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Abstract

A ubiquitous problem in pattern recognition is that of

matching an observed time-evolving pattern (or signal) to

a gold standard in order to recognize or characterize the

meaning of a dynamic phenomenon. Examples include

matching sequences of images in two videos, matching au-

dio signals in speech recognition, or matching framed tra-

jectories in robot action recognition. This paper shows that

all of these problems can be aided by reparameterizing the

temporal dependence of each signal individually to a uni-

versal standard timescale that allows pointwise compari-

son at each instance of time. Given two sequences, each

withN timesteps, the complexity of the algorithm has a cost

of O(N), which is an improvement on the most common

method for matching two signals, i.e., dynamic time warp-

ing. The core of the approach presented here is that the

universal standard timescale is found by solving a varia-

tional calculus problem in which the cost functional re�ects

the amount of change that takes place as measured in the

original temporal variable, and then produces a mapping

to a new temporal variable in which the amount of change

is globally minimized. The result builds on known facts in

differential geometry.

1. Introduction

Consider two time-evolving sequences, or signals,X1(t)
and X2(t) which can be scalar, vector, matrix, or Lie group

quantities of the same type. Without loss of generality, let

t ∈ [0, 1]. Let S denote the space in which all such signals

evolve. Then X(t) can be viewed as a map

X : [0, 1] → S

and the space of all signals is [0, 1]× S.
Suppose that there exists a metric (distance function)

d : S × S → R≥0, thereby making (S, d) a metric space.

In general it can be the case that d(X1(t), X2(t)) will not

be small even if X1(t) and X2(t) represent fundamentally

the same dynamic phenomenon. This can happen for two

reasons: (1) The sequences can have a different temporal

evolution along the fundamentally same path; (2) Nuisance

parameters such as perspective, background noise, or signal

decimation can cloud the underlying similarity. The �rst of

these problems can be addressed by considering the inter-

nal (temporal) dependence of the signal that act on the time

interval [0, 1], and the second can be described by external

transformations that act on the space S. In this paper both

of these are considered, as well as joint transformations that

act on the whole space [0, 1]× S in a coupled way.

As a �rst example, consider when Xi(t) are two scalar

functions each describing the audio signal of spoken text

�The rain in Spain stays mainly in the plain.�1 X1(t) could
be the template of how this phrase should be spoken, and

X2(t) could be how someone with an accent says (or sings)

the same phrase. Though d(X1(t), X2(t)) will not be small

if the second person has a strong accent or carries certain

syllables longer while singing, the expansion or contrac-

tion of certain syllables over time can be compensated for

by instead reparameterizing both to a standard timescale by

de�ning

Yi(t)
.
= Xi(τi(t)) (1)

where

τi : [0, 1] → [0, 1]

are smooth monotonically increasing functions with smooth

inverse. The set of all such functions forms a group (T , ◦)
under the operation of composition of functions. That is,

given τ1, τ2 ∈ T ,

(τ ◦ τ ′)(t)
.
= τ(τ ′(t))

is also in T , and satis�es all of the group axioms such as

associativity, and the inverse group element τ−1(t) is the

inverse of the function τ(t) which exists due to monotonic-

ity, and the identity element is e(t) = t. Let us call this the

1See YouTube for this part of the movieMy Fair Lady
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temporal reparameterization group, TRG. This is actually

an in�nite-dimensional group of transformations that act on

[0, 1]. Then we can say thatX1(t) andX2(t) are fundamen-

tally the same if there exist τ1, τ2 ∈ T such that2

∫ 1

0

[d(Y1(t), Y2(t))]
2dt ≈ 0 (2)

even if d(X1(t), X2(t)) ≫ 0 for all values of t.
Of course, it would not be feasible to construct a search

over the space T ×T since T is in�nite dimensional. Herein

lies one of the fundamental contribution of this paper: It is

possible to independently obtain τi(t) resulting in reparam-

eterizations Yi(t) each on a universal standard timescale,

UST, using a particular variational calculus formulation that

is realizable in O(N) computations where N is the number

of time steps in the recorded sequence.

This is not limited to the scalar case described in the au-

dio example. For example, if a robot arm is doing free-

form manufacturing with a milling tool as its end effector,

it could be that the same path is traversed by two different

trajectories implementing the same task, but with different

dwell times or different rates along different parts of the

trajectory. In this case the problem might be modelled with

S = SE(3), which is the 6-dimensional Lie group of rigid-

body displacements with group operation being matrix mul-

tiplication when elements are expressed as matrices of the

form

X =





R t

0T 1



 . (3)

HereR is a 3×3 rotation matrix, t is a 3D translation vector,

and 0T is a row of zeros. Then a metric (distance function)

on this space is

d(X1, X2) = ∥ log(X−1

1 X2)∥F (4)

where ∥X∥F =
√

tr(XXT ) is the Frobenius matrix norm.

Note that d(X1, X2) is left invariant in the sense that

d(X0X1, X0X2) = d(X1, X2) for arbitrary X0, X1, X2 ∈
SE(3).

Group theory appears in several ways in this problem.

In additional to S possibly being a group in some contexts

(such as when the signal is a robot trajectory), and the TRG

is a group which is used to internally quotient out the effects

of temporal �uctuations, it can be desirable to simultane-

ously quotient out the effects of other �nuisance groups�

[23] that externally act on S. For example, if two video

sequences of a person waving is presented from two differ-

ent viewpoints, and we wish to discern whether the actions

are actually those of waving as opposed to throwing a ball,

then the the effects of viewpoint on each image in each of

2As a practical matter, often one seeks to minimize the integral of the

square of a metric to eliminate square roots under the integral.

the sequences can be quotiented out as well. For example,

if G is a group such as SL(3,R) when considering homo-

graphies [16], or SE(2) when considering rigid template

matching in the image plane [7], or SO(3) when consider-

ing image matching from �sh-eye lenses [17], or an af�ne

transformation approximating a perspective transformation

in a pinhole camera [12], then [7]

DG(X1, X2)
.
= min

g∈G
d(X1, g ·X2) (5)

is a metric on the quotient space G\S where · denotes
the action of G on S. Invariant recognition of signals

then becomes one of matching in the double quotient space

G\S/T . The contribution of this paper is developing the

mathematical framework to do this. But �rst, a brief review

of what is usually done in the literature is provided.

1.1. Related Literature

The pattern recognition literature is immense, and is di-

vided into the subcommunities centered around different

application areas such as computer vision and image under-

standing, speech recognition, and robotics. In all of these

areas deep learning has made tremendous strides in recent

years. See, for example, [14, 15, 22]. A method used in in-

formation processing and pattern recognition, originally de-

veloped for audio signals [2, 19], is dynamic time warping.

In the simplest implementation of this method, a measure

of similarity between each point in two sequences is used

to generate a pairing cost in a bipartite graph. The resulting

matching is usually computed in O(N2) time when there

are O(N) points in each sequence, though algorithms exist

to reduce this computational burden somewhat [21].

This paper provides the mathematical framework for a

very different alternative. Rather than morphing (or warp-

ing) one audio or image sequence to �t another, the goal

here is to reparameterize each time-varing object to its own

natural time scale, and to simultaneously quotient out the

effects of nuisance groups. (Much of this paper is con-

cerned with the theoretical underpinnings justifying how

to do these computation). Then two sequences can be

compared directly pointwise. Since the optimization of

each trajectory consisting of N points requires O(N) com-

putations, and since there are no computations associated

with cross-comparison between trajectories in this approach

(only pointwise comparison after reparameterization), the

whole approach has O(N) complexity. The genesis of this

idea (without the nuisance groups) was a discussion on this

topic in the context of a particular application with Ms.

Yixin Gao [11].

Peripherally related works on sophisticated geometric

methods for shape analysis in computer vision include

[3, 9, 18, 24, 25]. The present formulation follows from

the author's concrete work in robotics in [5, 6].
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1.2. Structure of the Remainder of the Paper

In Section 2 a class of problems in the Calculus of Varia-

tions that is directly related to ef�ciently selecting elements

of the temporal reparameterization group, T , for establish-

ing correspondences between signals in general Rieman-

nian metric spaces (S, d) is articulated. In particular, a

proof is given that this class of variational calculus prob-

lems yields a globally optimal solution. Section 4 then dis-

cusses more widely the question of when variational calcu-

lus problems are guaranteed to have globally optimal solu-

tions generated by the Euler-Lagrange equation, and how a

bootstrapping procedure can be used to expand the scope of

problems that have such globally optimal solution.

2. Global Optimality in Variational Calculus to

Reduce Searches Over S to S/T

The Calculus of Variations addresses the problem of

seeking vector-valued functions x(t) that extremize func-

tionals of the form

J =

∫ 1

0

f (x, ẋ, t) dt (6)

where ẋ = dx/dt. As in usual calculus, the result can be ei-
ther saddle-like solution or local or global minimum, maxi-

mum. Necessary conditions for such solutions are given by

the Euler-Lagrange equations:

∂f

∂x
−

d

dt

(

∂f

∂ẋ

)

= 0 (7)

where derivatives with respect to vectors are interpreted as

gradients. When x(t) is one dimensional it is denoted as

x(t).
The Euler-Lagrange equations only provide ��rst order�

necessary conditions for a local (or weak) extremum.

Stronger necessary condition due to Jacobi also exist, but

even then there is usually no guarantee that a solution of

the Euler-Lagrange equations will be globally optimal.

However, in certain situations (including optimal temporal

reparameterization), the structure of the function f(·) will
guarantee that the solution generated by the Euler-Lagrange

equations is in fact a globally optimal solution. In particu-

lar, we have the following.

THEOREM 1: When the integrand in the cost func-

tional (6) is of the form

f(x, ẋ) = ẋ2
g(x) (8)

where g(x) is differentiable and g(x(t)) > 0 for all values

of t ∈ [0, 1], then the solution generated by (7) subject to

the boundary conditions x(0) = 0 and x(1) = 1 is globally

minimal. 3

3Such cost functions arise in reparameterization in natural ways.

Proof. Evaluating (7) with (8) gives

2ẍg+ ẋ2 ∂g

∂x
= 0. (9)

Multiplying both sides by ẋ and integrating yields the exact

differential
d

dt
(ẋ2

g) = 0.

Integrating both sides with respect to t and isolating ẋ yields

ẋ = c g−
1

2 (x)

where c is the arbitrary constant of integration. With the

boundary conditions x(0) = 0 and x(1) = 1, we can then

write

F (x∗)
.
=

1

c

∫ x∗

0

g
1

2 (σ) dσ = t,

where

c =

∫ 1

0

g
1

2 (σ) dσ.

The notation x∗ indicates that this is the unique solution

obtained from the Euler-Lagrange equations that satis�es

the boundary conditions.

The function F (x∗) = t can be inverted (F is monoton-

ically increasing since g(x) > 0) to yield x∗ = F−1(t).
To see that this solution is globally optimal, substitute

ẋ∗ = g
− 1

2 (x∗)

∫ 1

0

g
1

2 (σ) dσ (10)

into the cost functional

J(y) =

∫ 1

0

g(y)ẏ2dx

where y(t) is any function in T . Then

J(x∗) =

(∫ 1

0

g
1

2 (x∗) dx∗

)2

=

(∫ 1

0

g
1

2 (y) dy

)2

,

where the second equality is simply a change of name of the

dummy variable of integration. Furthermore, since x∗ and

y are both functions of time, we can change the domain of

integration as

J(x∗) =

(∫ 1

0

g
1

2 (y(t)) ẏ dt

)2

.

Since in general, from the Cauchy-Schwarz inequality,

(∫ 1

0

f(t) dt

)2

≤

∫ 1

0

[f(t)]2dt,

we see that by letting f(t) = g
1

2 (y)ẏ that

(∫ 1

0

g
1

2 (y(t)) ẏ dt

)2

≤

∫ 1

0

g(y)(ẏ)2dt
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and hence

J(x∗) ≤ J(y)

where x∗(t) is the solution generated by the Euler-Lagrange
equation and y(t) is any function in T . Therefore x∗(t) is a
globally minimal solution.

Note: The condition that g(x) is differentiable was re-

quired to use the Euler-Lagrange equation, but if (10) had

been hypothesized independently, this condition could be

relaxed to continuity (which is still required in order to be

able to invert F (·)), and the global optimality of the solution

would persist.

As an example of how (8) arises, consider when S =
R

n×m and the metric d is a matrix norm of the difference

of two elements. Then

d(X(t+ dt), X(t)) = ∥X(t+ dt)−X(t)∥ = ∥dX/dt∥ dt.

Recall that Y (t) = X(τ(t)) is the reparameterized version

of X(t). Then minimizing the integral over t ∈ [0, 1] of

∥

∥

∥

∥

dY

dt

∥

∥

∥

∥

2

=

∥

∥

∥

∥

d

dt
X(τ(t))

∥

∥

∥

∥

2

= ∥X ′(τ)τ̇∥
2
= ∥X ′(τ)∥

2
τ̇2

gives an f(·) of the form in (8), with τ taking the place of x

and g(τ) = ∥X ′(τ)∥
2
. (Here, of course, X ′(τ) = dX/dτ .)

In other words, identifying the element of the TRG that op-

timally reparameterizes time boils down to precisely solving

the globally optimal variational calculus problem addressed

in the above theorem. The global optimality is critical be-

cause it means that there is a unique way to reparameterize

the temporal dependence of a signal so that the temporal

�uctuations are spread out as evenly as possible.

3. Bootstrapping Global Optimality to Larger

Spaces

The theorem presented in the previous section begs the

more general question of when solutions to variational

problems are globally optimal. To the author's knowledge

two classes of such problems have been addressed in the

literature.

First, in Riemannian geometry, a cost function of the

form

f(x, ẋ) =
√

ẋTG(x)ẋ

where T denotes the transpose of a vector or matrix and

G(x) is the metric tensor for a Riemannian manifold

with negative sectional curvatures is know to have unique

geodesics, which hence globally minimize the functional

(6). For example, in the Poincaré solid n-dimensional open

unit ball model of the hyperbolic space, the metric tensor

G(x) = [gij(x)] with x ∈ B
n ⊂ R

n is

gij(x) =
4δij

(1− xTx)
2

where δij is the Kronecker delta. This G(x) is known to

have constant negative sectional curvature of value−1, thus
guaranteeing that any geodesic connecting two points has

minimal length [1, 4, 10, 20]. In contrast, for a space of non-

negative curvature such as the torus or sphere, geodesics

exist that are not necessarily minimal length (e.g., one can

take the long way around a great arc to connect two points),

and hence global minimality of length is not guaranteed for

geodesics between arbitrary points in general Riemannian

manifolds.

The second class of functions that globally minimize

(6) have been studied in the variational calculus literature.

These are cost functions f(x, ẋ, t) where x ∈ R
n and f

is jointly convex in both x and ẋ [13, 26]. (This idea

also generalizes to non-Euclidean spaces with the notions

of geodesic convexity.)

Note that the theorem presented in the previous section

does not fall neatly into either of these categories since

no curvature or convexity restrictions are placed on g(x).
Moreover, as will be shown shortly, higher dimensional

globally optimal solutions that build on the results of the

previous section can be constructed which neither corre-

spond to a geodesic in a negatively curved space, nor corre-

spond to f(·) being convex. (Recall that the only constraints
to do the operations in the proof were that g(x(t)) > 0 for

all t ∈ [0, 1] and g(x) needed to be differentiable.)

One way to construct higher dimensional variational

problems with globally optimal solutions is when

ẋTG(x) ẋ =
n
∑

i=1

gi(xi) ẋ
2
i .

Then n decoupled one-dimensional problems of the sort in

the previous section result. Hence, if a problem exists that

can be decoupled into the above form by a change of coordi-

nates, the variational problem will have a globally minimal

solution even though G(x) may not correspond to a space

of negative curvature, nor would f(x, ẋ, t) necessarily be

convex.

The following theorem addresses a class of multi-

dimensional globally optimal variational problems which

will be useful in the context of joint optimization over an

externally acting nuisance group and the internally acting

TRG. In this theorem, the notation ∥s∥W = (sTW s)
1

2 (the

weighted Euclidean vector norm with symmetric positive

de�nitem×m matrix W ) is used.

THEOREM 2: Suppose that the Euler Lagrange

equations provide a global minimum to the problem in (6)

with x ∈ R
n with speci�ed boundary conditions x(0) and

x(1). Then if s ∈ R
m, the new variational problem in

the variable q = [xT , sT ]T ∈ R
n+m will have a globally

optimal solution with speci�ed boundary conditions q(0)
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and q(1) when f is replaced with φ as

φ(q, q̇, t)
.
= f(x, ẋ, t) + c(x, ẋ, ṡ, t) (11)

where

c(x, ẋ, ṡ, t) =
1

2
∥ṡ−A(x)ẋ∥2W ,

A(x) = [Aijx)] is any differentiable m× n matrix satisfy-

ing
∂Aji

∂xk

=
∂Ajk

∂xi

, (12)

andW = W (t) is any differentiable positive de�nitem×m
matrix function of time.

Proof. The Euler-Lagrange equations for this problem,

∂φ

∂q
−

d

dt

(

∂φ

∂q̇

)

= 0 (13)

reduce to two sets of equations, one associated with the vari-

able x of the form

∂f

∂x
−

d

dt

(

∂f

∂ẋ

)

−
d

dt

[

AT (x)W (ṡ−A(x)ẋ)
]

+
∂

∂x

[

ẋTAT (x)
]

W (ṡ−A(x)ẋ) = 0, (14)

and one in s of the form

∂c

∂s
−

d

dt

(

∂c

∂ṡ

)

=
d

dt
{W (ṡ−A(x)ẋ)} = 0. (15)

Integrating (15) with respect to time gives

W (ṡ−A(x)ẋ) = a (16)

where a is an arbitrary constant vector in Rm.

Substituting (16) back into (14) and using the chain rule

together with (12) gives

d

dt

(

AT (x)
)

=
∂

∂x

[

ẋTAT (x)
]

,

which means that (14) reduces to (6), and so the optimal

solution for the �x-part� of the problem again will be x∗(t)
of the original variational problem in x. Then, with this

x∗(t) computed, the solution to (15), or equivalently (16),

will be

s∗(t) = b+

∫ t

0

{

[W (t′)]−1a+A(x∗(t′)) ẋ∗(t′)
}

dt′

where a and b are determined by �xing s(0) and s(1). The
cost associated with f(x∗, ẋ∗, t) is as low as it can be since

x∗(t) is by de�nition the global minimizer of the original

variational calculus problem. The cost

c(x∗, ẋ∗, ṡ∗, t) =
1

2
aTW−1a

is as low as it can be while satisfying initial conditions. This

can be observed by adding any perturbation to s∗(t) that

preserves the boundary conditions � the result is an increase

in the cost c. Hence q∗(t) is the globally optimal solution

de�ned by (x∗(t), s∗(t)).

In the case when

f(x, ẋ, t) =
1

2
ẋTG(x)ẋ,

then the integrand in the functional for this composite prob-

lem can be written as

φ(x, ẋ, ṡ, t) =
1

2





ẋ

ṡ





T

G(x, t)





ẋ

ṡ



 (17)

where

G(x, t) =





G(x) +AT (x)W (t)A(x) AT (x)W (t)

W (t)A(x) W (t)



 .

This sort of globally optimal variational calculus problem

does not generally fall into the negative curvature scenario

(even when restricting W to be constant), nor will f(·) be
convex in general.

A consequence of this reasoning is that it can be iterated.

In other words, now that a globally optimal solution is ob-

tained to the variational calculus problem with functional

φ(q∗(t), q̇∗(t), t), an even higher dimensional problem can

be built on this, and so on. This is why the approach is re-

ferred to here as bootstrapping. The next section explains

how this theorem can be used in the simultaneous mini-

mization over internal (temporal) alignment via reparam-

eterization, and external alignment by removal of nuisance

group parameters such as differences in individual perspec-

tive, pose, etc.

4. Searches Over G\S

Consider a signal that evolves on the intersection of a

solid block B ⊂ R
n (i.e., interior of a cube) and the integer

lattice Zn, resulting in S = Z
n∩B, as would be the case for

video images when n = 2. If we think of the n-dimensional

block of data as being in�nitely zero padded, then the block

of data can be viewed as4

Xz1,z2,...,zn = h(z, t)

where z = [z1, z2, ..., zn]
T ∈ Z

n. Moreover, we can in-

terpolate pixel values off lattice so that for each value of

t ∈ [0, 1] the function h : R
n × [0, 1] → R≥0 is well

de�ned.

4Here the values in each matrix entry is taken to be a non-negative

scalar, but for color video it could be viewed as vector valued.
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Now suppose that G is a Lie group that re�ects nuisance

parameters, and suppose that data is collected from a dy-

namics scene as

g(t) ·X(t) = h([g(t)]−1 · x, t).

(Here the different actions on X and x are both denoted

as ·, but there is no ambiguity because they are clear from

the context.) It can be that g(t) is dynamic in scenarios

such as a hand-held video camera, or g(t) = g0 could be a

�xed unknown element of G. Regardless, it is desirable to

quotient out the effects of G.

The static case can be handled by using a metric on the

space of images that is left invariant, because then for any

pair of two images in the sequence

d(g0 ·X(t1), g0 ·X(t1)) = d(X(t1), X(t1)).

Moreover, in cases where the data evolves directly onG, the

invariances of G can be used to quotient out the unknown

g0 ∈ G and search over a reduced space. An example of

this when G = SE(3) is given later in the paper.

In the dynamic scenario, an approach to minimizing the

effects of extraneous motion in an image block X(t) is to
introduce a variable g(t) to compensate for unwanted mo-

tion by minimizing a cost functional of the form

C 1

.
=

1

2

∫ 1

0

{

∫

Rn

∣

∣

∣

∣

d

dt
h([g(t)]−1 · x, t)

∣

∣

∣

∣

2

dx

}

dt. (18)

Using the chain rule while observing that g = g(t) gives

d

dt
h(g−1 · x, t) =

[(∇h)(g−1 · x, t)]T
d

dt
(g−1) · x +

∂h

∂t

where ∇h(x, t) = ∂h/∂x. Note that d
dt
(g−1) =

−g−1ġg−1 = −ξ̂g−1 where g−1ġ = ξ̂ =
∑

k ξkEk is the

body-�xed velocity associated with g(t) which evolves in

the Lie algebra of G. ξ̂ is expressed in the basis {Ei} with

ξ = [ξ1, ..., ξN ]T where N is the dimension of G. Using

this and making the change of variables y = g−1 · x gives

C1 =
1

2

∫ 1

0

{

∫

Rn

∣

∣

∣

∣

[(∇h)(y, t)]T (ξ̂ · y)−
∂h

∂t

∣

∣

∣

∣

2

dy

}

∆(g)dt

where the Jacobian determinant ∆(g) = |dx/dy| will be
equal to unity for groups such as G = SE(n) or G =
SL(n,R) acting on R

n in the usual way, but not in gen-

eral. For example, for A ∈ GL(n,R) acting as y = Ax,
∆(A) = |det(A)| ̸= 1.

The structure of the above calculations results in a cost

function of the form

C1 =
1

2

∫ 1

0

{

ξTM(g, t)ξ − 2ξTb(g, t) + c(g, t)
}

dt

.
=

∫ 1

0

f(g, ξ, t)dt (19)

Interestingly, in the case when∆(g) = 1, the quantitiesM ,

b, and c become independent of g. Regardless, there are two
ways to approach this variational problem. One way would

be to introduce coordinates, q, and express g = g(q) and
ξ = J(q)q̇ and to write f(g(q), J(q)q̇, t) = φ(q, q̇, t) and
then to use (13). Alternatively, the lesser-known general-

ization of the Euler-Lagrange equation known as the Euler-

Poincaré equation can directly address variational mini-

mization of (19) in a coordinate-free way by solving

d

dt

(

∂f

∂ξi

)

+

N
∑

j,k=1

∂f

∂ξk
Ck

ij ξj = Ẽif (20)

where {Ei} is any basis for the Lie algebra of G, the direc-

tional derivatives Ẽif are de�ned as

(Ẽif)(g)
.
=

d

dt
f(g ◦ exp(tEi))

∣

∣

∣

∣

t=0

,

and Ck
ij are the structure constants of the Lie algebra such

that [Ei, Ej ] =
∑

k C
k
ijEk. For a matrix Lie group such as

SE(3), the Lie bracket, [·, ·], is simply the matrix commu-

tator.

For a detailed derivation of (20) and special cases in

which global optimality of solutions to the Euler-Poincaré

equation can be guaranteed, see [8].

Substituting (19) into (20) in the case when ∆(g) = 1
gives

d

dt

(

N
∑

l=1

Mil(t)ξl − bi(t)

)

+

N
∑

j,k=1

(

N
∑

l=1

Mkl(t)ξl − bk(t)

)

Ck
ij ξj = 0. (21)

If we seek the solution ξ∗(t) that minimizes this with the

boundary conditions left free, the result is simply

ξ∗(t) = [M(t)]−1b(t). (22)

But if boundary conditions other than ξ(0) =
[M(0)]−1b(0) and ξ(1) = [M(1)]−1b(1) are required,

then (21) would need to be solved numerically.
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5. Reducing Searches to G\S/T

Three problems have been considered previously:

(1) globally optimal temporal reparameterization; (2)

bootstrapping global optimality to higher dimensional

spaces; and (3) variational minimization over Lie groups to

ameliorate the effects of nuisance parameters. This section

ties these topics together by addressing simultaneous

minimization over G× T .

THEOREM 3: If ∆(g) = 1, then the globally mini-

mal solution to the variational problem with cost function

C2

.
=

1

2

∫ 1

0

{

∫

Rn

∣

∣

∣

∣

d

dt
h(g−1 · x, τ)

∣

∣

∣

∣

2

dx

}

dt

in the variables (g(t), τ(t)) ∈ G × T with τ(0) = 0 and

τ(1) = 1 and free boundary conditions on g(t) and its

derivatives, is equivalent to �rst globally minimizing the

variational problem in (19) over G, followed by solving the

temporal reparameterization problem over T in (8).

Proof. Following the same steps as those which led to (19),

when ∆(g) = 1, C2 can be rewritten as

C2 =
1

2

∫ 1

0

{

∫

Rn

∣

∣

∣

∣

[(∇h)(y, τ)]T (ξ̂ · y)−
∂h

∂τ
τ̇

∣

∣

∣

∣

2

dy

}

dt.

The result is of the form

C2 =
1

2

∫ 1

0

{

ξTM(τ)ξ − 2ξTb(τ)τ̇ + c(τ)τ̇2
}

dt

.
=

∫ 1

0

f(ξ, τ, τ̇) dt , (23)

where the components of b(τ) are

bi(τ) =

∫

Rn

[(∇h)(y, τ)]T (Ei · y)
∂h

∂τ
(y, τ)dy .

The resulting variational equations (combination of E-P

and E-L) are

d

dt

(

N
∑

l=1

Mil(τ)ξl − bi(τ)τ̇

)

+

N
∑

j,k=1

(

N
∑

l=1

Mkl(τ)ξl − bk(τ)τ̇

)

Ck
ij ξj = 0 (24)

and

d

dt
{c(τ)τ̇ − ξTb(τ)} =

1

2
ξT

dM

dτ
ξ − ξT

db

dτ
τ̇ +

1

2

dc

dτ
τ̇2.

(25)

Denote the solution to the variational problem in (19) as

ξ∗1(t), which for given g(0) de�nes g∗1(t). Explicitly, ξ
∗
1(t)

is given in (22) when the boundary conditions on ξ(t) are
free and ∆(g) = 1. Let g(t) = g∗1(τ(t)) and use the chain

rule. This results in ξ(t) = ξ∗1(τ(t)) τ̇(t), which after sub-

stituting in (23) changes the functional to

f(ξ∗1 , τ, τ̇) = g2(τ)τ̇
2 (26)

where

g2(τ) =
1

2
(ξ∗1)

TM(τ)ξ∗1 − (ξ∗1)
Tb(τ) +

1

2
c(τ)

=
1

2
{c(τ)− bT (τ)[M(τ)]−1b(τ)}.

The notation g2(τ) denotes that the computation of this g(τ)
follows the computation of ξ∗1(t).

Variationally minimizing the functional with (26) over

over τ(t), which is of the form in Theorem 1, then gives

τ∗2 (t). It is easy to see that ξ = ξ∗1(τ)τ̇ solves (24) for

the same reason that ξ∗1(t) solves (19), independent of the
behavior of τ(t). Moreover, substituting

(g(t), τ(t)) = (g∗1(τ
∗
2 (t)), τ

∗
2 (t)),

and hence

ξ(t) = ξ∗1(τ
∗
2 (t)) τ̇

∗
2 (t), (27)

into (25) reduces to exactly the same thing as (9) with

x(t) = τ∗2 (t) and g(x) = g2(τ) since

c(τ)τ̇ − (ξ∗1)
Tb(τ) = 2 g2(τ)

and

1

2
(ξ∗1)

T dM

dτ
ξ∗1 − (ξ∗1)

T db

dτ
+

1

2

dc

dτ
=

dg2
dτ

.

Therefore solving (24) after �rst computing ξ∗1(τ)τ̇ in

for ξ(t) reduces (24) to the variational problem of minimiz-

ing the functional with integrand (26), the form of which is

known from Theorem 1 to produce a global minimum.

Note that the integrand in (23) can be rewritten as

ξT
(

M(τ)−
b(τ)bT (τ)

c(τ)

)

ξ + c(τ)

(

τ̇ −
ξTb(τ)

c(τ)

)2

,

which becomes the bootstrapped cost in Theorem 2 in the

trivial case whenM , b, and c are all independent of τ .

6. An Action Recognition Example

Consider a random person who is asked to come into

a room and stand at an arbitrary position and orientation

and is asked to remain stationary other than moving his/her

arm. Assume that the room is retro�tted with video and/or

RGBD cameras so that this imaging system unambiguously

recovers a trajectory of the person's shoulder, elbow, and
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hand, so that a trajectory: X1(t) = (S(t), E(t), H(t)) ∈
SE(3) × SE(3) × SE(3) is observed. The goal is to de-

termine whether or not this trajectory might correspond to a

known behavior. Suppose that in a database, trajectories for

the acts of waving, throwing, scratching one's head, giving

a thumbs up, raising a hand to ask a question, and rubbing

ones' eyes are stored. Suppose that the trajectories for each

of these behaviors has already been observed from several

recordings of previous people also at random positions in

the room, and and has already been stored with temporal

variations quotiented out, as well as normalizing for scaling

effects due to the different sizes of the people. Let X2(t)
be any of these prior annotated behaviors which have been

stored using an optimally reparameterized timescale.

The methodology presented earlier in this paper then

provides a way to rapidly compare X1(t) with each can-

didate X2(t) by allowing the freedom to temporally repa-

rameterize X1(t) as X1(τ(t)). The problem of quotienting

out the effects of nuisance groups in this scenario is partic-

ularly amenable to ef�cient solution because S = [SE(3)]3

is a Lie group, which is acted on by g(t) ∈ G = SE(3) as

g(t)·(S(t), E(t), H(t)) = (g(t)S(t), g(t)E(t), g(t)H(t)).

Since both the current person as well as those who con-

tributed to the database stand in the room at random po-

sitions and orientations, one might think that the effect of

this unknown pose (which corresponds to g in the above

equation and in (5)) would need to be accounted for. It

might seem like this would require a lot of effort to sam-

ple a lot of values to do the minimization, but there are

better ways. For example, new variables (S(t)−1E(t),
S(t)−1H(t), E(t)−1H(t)) could be recorded that automat-

ically quotient out the effect of G = SE(3) in (5)). Sim-

ilarly, using the trajectory as an object rather than each in-

stance in the trajectory gives

X1(t)
−1X1(t+∆t) =

(S(t)−1S(t+∆t), E(t)−1E(t+∆t), H(t)−1H(t+∆t)).

which is invariant to X , and which can be optimally repa-

rameterized using the methodology resulting from Theorem

1 to compare directly with previously observed behaviors.

Another way to minimize the effects of the nuisance

group is by using the fact that SE(3) has two screw in-

variants. One corresponds to the angle θ in the expression

R = exp(θn̂) where n̂ is a 3 × 3 skew-symmetric matrix

with the property that n̂x = n×x where n is the axis of ro-

tation and x ∈ R
3 is arbitrary. The second, d = nT t where

t is the translation vector in (3), corresponds to the distance

travelled along the screw axis. The meaning of these invari-

ants is that they are constant with respect to conjugation in

the sense that for any A,B ∈ SE(3)

θ(ABA−1) = θ(B) and d(ABA−1) = d(B).

Consequently, even though (E(t)S(t)−1, H(t)S(t)−1,
H(t)E(t)−1) andX1(t+∆t)−1X1(t) (with inverses on the
right), the screw parameters provide two scalar signals that

can be be used to match with scalar signals in a database.

And so reparameterization can take place either at the level

of a trajectory in the group [SE(3)]3 with g(t) ∈ SE(3)
quotiented out, or the reparameterization can take place at

the level of signals in the space of invariants.

In contrast, if only one rigid-body can be tracked instead

of multiple features such as shoulder, elbow and hand, then

there is no way to remove the effects of g(t) by considering
relative motions, and then the heavier computation involved

in Theorem 3 becomes the appropriate tool.

7. Conclusions

This paper presented a framework for globally optimal

reparameterization of the temporal dependence of signals

(or trajectories). This serves as a way to optimally align

two signals with O(N) computations when each signal

consisting of N values (e.g, amplitudes, images, feature

vectors, etc.). This linear performance is achieved because

the reparameterization depends on the local rate of change

of the signal in each individual sequence and an integral

over each individual sequence, followed by pointwise

matching at the end of the process when both signals are

renormalized to a universal time scale. The methodology

builds on a class of problems in variational calculus with

globally minimal solutions, which appears not to be known

in the wider literature. The resulting method is in contrast to

how matching is currently done, which often uses dynamic

time warping. The internal (temporal) reparameterization

approach introduced here automatically provides a way

to directly compare scalar signals. Moreover, it is shown

that for the case of multidimensional signals, the effects of

nuisance groups (such as those due to changes in pose, per-

spective, etc.) which act �externally� (i.e., at each instant of

time) can be eliminated either a priori by using invariants,

or simultaneously with the the temporal reparameterization.
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