefit of imposing the minimum distance criterion.

Quantifying coverage on the manifold: We evaluate the

representative power of the generated samples, which re-

flects the coverage achieved by these samples. Specifically,

we propose to oversample the Grassmannian, sparsely en-

code each of them by treating the set of generated sam-

ples (Section 3.2) as the dictionary, and analyze the statis-

tics of the approximation error. If a sampling strategy pro-

duces a good set of samples in terms of covering the entire

manifold, then, those samples should ideally result in high-

fidelity approximation of the oversampled set.

The sparse encoding problem is as follows [8]: Given

a subspace X and a dictionary S = {Si}Ni=1 with N pre-

designed samples, approximate X using a linear combina-

tion of a small number of elements in S . In order to perform

sparse coding on the Grassmann manifold, we adopt the for-

mulation proposed in [9]. This can be formally expressed as

min
α

‖XXT −
N
∑

i=1

[α]iSiS
T
i ‖F + λ‖α‖1, (3)

where {Si}Ni=1 are points on Grassmann obtained using the
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Figure 3. Coverage analysis of Grassmann samples - We adopt a sparse coding based empirical study to quantify the coverage achieved

by different sampling techniques. In each case, we show the histogram of approximation errors, measured as the chordal distance, for an

oversampled set of samples from the Grassmannian.

Table 1. Formulating common linear dimensionality reduction techniques using the unified graph embedding framework in [23]

Method Intrinsic Graph Penalty Graph

Principal Component Analysis Wij = 1/T, i 6= j B = I

Linear Discriminant Analysis Wij = δci,cj/nci , δci,cj = 1 if ci = cj B = I− 1/NeeT

Locality Preserving Projection Wij = exp(−γ‖xi − xj‖2), if i ∈ N (j) or j ∈ N (i) B = D

sampling technique. Note that, finding the sparse codes

with fixed S can be solved efficiently as the optimization

problem is convex in α.

To evaluate the coverage achieved by the sampling tech-

niques, we generate 50, 100 and 250 samples on the fol-

lowing Grassmannian manifolds: {G2
3 ,G3

5 ,G4
8 ,G5

10} using

both random and proposed dart throwing algorithms. In

each case, we obtained 50 independent realizations and

using each realization as the dictionary, we evaluated the

sparse approximation errors for 200 randomly drawn sam-

ples. Note, we used the chordal distance to measure the

difference between the true subspace and approximated re-

turned by sparse coding. The histograms of the approxi-

mation errors from both the approaches, for all cases, are

shown in Figure 3. As expected, with the increase in sam-

ple size, error decreases for both random and dart throwing

sampling. Further, for the same sample size, the proposed

dart throwing technique outperforms uniform random sam-

ples, thus evidencing improved coverage on the manifold.

Interestingly, in the case of G5
10, both approaches perform

poorly, as number of samples need for a reasonable approx-

imation grows exponentially and the curse of dimensional-

ity starts affecting the performance. Furthermore, if sample

sizes are too small both the techniques find it challenging

to approximate the oversampled set from the Grassmannian

and the performance difference between these sampling pat-
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Figure 4. Principal Component Analysis cost optimization using consensus on the Grassmannian (higher is better).
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Figure 5. Comparison of the consensus embedding obtained using the PCA cost on the Grassmannian, to the true solution obtained using

generalized eigenvalue decomposition.

terns becomes negligible. However, given reasonable sam-

ple sizes, the PDS samples perform consistently better com-

pared to random samples in all dimensions.

5. Subspace Optimization using Grassmann

Samples

In this section, we consider the problem of linear sub-

space learning to perform dimensionality reduction. In

practice, there exists a wide variety of quality metrics

to optimize for effective linear embeddings from high-

dimensional datasets, e.g. class separation in linear dis-

criminant analysis. More generally, these problems can be

viewed under a unified graph embedding formulation and

solved using common optimization techniques such as the

generalized eigenvalue decomposition [23]. In contrast, we

propose to infer optimal subspaces, for a given quality met-

ric, using only the pre-designed set of samples in lieu of

the actual optimization. Using empirical studies on real

datasets, we investigate the impact of sample quality on the

efficacy of the inferred solutions.

5.1. Subspace Learning as Graph Embedding

Dimensionality reduction techniques have become an in-

tegral part of several supervised and unsupervised learning

systems in computer vision and pattern recognition. Among

them, linear embedding techniques such as the Principal

Component Analysis (PCA) and Linear Discriminant Anal-

ysis (LDA) are popular because of their relative simplicity

and effectiveness. We adopt the general graph embedding

framework proposed in [23] since it provides a unified view

for formulating linear dimensionality reduction techniques.

In this approach, we represent each vertex of a graph

as a low-dimensional vector that preserves relationships be-

tween the vertex pairs, where the relationship is measured

by a similarity metric that characterizes certain statistical

or geometric properties of the data set. Let G = {X,W}
denote a undirected graph (referred as the intrinsic graph),

where the matrix X = [x1, · · · ,xT ],xi ∈ R
n repre-

sents the data samples in n dimensions, while the matrix

W ∈ R
T×T is the similarity matrix between all pairs of

samples. The diagonal degree matrix D and the Laplacian

of a graph G can be defined as:

L = D−W,where Dii =
∑

j 6=i

Wij (4)

Denoting the corresponding low-dimensional repre-

sentations for the set of data samples by Y =
[y1, · · · ,yT ],yi ∈ R

k, where k << n, the problem of

graph embedding can be posed as follows:

Y∗ = arg min
tr(YBYT )=d

tr(YLYT ). (5)
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Figure 6. Linear Discriminant Analysis cost optimization using consensus on the Grassmannian (lower is better).
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Figure 7. Comparison of the consensus embedding obtained using the LDA cost on the Grassmannian, to the true solution obtained using

generalized eigenvalue decomposition.

Here, tr(.) computes the trace of a matrix, and the matrix B

corresponds to the Laplacian of an optional penalty graph,

typically used to regularize the learning. In case of linear

embeddings, we can rewrite (5) as

Y∗ = arg min
tr(VTXBXTV)=d

tr(VTXLXTV), (6)

where V ∈ Rn×k is the desired projection. The solution to

(6) can be obtained using generalized eigenvalue decompo-

sition.

We consider the optimization of three linear embed-

ding techniques: PCA, LDA and locality preserving pro-

jections (LPP), that preserves local relationships within the

dataset and uncovers its essential manifold structure. Table

1 lists the appropriate construction of the intrinsic graph and

penalty graph Laplacians L and B for the three methods.

5.2. Proposed Consensus Approach

To optimize the linear projection for a desired quality

metric, we evaluate the metric for each of the samples in

S . For example, in the case of PCA, we measure the total

variance captured by a linear projection Si as ST
i XLXTSi.

Though the chance of finding the optimal solution in S is

low, using the observations in Section 4, we hypothesize

that it can be approximated as a linear combination of the

samples. In other words, we construct the optimal embed-

ding as a weighted consensus of the samples in S .

We employ a simple strategy which assigns larger

weights to the samples with higher embedding quality and

exponentially smaller weights to the rest of the samples. We

optimize for the weighted consensus as:

V∗ = arg min
VTV=I

tr

(

VT

N
∑

i=1

(

αiI− αiSiS
T
i

)

V

)

(7)

where αi are the positive weights. V can be evaluated as the

d eigen vectors corresponding to the smallest eigen values

of
∑N

i=1

(

αiI− αiSiS
T
i

)

.

5.3. Results

In this section, we evaluate the effectiveness of Poisson

disk samples in approximating the optimal embeddings for

PCA, LDA and LPP quality metrics. For the results re-

ported in this section, we used two datasets from the UCI

repository: (a) Ecoli dataset (7 dimensions) and (b) Breast

Cancer dataset (9 dimensions). For the ecoli dataset, we in-

ferred subspaces of 2 and 3 dimensions, while for the breast

cancer dataset we considered k = 2.

Figure 4 plots the embedding cost of the consensus sub-

space, obtained using both random and Poisson disk sam-

ples, for the case of PCA. Note that, unlike LDA and LPP,

PCA attempts to maximize the embedding cost (variance)

and hence larger the cost better is the inferred subspace. In

addition, we show the embedding cost of the true PCA solu-

tion computed using generalized eigenvalue decomposition.
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Figure 8. Locality Preserving Projections cost optimization using consensus on the Grassmannian (lower is better).
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Figure 9. Grassmann distance between the optimal solution and the

linear subspace inferred using the consensus from PDS samples

for the Ecoli dataset.

The first striking observation is that with only around 500
Grassmann samples, we obtain solutions that are very close

to the true optimum, in all cases. Second, samples gener-

ated using the dart throwing schemes significantly outper-

form random samples. Note that, the results reported in the

figure were obtained as the average of 100 independent tri-

als with different sampling realizations. Similar results are

observed for the cases of LDA and LPP quality metrics as

well, as observed in Figures 6 and 8 respectively.

Figure 5 shows the PCA embeddings when k = 2, for

both datasets, obtained using PCA and the proposed con-

sensus strategy. Similarly, Figure 7 shows the 2D embed-

dings that optimize the LDA quality metric, i.e. class sepa-

ration. Observe that the solutions obtained using the Grass-

mann samples are different than the true solution and yet

they are very effective in preserving the desired relation-

ships. For example, the LDA embedding in Figure 7(b), the

class separation is similar to the true embedding, while the

crowding effect, commonly observed in linear embedding

techniques, is clearly avoided. Further investigation of the

closeness of the inferred solutions to their true counterparts

in 9, reveals that in many cases there is evidence for other

nearly optimal solutions that are far from the true optimum,

and in some cases they could be more insightful. This is in

agreement with the observations reported in [15], where the

authors identify multiple modes in the optimization surface

of quality metrics on the Grassmannian.

6. Discussion and Future Work

We introduced parameter inference approach on embed-

ded manifolds that first performed an initial sampling of the

manifold, and then subsequent analysis based on these sam-

ples. To generate samples with better coverage properties

in embedded domains, we proposed the use of Poisson disk

sampling. In addition to demonstrating improved coverage,

we showed that the samples are highly effective in approxi-

mating the optimal solution for subspace learning problems.

These results indicate that high-quality samples can serve

as anchor points to search through the Grassmannian us-

ing conventional optimization strategies including gradient

based methods [1] and random optimization [11].

A few observations warrant further study (a) The pro-

posed dart throwing algorithm is expected to result in ap-

proximate PDS samples, the superior quality of which we

have demonstrated with empirical studies. However, a more

in-depth analysis is required to prove claim (1) from the def-

inition of PDS, with regard to computing the hyper-volume

of a subset on the manifold. A proxy could be to count

the number of points that lie inside a unit ball of radius r;

(b) The curse of dimensionality ensures that in higher di-

mensions, even PDS samples tend to resemble random, in

that they both cover the space very poorly. As a result an

exponentially large number of samples are required to ob-

tain a good sampling; and (c) As Figure 9 indicates, there

are solutions to the subspace learning problem, which are

far from the true solution in terms of the Grassmann dis-

tance. However, we realized that though those solutions are

slightly sub-optimal in terms of the embedding cost, they

might nevertheless be useful embeddings. This key obser-

vation demands further research to understand the topolog-

ical characteristics of the loss function for designing better

optimization techniques on the Grassmannian, and poten-

tially other matrix manifolds.
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