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Abstract

We present a Riemannian framework for linear and

quadratic discriminant classification on the tangent plane

of the shape space of curves. The shape space is infinite

dimensional and is constructed out of square root veloc-

ity functions of curves. We introduce the idea of mean and

covariance of shape-valued random variables and samples

from a tangent space to the pre-shape space (invariant to

translation and scaling) and then extend it to the full shape

space (rotational invariance). The shape observations from

the population are approximated by coefficients of a Fourier

basis of the tangent space. The algorithms for linear and

quadratic discriminant analysis are then defined using re-

duced dimensional features obtained by projecting the orig-

inal shape observations on to the truncated Fourier basis.

We show classification results on synthetic data and shapes

of cortical sulci, corpus callosum curves, as well as facial

midline curve profiles from patients with fetal alcohol syn-

drome (FAS).

1. Introduction

Often, anatomical features can be compactly represented

by curve-based landmarks or boundaries. Depending on the

study in question, this practice can have several advantages;

i) it is easier for anatomical experts to delineate or iden-

tify such curve based features in images or even on 3D
parametrized representations of images (surfaces etc.), ii)

it is convenient for computational analysis since there is a

large reduction of the feature space that contributes to in-

creased numerical efficiency of representation and analysis,

and iii) if the features are easy to identify and trace, they

can be quickly used for a first level analysis to determine

changes in anatomy due to disease or development.

Briefly, such biological curve-shape based studies are

outlined as follows. The white matter morphology of the

mid-sagittal cross-section of the corpus callosum in the

brain can represented by a boundary curve whose shape has

been implicated in various diseases. The callosal morphol-

ogy shows abnormalities in fetal alcohol syndrome [4, 18]

and in relation to autism spectrum disorders [21]. It has also

been implicated in schizophrenia [13] and personality dis-

orders [5]. On the other hand, sulcal curves on the brain are

examples of cortical landmarks [9]. With a well established

protocol, major sulcal and gyral features (12 ∼13 sulci) can

be consistently delineated by neuroanatomists [10]. There

are other examples of curve shape analysis from biologi-

cal imaging – cellular shapes from microscopy [2, 1] and

echocardial curves from ultrasound images [14].

Most of the above works have explicitly used curve rep-

resentations of biological objects without focusing on the

geometry of the underlying space of such curves, although

Wolff et al. [21] use an invariant medial shape representa-

tion that can be further used to construct geometric shape

spaces. However for most approaches there is a mismatch

of the cost function for shape matching and the underlying

metric of the space to which these curves belong. Further,

most studies have largely focused on population level group

differences based on point-wise statistical tests conducted
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directly on the matched curves. A recent approach by Bo-

gunovic, Frangi et al. [3] have used the well known LD-

DMM framework for the characterization of internal carotid

artery curves. They obtained a 70 to 80% cross validation

classification rate based on global features (curvatures and

torsion ratios etc.) of the curves. While we recognize that

curve features should be best tuned according to the applica-

tion at hand, in this work we adopt a different approach. Our

goal here is to construct a classification framework using the

full shape of the curves by following a differential geomet-

ric approach that exploits the geometry of the shape space.

Specifically, in this paper we construct a Fourier basis on the

tangent space of the shape space and approximate the shape

observations by their tangent vectors parametrized by the

basis. In this paper we focus on two simple classifiers – the

linear and the quadratic discriminant classifiers, although

the framework allows the definition of more advanced clas-

sifiers as well.

This paper is organized as follows. Section 2.1 briefly

outlines our choice of the curve representation. We use the

square root velocity functions (SRVF) [11, 12, 19] to define

shapes of curves. We chose the square root velocity formu-

lation for curves as it is an explicit representation and sim-

ple to compute. Sections 3 and 4 outline our notion of the

mean and covariance on the pre-shape and the shape space

respectively. An important ingredient for approximating the

tangent space of shapes is the construction of a Fourier ba-

sis 4.1, which is used to approximate the tangent space. Fi-

nally, section 5 defines the classifier on the tangent space

followed by results in section 6 on synthetic data as well as

on data with clinical relevance. The novelty of our work has

two fronts; a tangent space classification approach defined

for this particular geometric representation of curves, and

the first attempt to classify fetal alcohol syndrome using the

midline curves of 3D facial images. To our knowledge this

has not been previously tried or accomplished.

2. Brief background of shape representation

We briefly introduce the square-root velocity function

(SRVF), preshape and shape spaces of curves here. For a

detailed introduction, please see [11, 19].

2.1. Square Root Velocity representation and Pre­
shape spaces of Parametrized curves

Let β be a parametrized curve β : D := [0, 2π] → R
n.

We will restrict to those β that are almost everywhere dif-

ferentiable and their first derivative is in L2(D,Rn). For

the purpose of studying the shape of β, we will represent it

using the square-root velocity function (SRVF) [11, 19] de-

fined as q : D → R
n, where q(t) := β̇(t)/

√

‖ ˙β(t)‖. This

representation includes those curves whose parametriza-

tion can become singular in the analysis. Also, for every

q ∈ L2(D,Rn) there exists a curve β (unique up to a trans-

lation) such that the given q is the SRV function of that

β, given by, β(t) =
∫ t

0
q(s)‖q(s)‖ds. To remove scal-

ing variability, we re-scale all curves to be of length 2π.

The remaining transformations (rotation, translation, and

re-parametrization) will be dealt with differently. The re-

striction that β is of length 2π translates to the condition

that
∫

D
‖q(t)‖2dt =

∫

D
‖β̇(t)‖dt = 2π. Therefore, the

SRV functions associated with these curves are elements of

the unit sphere in the Hilbert space L2(D,Rn); we will use

the notation Co to denote this hypersphere.

We will call Co the pre-shape space of curves. To

impose Riemannian structures on this pre-shape space,

we consider their tangent spaces. Since Co is a sphere

in L2([0, 2π],Rn), its tangent space at a point q is

given by: Tq(Co) = {v ∈ L2([0, 2π],Rn)|〈v, q〉 = 0}.
Here 〈v, q〉 denotes the inner product in L2([0, 2π],Rn):

〈v, q〉 =
∫ 2π

0
(v(t).q(t))Rndt.

The standard metric on L2([0, 2π],Rn) restricts to one

on Co. This metric can then be used to determine geodesics

and geodesic lengths between elements of these spaces,

which is straightforward, Co being a hypersphere owing to

the global scaling constraint.

2.2. Shape Spaces of Parametrized Curves

By representing a parametrized curve β(t) by

its SRV function q(t), and imposing the constraint
∫

D
〈q(t), q(t)〉 dt = 2π, we have taken care of the transla-

tion and the scaling variabilities, but the rotation and the

re-parametrization variabilities still remain. A rotation is an

element of SO(n), the special orthogonal group of n × n
matrices, and a re-parametrization is an element of Γ, the

set of all orientation-preserving diffeomorphisms of D.

The rotation and re-parameterization of a curve β
are denoted by the actions of SO(n) and Γ on

its SRV. While the action of SO(n) is the usual:

SO(n) × Co → Co, (O, q(t)) = Oq(t), the action

of Γ is derived as follows. For a γ ∈ Γ, the composition

β ◦ γ denotes its re-parameterization; the SRV of the

re-parametrized curve is F (β̇(γ(t))γ̇(t)) = q(γ(t))

√

˙γ(t),
where q is the SRV of β. This gives use the action

Γ × Co → Co, (q, γ) = (q ◦ γ)√γ̇. It can be shown that

i) the actions of SO(n) and Γ on Co commute, and that

ii) the action of the product group Γ × SO(n) on Co is by

isometries with respect to the chosen metric.

Therefore, under the actions of O and Γ, we can de-

fine the quotient space of Co modulo Γ × SO(n).
The orbit of a function q ∈ Co is given by:

[q] = {O(q ◦ γ)
√
γ̇)|(γ,O) ∈ Γ × SO(n)}. In this

framework, an orbit is associated with a shape and com-

parisons between shapes are performed by comparing the

orbits of the corresponding curves and, thus, the need for
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a metric on the set of orbits. In order for this set to inherit

the metric from Co, we need the orbits to be closed sets

in Co. Since these orbits are not closed in Co, we replace

them by their closures in L2(D,Rn). With a slight abuse

of notation, we will call these orbits [q]. Then, the quotient

space S is defined as the set of all such closed orbits

associated with the elements of Co, i.e. S = {[q]|q ∈ Co}.

The differential of this quotient map from Co to S induces a

linear isomorphism between T[q](S) and, the normal space

to [q] at any point q̃ in [q]. The Riemannian metric on Co

restricts to an inner product on the normal space which,

in turn, induces an inner product on T[q](S). The fact that

Γ × SO(n) act by isometries implies that the resulting

inner product on T[q](S) is independent of the choice of

q̃ ∈ [q]. In this manner, S inherits a Riemannian structure

from Co. See [11, 19] for computation of geodesics in S .

3. Statistics on vector subspaces of

L2([0, 2π],R3)

From this section onwards, for practical purposes, we

will assume that n = 3. Let V ⊂ L2([0, 2π],R3) be a sub-

space of the Hilbert space L2([0, 2π],R3). We will see in

the next section that V will be mainly TµS for this paper,

which has been shown to be a subspace of L2([0, 2π],R3)
[11, 19]. Here, we introduce the concepts of mean and co-

variance for V -valued data, and their discretized versions

for computer implementation. This is done keeping in mind

that, in the future, the pre-shape data will be represented

by elements in L2([0, 2π],R3), and their tangent space will

be represented by V , so we can carry the concepts in this

section over to shape data. Although the shape curve data

is typically continuous, being elements of L2([0, 2π],R3),
for the purpose of computer implementation, we deal with

discretized versions of the shape data, where each datum

is considered to be an ordered set of points on elements of

L2([0, 2π],R3). With this in mind, we define three related

concepts of mean and covariance: i) mean and covariance

of a random variable X : Ω → V ⊂ L2([0, 2π],R3), ii)

mean and covariance of a sample of parameterized curves

{v1, ...vN} ⊂ V generated by the random variable X , and

finally, iii) mean and covariance of discretized versions of

the curves {v1, ...vN}, where each vj is measured at m
equispaced time intervals dividing [0, 2π]. This is done

for the purpose of discretization as we only consider finite

number of equispaced points on the curves {v1, ...vN} ⊂
L2([0, 2π],R3).

3.1. Mean and covariance of a V ⊂ L2([0, 2π],R3)­
valued random variable:

Let X : Ω → V ⊂ L2([0, 2π],R3) be a random

variable with probability measure P on Ω. Choose an

orthonormal Schauder basis (we will interchangeably call

it a Fourier basis) W for {w1, w2, ...wk, ...} for V . Let

X(ω) =
∑∞

j=1 Xj(ω)wj∀ω ∈ Ω, where each Xj =
〈X,wj〉V is a real-valued random variable, where 〈, 〉V is

the induced inner product on V from L2([0, 2π],R3). We

define mean or expected value of X, denoted by E(X)
as E(X) :=

∑∞
j=1 E(Xj)wj ∈ V . Next, we de-

fine covariance of X by the linear operator on V given

by: cov(X)(wj) :=
∑∞

k=1 cov(Xj , Xk)wk, and then lin-

early extending it. Hence, with respect to the orthonormal

Schauder basis W , we have the infinite matrix representa-

tion for cov(X) given by cov(X)(i, j) := cov(Xi, Xj) =
cov(〈X,wi〉, 〈X,wj〉).

3.1.1 Motivation for using a Fourier basis

A Fourier basis for V is, by definiton, a Schauder basis [16],

which is also orthonormal. This orthonormality makes the

representation of covariance much easier. The covariance

matrix for a random vector X = (X1, X2, ...Xd) : Ω → R
d

has the (i, j)-entry cov(Xi, Xj) := cov(〈X, ei〉, 〈X, ej〉).
Here ei denotes the orthonormal basis element (0, ..1...)
with 1 in the i-th slot. This matrix can also be identified

by the linear map on R
d and denoted by cov(X), so that

cov(X)(ei) :=
∑

j cov(〈X, ei〉, 〈X, ej〉)ej . Note that the

above definition of covariance uses the pairwise covariance

between Xi := 〈X, ei〉. There are two motivating criteria

for choosing a Fourier basis. For an arbitrary vector space

V with an orthonormal Fourier basis {wi}, the above defini-

tion of covariance as an operator on V is realized by replac-

ing ei by wi. This is explained in detail in the next subsec-

tion (Sec. 3.2). Secondly and importantly, the lower order

harmonics of the Fourier basis capture the gradual changes,

whereas higher order terms capture details and minutiae.

Restricting the basis to finite lower order terms also enables

a natural smoothing of functions in the underlying space,

which makes the Fourier basis an attractive choice.

3.2. Mean and covariance of a finite discrete sample
lying in V ⊂ L2([0, 2π],R3):

Let {v1, ...vn} be a sample generated in that order by

the above random variable X : Ω → V ⊂ L2([0, 2π],R3).
We define the sample mean by m := 1

n

∑n
i=1 vi, where the

addition takes place in the vector space V . One can see the

connection between the sample mean and the (population)

mean or expectation of a random variable X as follows:

divide the sample space Ω into n number of sub-sample

spaces {Ω1, ...Ωn} so that P(Ωj) =
1
n
∀1 ≤ j ≤ n, assume

that X takes constant values vj on Ωj , and then calculate

its expected value E(X) =
∫

Ω
XdP =

∑n
j=1

∫

Ωj
vjdP =

∑n
j=1 vj

∫

Ωj
dP =

∑n
j=1 vj .P(Ωj) = 1

n

∑n
j=1 vj , since

P(Ωj) =
1
n
∀1 ≤ j ≤ n.

Before defining the sample covariance in V , we revisit the

definition of the same in standard R
d-valued dimensional
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data with d features. Recall that, in order to define covari-

ance of a sample of n observations {v1, v2..., vn}, each with

d number of features, we write the (ordered) data matrix in

X two ways: X = [v1, v2, ...vj ...vn] = [R1, ...Ri...Rd]
T ,

taking the j-th observation vj as its j-th column, and i-th
feature Ri as its i-th row.. Let X̄ := (R̄1, ...R̄d)

T ∈ R
d×1,

where R̄i :=
1
n
Rij . Note that, X̄ is nothing but the sample

mean m. Let X̃ := X̄(1, 1, ...1) ∈ R
d×n. Next, we de-

fine the (unbiased) covariance matrix to be the d× d matrix

cov(X) := 1
n−1 (X − X̃)(X − X̃)T .

Now, to generalize the above definition to the case of V -

valued data, we need to be careful: firstly, V may not be a

finite dimensional vector space, and secondly, V does not

have the canonical inner product structure of Rd giving or-

thogonal canonical directions of the form (0, ...0, 1, 0, ...0),
hence the feature directions may be unclear and may de-

pend on the basis chosen. The first difficulty cannot be the-

oretically overcome as the covariance matrix must have the

dimensions corresponding to the number of linearly non-

redundant features. We attempt to solve the second diffi-

culty simultaneously by defining features so that the feature

directions (but not the feature values) are mutually orthog-

onal, and so that corresponding feature values are the pro-

jection of each shape data into the corresponding feature’s

direction. An obvious choice is to express each a ∈ V
by a =

∑∞
j=1 ajwj , declare wj ∈ V as the j-th feature

direction of a, and the corresponding feature value to be

the j-th projection aj := 〈v, wj〉V . This way, the data

matrix X of the ordered sample [v1, v2, ...vj ...vn], as writ-

ten in the previous paragraph, becomes an ∞ by n matrix

with respect to the orthonormal Schauder or Fourier basis

W = {w1, w2, ...wi, ...} of V , and is written in two ways:

X = [C1, C2, ...Cj ...Cn] = [R1, R2, ...Ri...]
T , where the

j-th column Cj is so that its i-th entry, or equivalently the

(i, j)-th data matrix entry Rij is 〈vj , wi〉V . Next, we de-

fine R̄i :=
1
n
Σn

j=1Rij∀1 ≤ i ≤ ∞, X̄ := [R̄1, ...R̄∞]T ∈
R

∞×1, and X̃ := X̄(1, 1, ...1) ∈ R
∞×n. Then, we can

represent cov(X) : V → V in this Fourier basis by the ∞
by ∞ matrix given by cov(X) = 1

n−1 (X − X̃)(X − X̃)T .

3.3. Mean and covariance of a finite set of sample
curves in V ⊂ L2([0, 2π],R3) discretized at (m+
1) points tr, 0 ≤ r ≤ m :

So far, the elements of V ⊂ L2([0, 2π],R3) have been

treated as continuous curves. For example, in the previous

paragraph, 〈v, wj〉V is the standard Euclidean inner prod-

uct between the vector valued functions v and w. For real

data we would only have discretized values of the sample

v, discretized say at (m + 1) time points tr, 0 ≤ r ≤ m
on the interval [0, 1]. We are also going to assume here that

tr = r/m, 0 ≤ r ≤ m. With this assumption, the vector

vj ∈ V becomes the infinite column vector Cj as above,

but the k-th entry of Cj or equivalently the data matrix en-

try Xjk is no more 〈vj , wk〉V =
∫ 1

0
〈vj(t), wk(t)〉R3dt, but

rather its discrete version
∑m

r=0〈vj(tr), wk(tr)〉R3 . Choose

a K big enough, and hence X becomes a K × n matrix,

where one can think of this K as the first K most “promi-

nent” features. This completes the computation of the data

matrix X , and subsequently the K × K covariance matrix
1

n−1 (X − X̃)(X − X̃)T .

4. Measures of central tendency and deviation

on Curve Shapes

In this section, we describe how to compute the means

and covariances of data lying on shape manifold that occurs

in square root velocity framework [11, 19]. But first we

briefly remind the reader of the calculation of the population

mean of a sample of shapes in S . Given a set of observations

{qi}, i = 1, . . . , N , their Kärcher mean [15] is defined as

µ = argmin
q

1

N

N
∑

i=1

argmin
O,γ

d(q,
√

γ̇ O(qi◦γ))2, i = 1, . . . , N,

(1)

where d(, ) is given by the geodesic distance (great circle

lengths) on Co. This geodesic is given by the exponential

map expq1
(f) = q1 cosα+f sinα, where cos α = 〈q1, q2〉

and the initial tangent vector is given by f = q2 − 〈q1, q2〉.
One standard way is to construct and better understand

the elements of the tangent spaces V = TµS of the shape

spaces, and replicate in the vector space V the mean and co-

variance calculations as described in the previous two sub-

sections. This calculation will be valid, of course if we can

show that V is indeed a subspace of L2([0, 2π],R3), and

find an orthonormal Schauder or Fourier basis for it.

4.1. Construction of a Fourier basis on the tangent
space of the shape space

To describe the elements of TµS, we first note

that we have the following orthogonal direct sum:

TqCo = TµS ⊕ TqO(q), where the preshape q ∈ Co is a

point of its orbit O(q) so that µ is the equivalence class

[q] of q, under the action of SO(3) × D. Also, since Co

is a hypersphere in L2([0, 2π],R3), it is also clear that

TqCo = q⊥ ⊂ L2([0, 2π],R3). Hence in order to construct

a basis for TµS, we first focus on doing the same for

TqO(q), the computation of which follows shortly after.

Once this is done, it is straightforward to construct a basis

for TµS, since the construction of a basis for TqCo = q⊥ is

easy, from that of L2([0, 2π],R3).

Below we present a general form of an element in TqO(q),
which in turn helps us to construct a basis for the same.

Let cǫ be a curve in O(q) parametrized by ǫ, so that

c0 = q = Id ◦ (q ◦ Id).
√
Id′, where the first Id is

in SO(3), and the second and third ones are in D. By
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definition of the tangent space, TqO(q) consists of the

elements ∂
∂ǫ
|ǫ=0cǫ.

∂
∂ǫ
|ǫ=0cǫ.

= ∂
∂ǫ
|ǫ=0Aǫ(q ◦ γǫ).

√

γ′
ǫ

= ∂
Aǫ

∂ǫ|ǫ=0.(q ◦ γ0).
√
γ0′ + A0.

∂
∂ǫ
|ǫ=0(q ◦ γǫ).

√
γ0′ +

A0.(q ◦ γ0).
∂
∂ǫ
|ǫ=0

√
γǫ (taking derivative of product of

functions)

= Bq + ∂
∂ǫ
|ǫ=0(q ◦ ǫ) + q. ∂

∂ǫ
|ǫ=0

√
γǫ, where

B ∈ Lie(SO(3)

= Bq + (q′ ◦ γ0) ∂
∂ǫ
|ǫ=0γǫ + q. ∂

∂ǫ
|ǫ=0

√

∂
∂t
γǫ(t)

= Bq + q′.g + q. 1
2
√
γ0

′

∂
∂t

∂
∂ǫ
|ǫ=0γǫ(t) (where g ∈ Lie(D))

= Bq + q′g + 1
2qg

′

Algorithm 1 Construction of the data matrix for discretized

shapes

1: Find the Kärcher mean µ for a set of shapes {qi}, i =
1, . . . , N using Eqn. 1. Find the corresponding tangent

vectors from µ to all qis be {vi} following Sec. 4.

2: Let B be a discrete d-dimensional orthogonalized

Schauder basis of L2([0, 2π],R3), where B ≡
{bi}, i = 1, . . . , d

3: Project B on the tangent space Tµ(Co) by B̃ = {b̃i},

where b̃i = bi − 〈bi, µ〉µ, i = 1, . . . , d.

4: Orthogonalize B̃ w.r.t. the inner product given in Sec.

2.1 as B̃ = orth(B̃).
5: Let Gµ be a discrete k−dimensional orthogonal basis

of TµO(µ) from Sec. 4.1.

6: Construct the basis of Tµ(S) as G, where G ≡ {gi},

gi = b̃i −
∑k

j=1〈b̃i, gj〉gj , i = 1 . . . d.

7: Finally construct the data matrix as aij = 〈vi, gj〉, for

i = 1 . . . d, j = 1 . . . , N .

5. Classification problem of shape data: Linear

and Quadratic Classifiers of Shapes

Data classification problems fall into the category of a

supervised machine learning problems, where we construct

classifiers from the given training data, to determine the

classification of a (future) test dataset, based on the previ-

ously obtained decision boundary of the classifier. One way

to perform the above classification is to construct a discrim-

inant classifier using the Bayesian à posterior probability

and normality assumption on data according to the central

limit theorem. The discriminant classifier is quadratic in

general, and becomes linear if the two given classes of data

have equal covariance matrices. Keeping this in mind, when

the two data sets have almost equal covariances, we perform

linear discriminant analysis (LDA) instead of quadratic dis-

criminant analysis(QDA).

Algorithm 2 Algorithm for computing Decision Boundary

in QDA/LDA on shape data

1: Represent each shape for each training set as a 3×(m+
1) matrix.

2: Call the two classes A and B. Let X := A ∪B.

3: Compute the Kärcher mean µ = µX of all the matrices

(shapes) of X using the Riemannian metric structure of

S, the shape space containing all the data. This Kärcher

mean is also a 3× (m+ 1) matrix.

4: Lift each data Ai in A and each data Bi in B to the

tangent space TµX
S by the inverse of the exponential

map from an open subset of TµS to S. Call the lifting

map the logarithm map. To do this, find the geodesics

from µX to each Ai in A and each Bi in B in the shape

space S, and compute the corresponding velocity vec-

tors in TµX
S ≡ TµS. These vectors have the same

dimension for each data, i.e. each velocity vector is a

3× (m+ 1) matrix.

5: By slight abuse of notation, call the lift of each Ai, Bi ∈
S to TµX

S, as Ai, Bi again. For the rest of the algo-

rithm all Ai, Bi will lie only in V := TµX
S.

6: (Schauder basis construction for TqO(q)): Following

the discussion in section 4.1, compute the Schauder ba-

sis {gi} for TqO(q).
7: (Orthonormal Schauder basis or Fourier basis construc-

tion for V ): Following the discussion in section 3.2,

3.3, compute the Fourier basis {wk} for TµS.

8: Use Algorithm 1 to construct the two data matrices

XA, XB for A,B respectively, having dimensions K×
N1,K ×N2 respectively.

9: (Construction of sample means) Determine the means

mA,mB of classes A,B as by averaging the

columns of XA, XB respectively. Define m̃A :=
mA(1, 1, ...1), m̃B := mB(1, 1, ...1).

10: (Construction of sample covariance matrices for dis-

cretized shape data in classes A and B:) Form

the corresponding K × K covariance matrices

ΣA = 1
N1−1 (XA − m̃A)(XA − m̃A)

T ,ΣB :=
1

N2−1 (XB − m̃B)(XB − m̃B)
T .

11: (Estimation of prior probability of classes) πA :=
N1

N
, πB := N2

N
.

12: (Quadratic/Linear discriminant functions) Compute:

δA(x) := −0.5ln(detΣA) − 0.5(x − mA)
TΣ−1

A (x −
mA) + ln(πA) : R

K → R and δB(x) :=
−0.5ln(detΣB) − 0.5(x − mB)

TΣ−1
B (x − mB) +

ln(πB) : R
K → R.

13: (Quadratic/Linear Decision Boundary) Compute the

set: {x ∈ R
K : δA(x) = δB(x)}.

In standard settings, the discriminant analysis is performed

when the data lie in some Euclidean space R
d with its

canonical inner product. However, it goes without saying
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that the theory is not straightforward for shape-valued data,

since i) shape data generally do not lie in vector spaces, and

ii) even after using the tangent spaces of the shape spaces

to linearize the problem and after truncation of the tangent

spaces to make the problem finite dimensional, the inner

product of these tangent spaces mostly have non-Euclidean

inner products. Here is where the construction of orthonor-

mal Schauder/Fourier basis (Sec. 3.1.1) comes in, which re-

duces the problem to one in a finite dimensional Euclidean

space, following the discussion of the subsections 3.2, 3.3,

and 4.1. This allows us to perform standard machine learn-

ing techniques on the shape data.

5.1. Algorithmic construction of decision boundary
for two classes of shape data

Before performing discriminant analysis, we would like

to represent our shapes as features in a matrix, also known

as the data matrix. This is achieved as follows. Given a pop-

ulation of N shapes, a mean shape µ and tangent vectors

from the mean shape to each of the shapes of the popula-

tion are computed. Then a tangent space at µ is formed and

approximated using an orthonormal Schauder basis. Each

tangent vector observation is then projected into this basis

space. The coefficients of the projections are used to con-

struct the data matrix. Algorithm 1 shows a procedure to

construct a data matrix for a collection of shapes.

We finally outline the procedure for QDA and LDA to

compute the decision boundaries for the two classes in Al-

gorithm 2. Our algorithm is a generic one that can be used

for both QDA and LDA, since in step 12, the quadratic

terms cancel out for the case of equal covariance matrices,

producing a linear decision boundary in step 13.

6. Data, Experiments, and Results

In this section we first present results on synthetic data

and subsequently show classification results on data from

three examples, i) cortical sulcal shapes, ii) a population

of corpus callosum shapes of healthy controls and pa-

tients with schizophrenia, and iii) facial midline profiles for

healthy individuals and patients with severe alcohol expo-

sure from a fetal alcohol syndrome cohort.

6.1. Synthetic Data

Figure 1 shows examples of two classes of synthetic

shape data consisting of two bumps (gaussians followed and

preceded by powers of half-sinusoids for the two classes re-

spectively). The variation is obtained by changing the pulse

width of the gaussians and powers of sinusoids. 100 shapes

each of class A and B were generated and their mean shape

was computed on the shape space. 10-fold repeated cross

validation was performed to test a quadratic classifier. The

average cross validation error was obtained as 0.031 (accu-

racy of 96.9%).
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Figure 1. Top row: 100 samples each from shapes of class A and

B. Middle row: Mean shapes for the two classes. Bottom row:

mean shape of the population.

6.2. Classification of Cortical Sulci

Here we show results of classification of cortical sulci

in a population of 175 human subjects from ages 18 to

50 years. Subjects’s brains were scanned on a 1.5T MRI

Siemens scanner with a 1mm3 isotropic voxel resolution.

The MRI images underwent skull stripping and tissue edit-

ing, and the gray matter boundary was extracted [7] to ob-

tain triangular mesh representations of the cortex. A set of

26 landmark sulci were traced on the cortical surface by

an expert neuroanatomist. Since this paper is focused on

discriminant analysis, for the purpose of demonstration, we

chose to show results of binary classification for the cen-

tral and the precentral sulci as shown in Figure 2. Sulcal

landmarks were represented as open curves and approxi-

mated by the tangent space Fourier representation at the

mean shape for both the classes.

Figure 2 shows an example of the precentral and the cen-

tral sulci traced on an individual subject, the population

of the precentral and the central sulci and their respective

means, as well as the overall mean of the full dataset. We

used a repeated 10-fold cross validation to evaluate the a

linear discriminant classifier to obtain an average cross val-

idation error of 12.75% (accuracy of 87.25 %) with a model

training error of 5.72%.
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Precentral and the Central

 Sulci on the cortex

Overall

Mean shape

All Precentral 

sulci

Mean of

Precentral sulcus

All Central 

sulci

Mean of

Central sulcus

Figure 2. Left to right: examples of the precentral and the central sulci on the cortex, population of all 175 precentral sulci, mean shape of

the precentral sulci, population of all 175 central sulci, mean shape of the central sulci, and the mean shape of the overall population.

6.3. Classification of Schizophrenia Diagnostic Sta­
tus using Corpus Callosum Shapes

Emerging evidence [17] suggests the important role of

white matter abnormalities in schizophrenia. Consequently

one expects disease effects on callosal morphology in pa-

tients. Here we show results of classification of schizophre-

nia diagnosis in a population of 40 subjects (20 healthy con-

trols and 20 patients with schizophrenia) from ages 18 to 46

years. MRI images for all subjects were acquired on a 1.5T

Siemens scanner with 1mm3 isotropic voxel resolution. An

expert neuroanatomist traced the callosal boundary on the

mid sagittal slice for each subject. The boundaries were

represented in the shape space and the tangent space Fourier

approximation was obtained for each callosal shape. Figure

3 shows the callosal shapes for controls and patients. Af-

ter a repeated 10-fold cross validation to evaluate the linear

classifier, we obtained an average cross validation error of

14.67% (accuracy of 85.33 %) with a model training error

of 5%.

6.4. Classification of Severe Alcohol Exposure using
Facial Midline Curves

Fetal alcohol spectrum disorders arise from moderate to

heavy prenatal alcohol exposure to the fetus during devel-

opment of the central nervous system (CNS). Fetal alco-

hol syndrome (FAS), which is a more severe case of FASD

is usually characterized identifiable facial dysmorphology

[20], growth deficits, and behavioral problems. Children

and adolescents diagnosed with FAS exhibit a variety of

minor to severe facial abnormalities including flat nasal

bridge, smooth philtrum (space between nasal base and up-

per lip), short palpebral fissure (space between eyelids), thin

upper lip, and a flat mid-face [8]. Here we attempt to clas-

sify patients with FAS from healthy controls using the mid-

line curve from 3D facial surfaces. Our data consisted of 45

subjects (21 with FAS and 24 healthy controls) from ages

Healthy

Controls
Patients with

Schizophrenia

Mean shape

Mean shape

in controls

Mean shape

in schizophrenia

Figure 3. Top row: 20 corpus callosum shapes each for both

healthy controls and patients with schizophrenia. Middle row:

Mean shapes for the healthy controls and schizophrenia. Bottom

row: mean shape of the population.

5 to 16 years. 3D facial range scans were acquired using

a Minolta Vivid 910 laser scanner (1/3 frame CCD 340K

pixels, triangulation light block method, scan range- 0.6 -

2.5 m, 0.3 sec. peak acquisition time). The facial midline

curve was automatically extracted as an intersection of a

coronal center plane passing through the nose and the fa-

cial surface. Shapes of all curves were represented by their

SRVFs and a tangent space was constructed at the mean

shape as shown in section 4. Figure 4 shows the facial mid-

line shapes for healthy controls and patients with FAS, and

the mean shape of the population. A linear discriminant

classifier was trained on this data and a repeated 10-fold

cross validation was performed. This data yielded an aver-

age cross validation error of 0.2378 (accuracy of 76.22%)

with a training error of 8%.

Finally, all the results are summarized in a tabular form
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Mean of
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Figure 4. Left to right: midline facial profile curves for 24 healthy

controls, mean shape of healthy controls, 21 facial profile curves

for patients with FAS, mean shape of patients, and the mean shape

of the overall population.

Table 1. Classifier Performance for different types of data.

Example Classifier N (size) Training

Accuracy

Testing

Accuracy

toy qda 200 100% 96.9%

sulci lda 175 94.28% 87.25%

corpus callosum lda 40 95% 85.33%

facial curves lda 45 92% 76.22%

in Table 6.4.

7. Discussion

We presented a geometric approach for defining classi-

fiers on the shape space of curves. In this work, we focused

on quadratic and linear discriminant analysis, although the

approach is general and allows for defining more advanced

classification techniques on the shape space. While we ob-

tained high accuracy on synthetic data as well as corpus cal-

losum shapes, we obtained a moderate accuracy on FAS fa-

cial dysmorphology data. This could be explained by the

fact that the FAS data consisted of just the midline facial

curves instead of the whole face. We expect the accuracy to

improve after combining the shape classifier with anthropo-

morphic measures such as the palpebral fissure spans or the

philtrum lengths.

Future work will focus on implementing more advanced

machine learning approaches for shapes using the geometric

framework proposed in this paper.
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