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Abstract

We propose a novel domain adaptation method for deep
learning that combines adaptive batch normalization to
produce a common feature-space between domains and
label transfer with subspace alignment on deep features.
The first step of our method automatically conditions the
features from the source/target domain to have similar
statistical distributions by normalizing the activations in
each layer of our network using adaptive batch
normalization. We then examine the clustering properties
of the normalized features on a manifold to determine if the
target features are well suited for the second of our
algorithm, label-transfer. The second step of our method
performs subspace alignment and k-means clustering on
the feature manifold to transfer labels from the closest
source cluster to each target cluster. The proposed
manifold guided label transfer methods produce state of the
art results for deep adaptation on several standard digit
recognition datasets.

1. Introduction

The aim of Domain Adaptation (DA) is to adapt a pre-
trained classifier from a training dataset (source) to a test
dataset (target) without performance degradation due to
domain shifts between the datasets. The problem known as
dataset bias [1] indicates that a model trained on a particular
dataset is inherently biased to the properties of that dataset.
This causes poor generalization across domains due to
variations in pose, illumination, sensor properties,
background and changes in the environment. Figure 1
shows sample images from different domains that represent
the same object categories, but contain visually dissimilar
images due to domain shifts. In these example datasets the
domain shifts are a result differences in both data
acquisition, handwritten vs street numbers, and imaging
modality, grayscale vs. RGB imagery.

In this paper, we address the problem of visual domain
adaptation for deep networks utilizing transfer learning,
where the training and testing datasets have the same object
categories but the domain-shift is unknown [2]. In this work
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Figure 1. Sample images from different domains showing
variations in the same category across domains.

we consider the case of unsupervised domain adaptation,
where no labeled samples from the target domain are
available. Several approaches have been proposed to tackle
visual domain adaptation, as outlined in recent surveys and
their references [3],[4].

The approaches to domain adaptation can be grouped
into two primary categories, supervised and unsupervised.
Supervised methods adapt to a new domain by using a small
set of labeled data in the target domain. During
unsupervised domain transfer, the classifier must adapt to a
new dataset without any knowledge of class labels. Thus, it
is often difficult to confirm the classifier is constructively
adapting to the target domain. This is why we consider a
classification metric to make the target dataset better suited
for adaptation using label transfer.

One of the main challenges with domain adaptation is
how to select features that are suitable for both source and
target domains. While traditional features, such as SIFT [5]
and HOG [6], have been used in multiple domain adaptation
works, recent focus has been on adapting the features
extracted using deep learning. The approach of pre-training
and fine-tuning [7] a deep neural network has been widely
adopted as a solution to the problem of supervised domain
adaptation. The problem often faced with fine-tuning is
overfitting the small adaptation set. Thus, most work in the
field of supervised domain adaptation has focused on
developing an adaptation methodology that allows the
network to adapt to the new data without overfitting.
Various strategies have been considered to minimize
overfitting including: training only a subset of the network
layers, reducing the learning rate, and introducing dropout
to increase regularization. The conclusion is that there is no
single optimal approach for fine-tuning a network. Each
adaptation problem is unique and thus the optimal approach



depends on the specific conditions.

Unsupervised domain transfer presents a unique
challenge, as there are no labels that can be used to retrain
the classifier. Many unsupervised adaptation techniques
focus on adapting the feature extractor instead of the
classifier itself. The goal of adapting the feature extractor is
to make the features extracted from the target domain as
similar as possible to those from the source [8]-[12]. The
justification for this approach is that if the feature set of the
target domain can be made indistinguishable from that of
the source, the same classifier can be used for both.

The main contributions of this paper are the following.
(a) We utilize adaptive batch normalization inspired by [13]
to generate similar feature distributions across domains and
make the alignment process more effective. (b) We
leverage the similarities in the source and target features
using a manifold inspired approach, based on subspace
alignment, to guide the label transfer process during
unsupervised deep domain adaptation. We propose a label
transfer method to adapt the classifier for target domains
that exhibit proper feature clustering behavior on their
subspace-aligned PCA manifold. (¢) We demonstrate that
our approach achieves state-of-the-art results on standard
digits datasets.

2. Related Work

2.1. Domain Adaptation

There are many supervised domain adaptation
approaches that are well studied include transformative
learning [14] and metric learning [2]. However, supervised
domain adaptation has received less interest in recent years
as applications are increasingly requiring domain
adaptation without any labeled data. Thus, the focus of
many recent works in the field of domain adaptation has
been on unsupervised domain adaptation strategies. These
methods often consider dimensionality reduction, such as
principal component analysis (PCA) for domain
representations [15]-[19]. For example, domain adaptation
methods based on dimensionality reduction are proposed in
[18],[19]. These approaches try to discover a latent space
that minimizes the mismatch in the distributions between
the two domains.

Methods based on manifold alignment look for a
projection that preserves the local neighborhood
information [20], [21]. Adaptation in [22] is performed by
aligning the basis vectors of the source domain to the target
domain by learning a transformation that minimizes the
Bregman divergence. Domain adaptation methods based on
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metric learning and canonical correlation analysis (CCA)
are outlined in [2], [23], [24].

Grassmannian based domain adaptation explores
intermediate feature representations on the manifold [15]-
[17]. In [15], intermediate subspaces are sampled from the
manifold geodesic curve and are combined to obtain a
domain invariant space. The methods proposed in [16] and
[17] integrate the subspaces on the geodesic between the
source and target domain to learn a transformation matrix.

There are many approaches proposed for shallow
unsupervised domain adaptation using a variety of methods
such as: manifold learning [15], [25], aligning principal
components [22], and leaning explicit mappings between
the domains [26]. However, each of these methods are
computationally complex and do not adapt well to the high-
dimensional features common with most deep learning
networks. Additionally, because these methods are based
on shallow features, they do not account for the hieratical
manner in which deep features are formed, and instead
focus entirely on building a mapping between the source
and target feature domains leaving the feature extraction
process unaltered.

In order to leverage the advances in deep learning feature
representations for domain adaptation many methods have
focused on adapting the feature extraction network. In one
of the first methods designed for domain adaptation of deep
features [8], the authors propose using second order
statistics to “whiten” and “recolor” the target features to
match the source features. This was done by minimizing
what they called the CORAL loss. This method then
extended in [9] to retrain the entire target feature extraction
network based on minimizing the CORAL loss. Similarly,
other works have used different loss functions to adapt the
feature extraction network in Deep Domain Confusion [10],
Deep Adaptation Networks [11], and Deep Transfer
Networks [12].

Adversarial Learning is a growing area of deep learning
that has recently received a lot of attention [27]. Adversarial
methods focus on iteratively training two networks with
opposing  objectives to learn optimal feature
representations. These networks were originally developed
to randomly generate synthetic imagery that was
“believable” or looking similar to actual imagery. Recently
these networks have been used for domain adaptation, first
in [28], [29] and later in [30]. There are major differences
between these two methods, the primary difference being
[28], [29] use a single symmetric feature extraction
network, whereas [30] uses an asymmetric feature
extraction configuration with two separate feature
extraction networks for source and target data.
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Figure 2. Overview of network training and unsupervised domain adaptation to the target domain. Adaptive batch
normalization is used for training and adaptation in both source and target domains. Subspace alignment is performed for source
and target features on the PCA manifold and the features are clustered to determine if label transfer is appropriate based on a
clustering criterion. Label transfer is performed by assigning labels from the closest source cluster to each target cluster and using

them to retrain the network.
2.2. Domain Adaptation with Self-Learning

Another group of domain adaptation techniques assume
the source and target domains are close enough that the
classifier itself could be used to retrain on the target
domain. These domain adaptation techniques are known as
self-learning [31]. These methods use “pseudo-labels” or
“weak-labels” [32], labels produced by a pre-trained
classifier, to bootstrap the network and adapt based on its
the classifier’s predictions. Asymmetric Tri-training (ATT)
[33], the current state of the art method for domain
adaptation, relies on a similar method for generating labels
for the data except they train three independent networks to
generate the labels in order to increase the accuracy of the
“pseudo-labels.” Both techniques use inductive-learning to
adapt to the source domain. Unlike adversarial training,
these methods adapt the feature representation and
classifier jointly to minimize -classification error.
Adversarial methods focus on maximizing domain
confusion.

A different subcategory of self-learning techniques uses
transductive-labeling to adapt the network to the new
domain. Transductive-labeling transfers the label from a
sample in the source domain to a sample in the target
domain to retrain the network. A common technique for
transductive-labeling is using the dominant label of the
closest K samples from the source domain, in feature space,
to each sample from the target domain [25]. These
techniques work well when the source and target domains
are relatively similar, but fail when there is a stark
difference between the source and target domain.

3. Methodology

We propose a new approach for unsupervised deep
domain adaptation outlined in Figure 2. Our method first
uses Adaptive Batch Normalization (ABN) [13] to produce
features that are similar between source and target domains.
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The distributions of these deep features are compared using
Silhouette score [34], a clustering metric commonly used in
data-mining, to determine if the target features form
clusters that are well suited for label transfer. If the target
features are well suited for further feature adaption, we use
a label transfer method to generate training labels for the
target samples. This is the first method that combines the
automatic feature-adaptation of ABN with the subspace
aligned label transfer for domain adaptation. We overview
each step of our method in the rest of this section.

3.1. Adaptive Batch Normalization

The first and often most important step in domain
adaptation is to adapt the feature extraction method for the
source and target domains in a way that the two sets of
features are in the same subspace. The fact that two sets of
features must share the same subspace has proven to be so
important that most recent works focus entirely on feature
adaptation without retraining the classifier [28], [30].

In this work we combine adaptive batch normalization
[13] and subspace alignment [22] to perform an initial
alignment of the features from the two domains. Then based
on the clustering of the target domain features we further
adapt the feature extraction network and classifier.

We selected ABN as the first step in our feature
alignment process for its ease of use and impressive results
without any additional training. The method of batch
normalization [35] was originally developed to increase the
robustness of training deep neural networks by normalizing
inputs to each neuron, x;, in the network across all the
samples in the current mini-batch. The whitened input, X;,
of each input to neurons is calculated by the equations:

Xi = T Xi €))
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where T denotes the number of samples in the mini-batch,
and i is the dimension index of the input (if the input is
multi-dimensional the index will be a vector).

Normalizing the activations across each mini-batch
ensures the gradients for each update set are better suited
for training, especially in early epochs with randomly
initialized weights. Batch normalization has been shown to
produce more stable networks that can be trained faster with
higher learning rates [35].

In their original implementation of batch normalization
the authors suggested that the population statistics and
whitening parameters should be learned using a moving
average during the training phase and stay frozen at test
time. Thus, the activations of all the test samples would be
whitened based on the statistics of the training set, not the
test set. However, it was suggested by [13] that by allowing
the batch normalization layer to continue to adapt to the
changing population statistics at test time one can achieve a
domain adaptation without any additional training. This
method of feature adaptation is known as adaptive batch
normalization.

By normalizing the activations for each of the features in
each mini-batch, the features are inherently adapting such
that the features for each sample from the source and target
domains have the same normalized distribution. In our
experiments, we found adaptive batch normalization to be
more effective than traditional feature transformation
methods for aligning the source and domain feature spaces.
Adaptive batch normalization outperforms many of the
simpler feature transformation methods by normalizing,
and indirectly aligning, the features for the two domains for
each layer, as opposed to methods such as [22] which only
learn a transformation for the final feature representation.
Additionally, we found the feature alignment achieved with
adaptive batch normalization alone was on par with the
results from adversarial feature adaptation techniques.
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3.2. Inductive-Clustering

Most approaches to unsupervised domain adaptation
focus only on aligning the distributions of the high-
dimensional feature representations of the source and target
examples. It is assumed that if the feature distributions are
ideally aligned, the classifier should perform equally well
on the target and source examples. Unfortunately, this is not
always the case. There are, potentially, many
transformation that can align the features of the target and
source domains. The work in [36] has shown that the
optimal feature transformation for source and target
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features belongs to the set of transformations that perfectly
align the two distributions. However, there is no guarantee
that any transformation that aligns the two distributions is
the optimal transformation. In our experiments, we have
found that the feature alignment for visually distinct
domains is just as likely to be destructive as it is to be
beneficial to domain adaptation. The problem is that feature
alignment is not enough for optimal domain adaptation
when the domains are significantly separated. By adapting
only the features and leaving the classifier unchanged, there
is a significant amount of the adaptation potential in the
system that is left untapped. The challenge, however, is that
there are no labels for the target data, thus traditional
methods for retraining deep networks, such as [7], cannot
be used.

In order to get a better understanding of the clustering
behavior of the source and target features, we plotted the
feature representations using t-SNE plots [37]. The t-SNE
algorithm is a dimensionality reduction method that is
designed to faithfully represent the distribution of high-
dimensional features in a much lower dimensional space.
Examples of t-SNE plots for two datasets are shown in
Figure 3. Guided by this analysis of the source and target
features we discovered that the target features often form
clusters that are relatively close to the source clusters.

We therefore propose to use the manifold learning
technique known as label transfer to generate labels for the
unlabeled target samples based on the pairing of the clusters
from the source and target domains. However, this label
transfer procedure only works when the target and source
clusters are relatively close. Otherwise, this procedure can
potentially reduce the accuracy of the network because of
training on poor labels.

To ensure that the target features are well suited for our
label transfer training, we first look at the distribution of the
target feature clusters in PCA space. The metric we use to
determine the suitability of the target features was
Silhouette score [34], or the mean ratio of the inter-class
variance to intra-class variance:
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where C is the number of classes. x; is the target feature
vector in PCA space, X;is the centroid for the given cluster
i, and C; is the subset of features that belong the cluster i.
We experimentally found that using the cutoff criteria of
R, < 0.625 was ideal for selecting well clustered target
domains to perform the second step of our domain
adaptation procedure updating the classifier using the
transferred cluster labels.
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Figure 3: Top: t-SNE Plot of features extracted using a
network trained on the USPS dataset. Bottom: t-SNE Plot
features extracted using a network trained on the USPS
dataset and adapted to the MNIST dataset. USPS (Blue)
MNIST (Red).

The target features that satisfy our Silhouette score
criteria generally form clusters that are close to the source
clusters after subspace alignment, but they do not match
perfectly. This suggests that further improvement of the
classification accuracy can be made by retraining the
classifier on the target features.

3.3. Label Transfer via Manifold Clustering

Previous methods for retraining the classifier have turned
to two sources to generate the target sample labels: weak-
labels (inductive-learning) [33], or label transfer
(transductive-learning) [25]. In our work, we selected a
label transfer approach based on the clustering behavior of
the features from the target domain. During this step we
found additional gains in accuracy by first aligning the PCA
subspaces of the source and target domains using the
technique proposed in [22]. Although this step was not
required, we found it slightly increased the final network’s
accuracy. We also found this step reduced computation
time for the clustering procedure by reducing the
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dimensionality from 1024 to 15 principal components.

The subspace alignment process consists of performing
PCA analysis on the source and target feature sets and
combining the two transformations to recolor the features
from the source domain to match the target domain.
Because our method iteratively updates the target features
during its retraining procedure, a subset of the target
features must be resampled periodically to update the PCA
transformation for the target features based on the changes
to the classification network.

The iterative update of the target features in our method
also adds a large overhead to the subspace alignment
procedure as proposed in [22]. The authors suggest that the
optimal alignment for domain adaptation is produced by
recoloring the source features to match the target features.
However, because our target features are constantly
changing, recoloring the source features to match the target
features introduces a great deal of computational overhead
without a significant improvement to the classification
accuracy.

Thus, in this work we invert the subspace alignment
procedure to recolor the target features, to match the source
features, as follows:

Ss = EX (6)
S, = F.X X[X, (7)

where Sg and S, are the resulting features for the source and
target domains, respectively, the in the aligned subspace,
and X and X, are the PCA transformations for the source
and target features, respectively.

This change significantly reduces the processing time for
our domain adaptation process, because it only requires K-
means clustering to be run once on the source features
(K=10). The method used in the original subspace
alignment procedure constantly updates the K-means
clustering of the source features and target features and is
much slower.

After the subspace alignment transformation is
recalculated, K-Means clustering (K=10) is rerun only on
the updated aligned target features. The centroids of these
target clusters are then greedily matched to the closest
cluster centroid of the source clusters, maintaining a strict
one-to-one correspondence. The dominant label in each
source cluster is assigned to all the samples in the
corresponding target cluster. These transferred labels are
subsequently used for training the network. This process is
iterated until convergence

The plots in Figure 3 depict the impact of label transfer
learning on the feature representation for each domain.
Features were extracted from test samples from the USPS
[38] and MNIST [39] datasets using a network trained on
the USPS dataset. Self-learning on the clustering of the data
results in tighter clusters for the MNIST data leading to a
25.7% reduction in classification error.



4. Experiments

In order to examine the performance of the proposed
unsupervised domain adaptation method, we tested it on
standard domain adaptation problems of digit classification
across multiple datasets [38]-[40]. The MNIST [39] dataset
is one of the first digit recognition datasets used in deep
learning. It contains 60,000 training sample and 10,000 test
samples of 18x18 black and white examples of handwritten
digits 0-9. The USPS [38] dataset is quite similar to the
MNIST dataset, however, the number of samples is much
smaller and the images are in gray scale.

The works in [28], [29], presented a more challenging
digits dataset that was generated by combining the MNIST
images with randomly cropped patches from the BSDS500
dataset [41]. Unfortunately, the exact dataset used in [28],
[29] is not released publicly. However, we followed an
identical procedure to that proposed in their work to
generate a similar dataset that we refer to as MNIST M.

The most recent digits dataset is the Street View House
Numbers (SVHN) [40] dataset in which a 600,000 labeled
examples are extracted from RGB images, many include
additional digits in the bounding box for each individual
digit. The SVHN dataset is the most diverse and
challenging of the digits datasets. It is common for domain
adaptation methods to work well when adapting from
SVHN to a different domain, however, it is not common for
methods to work transferring to the SVHN domain because
of its complexity. The SVHN dataset is a practically hard
dataset because the image patches often include multiple
digits, as illustrated in Figure 1.

For our experiments we implemented a simplified
version of the network proposed in [39], shown in Figure 4,
with two convolutional layers using 32 and 64 5x5 filters
each, followed by a fully connected layer with 1024 hidden
nodes whose output was connected to a softmax function.
All datasets were converted to grayscale and scaled to
28x28 pixels, so that the same network could be used across
all the datasets. Batch normalization was implemented in
the network by normalizing the features prior to the
activation function being applied. For this network we used
a ReLU nonlinearity.

One key difference between our network and the original
architecture proposed by [39], besides the inclusion of
Batch Normalization, is that all max pooling layers were
replaced with skip convolutions to reduce the number of
computations without much loss in accuracy.

The networks were trained on the source datasets for 20
epochs using the Stochastic Gradient Decent with a
momentum of 0.9, a learning rate of 0.01, 50% dropout rate
and a mini-batch size of 64. The results in Table 1
demonstrate that this slightly altered network performed
well for the many of the domain adaptation tasks without
any retraining.

The network was adapted using label transfer for 5
epochs using the same learning rates and optimizer as was
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done for the original training of the network. In order to
adapt the subspace alignment to changes in target feature
representation, the target PCA transformation was updated
using a subset of target features after every 20™ mini-batch
update. The new set of target features were generated from
a random subset of 100 target mini-batches. These updated
features were used to calculate an updated PCA
transformation for the target features and the corresponding
subspace alignment transformation.

28x28 14x14x32  7x7x64 1024 10

- =) - )

5x5x32 5x5x64 3136x1024 64x3

Figure 4: Digit classification network.

Table 1. Domain Adaptation for Digits Datasets

Method M->U |S->M M_M->M| U->M | M->S

Source only 0.856 [0.822 | 0.910 0.624 | 0.071

Source w/ABN 0.823 [ 0.830 | 0.923 0.721 | 0.253

iggg‘}‘gggj andl 915 10.977| 0923 | 0.721 | 0253
DANN [10] 0.771 |0.739| 81.5 | 0.730 | 0.357
IADDA [11] 0.894 [0.760| N.A. | 0.901 | N.A.
ATT [14] NA. | 085 | NA. | NA. |0528
UTDA [23] N.A. [0.774] 0835 | N.A. |0.323

After the updated target features were realigned to the
original features from the source domain, K-Means
clustering was rerun on the subspace aligned target features
and the clusters were paired to the source domain clusters.
The K-means clustering trained on the random target
samples was then used to determine the target cluster for
each sample in the training mini-batches, which was used
to transfer the labels from the source clusters to the target
samples.

We compare the results produced by our method with
the results reported by the state-of-the-art methods for digit
domain adaptation on the digits datasets in Table 1. The
results with the highest accuracy are in Red and the second



highest shown in Bold. These results illustrate that the
proposed method improves significantly on the state of the
art results.

The first observation from the results of Table 1 is the
increase in accuracy for most domain adaptation tasks when
adaptive batch normalization is used. However, some
adaptation tasks do not benefit from ABN. This is likely due
to the lower visual disparity between the two domains, thus
the adaptation of the features to fit the target domain is not
as useful. The impact of ABN on the more visually distinct
domains, such as the MNIST and SVHN datasets, is much
more apparent. ABN more than triples the accuracy of the
classifier on the MNIST to SVHN adaptation task, without
any retraining of the network. These results are consistent
with the increase in performance achieved by ABN in [13],
even though their experiments were on a different domain
transfer task.

Another key observation is that self-learning appears to
only work with ABN. We attempted to train the network
with self-learning alone, freezing the batch normalization
statistics, and we found that the network performance
slowly deteriorated over the course of training.

It is important to point out that our method works best in
situations where the original network with ABN is
relatively accurate in the target domain. We found that the
primary factor in the ability of our method to adapt to new
domains was the visual diversity in the source dataset. As
is often the case when training deep networks, when the
training set has a limited amount of visual diversity the
network learns a set of sub-optimal features. Deep networks
require a lot of visual variation in the training set in order
learn features that generalize well to other domains. Our
experiments demonstrated just how large of a role dataset
size and variation play in the network’s ability to generalize
to new domains.

In our experiments we obtained the worst results when
the source domain was USPS, the smallest dataset with the
least variation. In the case of the USPS to MNIST
adaptation task, the target features did not even pass the
clustering criteria. Interestingly our method performed
quite well on the inverse adaptation task, MNIST to USPS.
This disparity between directions of adaptation is likely
because the MNIST dataset is larger and includes more
variation in the data.

Although our method performed well on the MNSIT to
USPS domain adaptation task, the network trained on the
MNIST dataset did not adapt well to either the MNIST M
or the SVHN dataset. This is most likely because the
MNIST M and SVHN datasets are visually distinct from
the MNIST dataset, and thus it is harder for a network
trained on simpler domains to adapt to more difficult
domains.

It is important to point out that for the inverse adaptation
task, SVHN to MNIST, our method achieves far superior
results. This demonstrates that visual disparity between
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domains is not important so long as the source domain is
more visually diverse than the target domain. Our method
performs optimally when the source domain includes more
visual variation than the target domain, such as the SVHN
and MNIST M dataset. This is because the features trained
from more diverse datasets tend to be more generalizable to
new domains.

These results suggest that the proposed method will work
well for any domain adaptation task where two
requirements are satisfied: (a) the source contains sufficient
visual variation for the network to learn high quality
features. (b) the target domain is close enough to the source
domain so that ABN combined with subspace alignment
can form ideal clusters for our label transfer procedure.

5. Conclusion

In this paper, we presented a novel two step procedure for
adapting a deep neural network in an unsupervised manner
to a new, unlabeled, domain. Our method first uses adaptive
batch normalization to make sure that the source and target
features exist in similar subspaces. Then transductive-label
transfer is used to better align the clusters in the source and
target domains. The results produced by the proposed
approach outperforms other state of the art methods for
many of the domain adaptation datasets.
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