
 

 

Abstract 

 

We propose a novel domain adaptation method for deep 

learning that combines adaptive batch normalization to 

produce a common feature-space between domains and 

label transfer with subspace alignment on deep features. 

The first step of our method automatically conditions the 

features from the source/target domain to have similar 

statistical distributions by normalizing the activations in 

each layer of our network using adaptive batch 

normalization. We then examine the clustering properties 

of the normalized features on a manifold to determine if the 

target features are well suited for the second of our 

algorithm, label-transfer. The second step of our method 

performs subspace alignment and k-means clustering on 

the feature manifold to transfer labels from the closest 

source cluster to each target cluster. The proposed 

manifold guided label transfer methods produce state of the 

art results for deep adaptation on several standard digit 

recognition datasets.  

 

1. Introduction 

The aim of Domain Adaptation (DA) is to adapt a pre-

trained classifier from a training dataset (source) to a test 

dataset (target) without performance degradation due to 

domain shifts between the datasets. The problem known as 

dataset bias [1] indicates that a model trained on a particular 

dataset is inherently biased to the properties of that dataset. 

This causes poor generalization across domains due to 

variations in pose, illumination, sensor properties, 

background and changes in the environment. Figure 1 

shows sample images from different domains that represent 

the same object categories, but contain visually dissimilar 

images due to domain shifts. In these example datasets the 

domain shifts are a result differences in both data 

acquisition, handwritten vs street numbers, and imaging 

modality, grayscale vs. RGB imagery.  

In this paper, we address the problem of visual domain 

adaptation for deep networks utilizing transfer learning, 

where the training and testing datasets have the same object 

categories but the domain-shift is unknown [2]. In this work 

 

 
Figure 1. Sample images from different domains showing 

variations in the same category across domains. 

 

we consider the case of unsupervised domain adaptation, 

where no labeled samples from the target domain are 

available. Several approaches have been proposed to tackle 

visual domain adaptation, as outlined in recent surveys and 

their references [3],[4]. 

The approaches to domain adaptation can be grouped 

into two primary categories, supervised and unsupervised. 

Supervised methods adapt to a new domain by using a small 

set of labeled data in the target domain. During 

unsupervised domain transfer, the classifier must adapt to a 

new dataset without any knowledge of class labels. Thus, it 

is often difficult to confirm the classifier is constructively 

adapting to the target domain.  This is why we consider a 

classification metric to make the target dataset better suited 

for adaptation using label transfer.  

One of the main challenges with domain adaptation is 

how to select features that are suitable for both source and 

target domains. While traditional features, such as SIFT [5] 

and HOG [6], have been used in multiple domain adaptation 

works, recent focus has been on adapting the features 

extracted using deep learning. The approach of pre-training 

and fine-tuning [7] a deep neural network has been widely 

adopted as a solution to the problem of supervised domain 

adaptation. The problem often faced with fine-tuning is 

overfitting the small adaptation set. Thus, most work in the 

field of supervised domain adaptation has focused on 

developing an adaptation methodology that allows the 

network to adapt to the new data without overfitting. 

Various strategies have been considered to minimize 

overfitting including: training only a subset of the network 

layers, reducing the learning rate, and introducing dropout 

to increase regularization. The conclusion is that there is no 

single optimal approach for fine-tuning a network. Each 

adaptation problem is unique and thus the optimal approach 
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depends on the specific conditions. 

Unsupervised domain transfer presents a unique 

challenge, as there are no labels that can be used to retrain 

the classifier. Many unsupervised adaptation techniques 

focus on adapting the feature extractor instead of the 

classifier itself. The goal of adapting the feature extractor is 

to make the features extracted from the target domain as 

similar as possible to those from the source [8]-[12]. The 

justification for this approach is that if the feature set of the 

target domain can be made indistinguishable from that of 

the source, the same classifier can be used for both.  

The main contributions of this paper are the following. 

(a) We utilize adaptive batch normalization inspired by [13] 

to generate similar feature distributions across domains and 

make the alignment process more effective. (b) We 

leverage the similarities in the source and target features 

using a manifold inspired approach, based on subspace 

alignment, to guide the label transfer process during 

unsupervised deep domain adaptation. We propose a label 

transfer method to adapt the classifier for target domains 

that exhibit proper feature clustering behavior on their 

subspace-aligned PCA manifold. (c) We demonstrate that 

our approach achieves state-of-the-art results on standard 

digits datasets.  

2. Related Work 

2.1. Domain Adaptation 

There are many supervised domain adaptation 

approaches that are well studied include transformative 

learning [14] and metric learning [2]. However, supervised 

domain adaptation has received less interest in recent years 

as applications are increasingly requiring domain 

adaptation without any labeled data. Thus, the focus of 

many recent works in the field of domain adaptation has 

been on unsupervised domain adaptation strategies. These 

methods often consider dimensionality reduction, such as 

principal component analysis (PCA) for domain 

representations [15]-[19]. For example, domain adaptation 

methods based on dimensionality reduction are proposed in 

[18],[19]. These approaches try to discover a latent space 

that minimizes the mismatch in the distributions between 

the two domains.  

Methods based on manifold alignment look for a 

projection that preserves the local neighborhood 

information [20], [21]. Adaptation in [22] is performed by 

aligning the basis vectors of the source domain to the target 

domain by learning a transformation that minimizes the 

Bregman divergence. Domain adaptation methods based on 

metric learning and canonical correlation analysis (CCA) 

are outlined in [2], [23], [24].  

Grassmannian based domain adaptation explores 

intermediate feature representations on the manifold [15]-

[17]. In [15], intermediate subspaces are sampled from the 

manifold geodesic curve and are combined to obtain a 

domain invariant space. The methods proposed in [16] and 

[17] integrate the subspaces on the geodesic between the 

source and target domain to learn a transformation matrix.  

There are many approaches proposed for shallow 

unsupervised domain adaptation using a variety of methods 

such as: manifold learning [15], [25], aligning principal 

components [22], and leaning explicit mappings between 

the domains [26]. However, each of these methods are 

computationally complex and do not adapt well to the high-

dimensional features common with most deep learning 

networks. Additionally, because these methods are based 

on shallow features, they do not account for the hieratical 

manner in which deep features are formed, and instead 

focus entirely on building a mapping between the source 

and target feature domains leaving the feature extraction 

process unaltered.  

In order to leverage the advances in deep learning feature 

representations for domain adaptation many methods have 

focused on adapting the feature extraction network. In one 

of the first methods designed for domain adaptation of deep 

features [8], the authors propose using second order 

statistics to “whiten” and “recolor” the target features to 

match the source features. This was done by minimizing 

what they called the CORAL loss. This method then 

extended in [9] to retrain the entire target feature extraction 

network based on minimizing the CORAL loss. Similarly, 

other works have used different loss functions to adapt the 

feature extraction network in Deep Domain Confusion [10], 

Deep Adaptation Networks [11], and Deep Transfer 

Networks [12].  

Adversarial Learning is a growing area of deep learning 

that has recently received a lot of attention [27]. Adversarial 

methods focus on iteratively training two networks with 

opposing objectives to learn optimal feature 

representations. These networks were originally developed 

to randomly generate synthetic imagery that was 

“believable” or looking similar to actual imagery. Recently 

these networks have been used for domain adaptation, first 

in [28], [29] and later in [30]. There are major differences 

between these two methods, the primary difference being 

[28], [29] use a single symmetric feature extraction 

network, whereas [30] uses an asymmetric feature 

extraction configuration with two separate feature 

extraction networks for source and target data.  
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Figure 2. Overview of network training and unsupervised domain adaptation to the target domain. Adaptive batch 

normalization is used for training and adaptation in both source and target domains. Subspace alignment is performed for source 

and target features on the PCA manifold and the features are clustered to determine if label transfer is appropriate based on a 

clustering criterion. Label transfer is performed by assigning labels from the closest source cluster to each target cluster and using 

them to retrain the network.  

2.2. Domain Adaptation with Self-Learning 

Another group of domain adaptation techniques assume 

the source and target domains are close enough that the 

classifier itself could be used to retrain on the target 

domain. These domain adaptation techniques are known as 

self-learning [31]. These methods use “pseudo-labels” or 

“weak-labels” [32], labels produced by a pre-trained 

classifier, to bootstrap the network and adapt based on its 

the classifier’s predictions. Asymmetric Tri-training (ATT) 

[33], the current state of the art method for domain 

adaptation, relies on a similar method for generating labels 

for the data except they train three independent networks to 

generate the labels in order to increase the accuracy of the 

“pseudo-labels.” Both techniques use inductive-learning to 

adapt to the source domain. Unlike adversarial training, 

these methods adapt the feature representation and 

classifier jointly to minimize classification error. 

Adversarial methods focus on maximizing domain 

confusion. 

A different subcategory of self-learning techniques uses 

transductive-labeling to adapt the network to the new 

domain. Transductive-labeling transfers the label from a 

sample in the source domain to a sample in the target 

domain to retrain the network. A common technique for 

transductive-labeling is using the dominant label of the 

closest K samples from the source domain, in feature space, 

to each sample from the target domain [25]. These 

techniques work well when the source and target domains 

are relatively similar, but fail when there is a stark 

difference between the source and target domain. 

3. Methodology 

We propose a new approach for unsupervised deep 

domain adaptation outlined in Figure 2. Our method first 

uses Adaptive Batch Normalization (ABN) [13] to produce 

features that are similar between source and target domains. 

The distributions of these deep features are compared using 

Silhouette score [34], a clustering metric commonly used in 

data-mining, to determine if the target features form 

clusters that are well suited for label transfer. If the target 

features are well suited for further feature adaption, we use 

a label transfer method to generate training labels for the 

target samples.  This is the first method that combines the 

automatic feature-adaptation of ABN with the subspace 

aligned label transfer for domain adaptation. We overview 

each step of our method in the rest of this section.  

3.1. Adaptive Batch Normalization 

The first and often most important step in domain 

adaptation is to adapt the feature extraction method for the 

source and target domains in a way that the two sets of 

features are in the same subspace. The fact that two sets of 

features must share the same subspace has proven to be so 

important that most recent works focus entirely on feature 

adaptation without retraining the classifier [28], [30].  

In this work we combine  adaptive batch normalization 

[13] and subspace alignment [22] to perform an initial 

alignment of the features from the two domains. Then based 

on the clustering of the target domain features we further 

adapt the feature extraction network and classifier.  

We selected ABN as the first step in our feature 

alignment process for its ease of use and impressive results 

without any additional training. The method of batch 

normalization [35] was originally developed to increase the 

robustness of training deep neural networks by normalizing 

inputs to each neuron, �", in the network across all the 

samples in the current mini-batch. The whitened input,	�", 

of each input to neurons is calculated by the equations: 
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where T denotes the number of samples in the mini-batch, 

and i is the dimension index of the input (if the input is 

multi-dimensional the index will be a vector).

 Normalizing the activations across each mini-batch 

ensures the gradients for each update set are better suited 

for training, especially in early epochs with randomly 

initialized weights. Batch normalization has been shown to 

produce more stable networks that can be trained faster with 

higher learning rates [35].  

In their original implementation of batch normalization 

the authors suggested that the population statistics and 

whitening parameters should be learned using a moving 

average during the training phase and stay frozen at test 

time. Thus, the activations of all the test samples would be 

whitened based on the statistics of the training set, not the 

test set. However, it was suggested by [13] that by allowing 

the batch normalization layer to continue to adapt to the 

changing population statistics at test time one can achieve a 

domain adaptation without any additional training. This 

method of feature adaptation is known as adaptive batch 

normalization.  

By normalizing the activations for each of the features in 

each mini-batch, the features are inherently adapting such 

that the features for each sample from the source and target 

domains have the same normalized distribution. In our 

experiments, we found adaptive batch normalization to be 

more effective than traditional feature transformation 

methods for aligning the source and domain feature spaces.  

Adaptive batch normalization outperforms many of the 

simpler feature transformation methods by normalizing, 

and indirectly aligning, the features for the two domains for 

each layer, as opposed to methods such as [22] which only 

learn a transformation for the final feature representation. 

Additionally, we found the feature alignment achieved with 

adaptive batch normalization alone was on par with the 

results from adversarial feature adaptation techniques.   

3.2. Inductive-Clustering 

Most approaches to unsupervised domain adaptation 

focus only on aligning the distributions of the high-

dimensional feature representations of the source and target 

examples. It is assumed that if the feature distributions are 

ideally aligned, the classifier should perform equally well 

on the target and source examples. Unfortunately, this is not 

always the case. There are, potentially, many 

transformation that can align the features of the target and 

source domains. The work in [36] has shown that the 

optimal feature transformation for source and target 

features belongs to the set of transformations that perfectly 

align the two distributions. However, there is no guarantee 

that any transformation that aligns the two distributions is 

the optimal transformation. In our experiments, we have 

found that the feature alignment for visually distinct 

domains is just as likely to be destructive as it is to be 

beneficial to domain adaptation. The problem is that feature 

alignment is not enough for optimal domain adaptation 

when the domains are significantly separated. By adapting 

only the features and leaving the classifier unchanged, there 

is a significant amount of the adaptation potential in the 

system that is left untapped. The challenge, however, is that 

there are no labels for the target data, thus traditional 

methods for retraining deep networks, such as [7], cannot 

be used.  

In order to get a better understanding of the clustering 

behavior of the source and target features, we plotted the 

feature representations using t-SNE plots [37].  The t-SNE 

algorithm is a dimensionality reduction method that is 

designed to faithfully represent the distribution of high-

dimensional features in a much lower dimensional space. 

Examples of t-SNE plots for two datasets are shown in 

Figure 3. Guided by this analysis of the source and target 

features we discovered that the target features often form 

clusters that are relatively close to the source clusters. 

We therefore propose to use the manifold learning 

technique known as label transfer to generate labels for the 

unlabeled target samples based on the pairing of the clusters 

from the source and target domains. However, this label 

transfer procedure only works when the target and source 

clusters are relatively close. Otherwise, this procedure can 

potentially reduce the accuracy of the network because of 

training on poor labels.  

To ensure that the target features are well suited for our 

label transfer training, we first look at the distribution of the 

target feature clusters in PCA space. The metric we use to 

determine the suitability of the target features was 

Silhouette score [34], or the mean ratio of the inter-class 

variance to intra-class variance: 
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where � is the number of classes. �3 is the target feature 

vector in PCA space, �"is the centroid for the given cluster 

i, and �" is the subset of features that belong the cluster i. 

We experimentally found that using the cutoff criteria of 

�7 < 0.625 was ideal for selecting well clustered target 

domains to perform the second step of our domain 

adaptation procedure updating the classifier using the 

transferred cluster labels.  
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Figure 3: Top: t-SNE Plot of features extracted using a 

network trained on the USPS dataset. Bottom: t-SNE Plot 

features extracted using a network trained on the USPS 

dataset and adapted to the MNIST dataset. USPS (Blue) 

MNIST (Red). 

 

The target features that satisfy our Silhouette score 

criteria generally form clusters that are close to the source 

clusters after subspace alignment, but they do not match 

perfectly. This suggests that further improvement of the 

classification accuracy can be made by retraining the 

classifier on the target features.  

3.3. Label Transfer via Manifold Clustering 

Previous methods for retraining the classifier have turned 

to two sources to generate the target sample labels: weak-

labels (inductive-learning) [33], or label transfer 

(transductive-learning) [25]. In our work, we selected a 

label transfer approach based on the clustering behavior of 

the features from the target domain. During this step we 

found additional gains in accuracy by first aligning the PCA 

subspaces  of the source and target domains using the 

technique proposed in [22]. Although this step was not 

required, we found it slightly increased the final network’s 

accuracy. We also found this step reduced computation 

time for the clustering procedure by reducing the 

dimensionality from 1024 to 15 principal components.  

The subspace alignment process consists of performing 

PCA analysis on the source and target feature sets and 

combining the two transformations to recolor the features 

from the source domain to match the target domain. 

Because our method iteratively updates the target features 

during its retraining procedure, a subset of the target 

features must be resampled periodically to update the PCA 

transformation for the target features based on the changes 

to the classification network.  

The iterative update of the target features in our method 

also adds a large overhead to the subspace alignment 

procedure as proposed in [22]. The authors suggest that the 

optimal alignment for domain adaptation is produced by 

recoloring the source features to match the target features. 

However, because our target features are constantly 

changing, recoloring the source features to match the target 

features introduces a great deal of computational overhead 

without a significant improvement to the classification 

accuracy.  

Thus, in this work we invert the subspace alignment 

procedure to recolor the target features, to match the source 

features, as follows: 

 

 �E = �E�E (6) 

 �' = �'�'�'
H�E (7) 

where �E and �' are the resulting features for the source and 

target domains, respectively, the in the aligned subspace, 

and �E and �' are the PCA transformations for the source 

and target features, respectively.  

This change significantly reduces the processing time for 

our domain adaptation process, because it only requires K-

means clustering to be run once on the source features 

(K=10). The method used in the original subspace 

alignment procedure constantly updates the K-means 

clustering of the source features and target features and is 

much slower.  

 After the subspace alignment transformation is 

recalculated, K-Means clustering (K=10) is rerun only on 

the updated aligned target features. The centroids of these 

target clusters are then greedily matched to the closest 

cluster centroid of the source clusters, maintaining a strict 

one-to-one correspondence. The dominant label in each 

source cluster is assigned to all the samples in the 

corresponding target cluster. These transferred labels are 

subsequently used for training the network. This process is 

iterated until convergence 

The plots in Figure 3 depict the impact of label transfer 

learning on the feature representation for each domain. 

Features were extracted from test samples from the USPS 

[38] and MNIST [39] datasets using a network trained on 

the USPS dataset. Self-learning on the clustering of the data 

results in tighter clusters for the MNIST data leading to a 

25.7% reduction in classification error.  
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4. Experiments 

In order to examine the performance of the proposed 

unsupervised domain adaptation method, we tested it on 

standard domain adaptation problems of digit classification 

across multiple datasets [38]–[40]. The MNIST [39] dataset 

is one of the first digit recognition datasets used in deep 

learning. It contains 60,000 training sample and 10,000 test 

samples of 18x18 black and white examples of handwritten 

digits 0-9. The USPS [38] dataset is quite similar to the 

MNIST dataset, however, the number of samples is much 

smaller and the images are in gray scale.  

The works in [28], [29], presented a more challenging 

digits dataset that was generated by combining the MNIST 

images with randomly cropped patches from the BSDS500 

dataset [41]. Unfortunately, the exact dataset used in [28], 

[29] is not released publicly. However, we followed an 

identical procedure to that proposed in their work to 

generate a similar dataset that we refer to as MNIST_M. 

The most recent digits dataset is the Street View House 

Numbers (SVHN) [40] dataset in which a 600,000 labeled 

examples are extracted from RGB images, many include 

additional digits in the bounding box for each individual 

digit. The SVHN dataset is the most diverse and 

challenging of the digits datasets. It is common for domain 

adaptation methods to work well when adapting from 

SVHN to a different domain, however, it is not common for 

methods to work transferring to the SVHN domain because 

of its complexity. The SVHN dataset is a practically hard 

dataset because the image patches often include multiple 

digits, as illustrated in Figure 1. 

For our experiments we implemented a simplified 

version of the network proposed in [39], shown in Figure 4, 

with two convolutional layers using 32 and 64 5x5 filters 

each, followed by a fully connected layer with 1024 hidden 

nodes whose output was connected to a softmax function. 

All datasets were converted to grayscale and scaled to 

28x28 pixels, so that the same network could be used across 

all the datasets. Batch normalization was implemented in 

the network by normalizing the features prior to the 

activation function being applied. For this network we used 

a ReLU nonlinearity. 

One key difference between our network and the original 

architecture proposed by [39], besides the inclusion of 

Batch Normalization, is that all max pooling layers were 

replaced with skip convolutions to reduce the number of 

computations without much loss in accuracy.  

The networks were trained on the source datasets for 20 

epochs using the Stochastic Gradient Decent with a 

momentum of 0.9, a learning rate of 0.01, 50% dropout rate 

and a mini-batch size of 64. The results in Table 1 

demonstrate that this slightly altered network performed 

well for the many of the domain adaptation tasks without 

any retraining.  

The network was adapted using label transfer for 5 

epochs using the same learning rates and optimizer as was 

done for the original training of the network. In order to 

adapt the subspace alignment to changes in target feature 

representation, the target PCA transformation was updated 

using a subset of target features after every 20
th

 mini-batch 

update. The new set of target features were generated from 

a random subset of 100 target mini-batches. These updated 

features were used to calculate an updated PCA 

transformation for the target features and the corresponding 

subspace alignment transformation.  

 

 
Figure 4: Digit classification network. 

 
Table 1. Domain Adaptation for Digits Datasets 

 Method M->U S->M M_M->M U->M M->S 

Source only  0.856 0.822 0.910 0.624 0.071 

Source w/ABN 0.823 0.830 0.923 0.721 0.253 

Source w/ABN and 

Label Transfer 
0.915 0.977 0.923 0.721 0.253 

DANN [10] 0.771 0.739 81.5 0.730 0.357 

ADDA [11] 0.894 0.760 N.A. 0.901 N.A. 

ATT [14] N.A. 0.85 N.A. N.A. 0.528 

UTDA [23] N.A. 0.774 0.835 N.A. 0.323 

 

After the updated target features were realigned to the 

original features from the source domain, K-Means 

clustering was rerun on the subspace aligned target features 

and the clusters were paired to the source domain clusters. 

The K-means clustering trained on the random target 

samples was then used to determine the target cluster for 

each sample in the training mini-batches, which was used 

to transfer the labels from the source clusters to the target 

samples.  

 We compare the results produced by our method with 

the results reported by the state-of-the-art methods for digit 

domain adaptation on the digits datasets in Table 1. The 

results with the highest accuracy are in Red and the second 
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highest shown in Bold. These results illustrate that the 

proposed method improves significantly on the state of the 

art results. 

The first observation from the results of Table 1 is the 

increase in accuracy for most domain adaptation tasks when 

adaptive batch normalization is used. However, some 

adaptation tasks do not benefit from ABN. This is likely due 

to the lower visual disparity between the two domains, thus 

the adaptation of the features to fit the target domain is not 

as useful. The impact of ABN on the more visually distinct 

domains, such as the MNIST and SVHN datasets, is much 

more apparent. ABN more than triples the accuracy of the 

classifier on the MNIST to SVHN adaptation task, without 

any retraining of the network. These results are consistent 

with the increase in performance achieved by ABN in [13], 

even though their experiments were on a different domain 

transfer task. 

Another key observation is that self-learning appears to 

only work with ABN. We attempted to train the network 

with self-learning alone, freezing the batch normalization 

statistics, and we found that the network performance 

slowly deteriorated over the course of training.  

It is important to point out that our method works best in 

situations where the original network with ABN is 

relatively accurate in the target domain. We found that the 

primary factor in the ability of our method to adapt to new 

domains was the visual diversity in the source dataset. As 

is often the case when training deep networks, when the 

training set has a limited amount of visual diversity the 

network learns a set of sub-optimal features. Deep networks 

require a lot of visual variation in the training set in order 

learn features that generalize well to other domains. Our 

experiments demonstrated just how large of a role dataset 

size and variation play in the network’s ability to generalize 

to new domains.  

In our experiments we obtained the worst results when 

the source domain was USPS, the smallest dataset with the 

least variation. In the case of the USPS to MNIST 

adaptation task, the target features did not even pass the 

clustering criteria. Interestingly our method performed 

quite well on the inverse adaptation task, MNIST to USPS. 

This disparity between directions of adaptation is likely 

because the MNIST dataset is larger and includes more 

variation in the data.  

Although our method performed well on the MNSIT to 

USPS domain adaptation task, the network trained on the 

MNIST dataset did not adapt well to either the MNIST_M 

or the SVHN dataset. This is most likely because the 

MNIST_M and SVHN datasets are visually distinct from 

the MNIST dataset, and thus it is harder for a network 

trained on simpler domains to adapt to more difficult 

domains.  

It is important to point out that for the inverse adaptation 

task, SVHN to MNIST, our method achieves far superior 

results. This demonstrates that visual disparity between 

domains is not important so long as the source domain is 

more visually diverse than the target domain. Our method 

performs optimally when the source domain includes more 

visual variation than the target domain, such as the SVHN 

and MNIST_M dataset. This is because the features trained 

from more diverse datasets tend to be more generalizable to 

new domains.  

These results suggest that the proposed method will work 

well for any domain adaptation task where two 

requirements are satisfied: (a) the source contains sufficient 

visual variation for the network to learn high quality 

features. (b) the target domain is close enough to the source 

domain so that ABN combined with subspace alignment 

can form ideal clusters for our label transfer procedure.  

5. Conclusion 

In this paper, we presented a novel two step procedure for 

adapting a deep neural network in an unsupervised manner 

to a new, unlabeled, domain. Our method first uses adaptive 

batch normalization to make sure that the source and target 

features exist in similar subspaces. Then transductive-label 

transfer is used to better align the clusters in the source and 

target domains. The results produced by the proposed 

approach outperforms other state of the art methods for 

many of the domain adaptation datasets.  
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