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Abstract

Learning the dynamics of shape is at the heart of many

computer vision problems: object tracking, change detec-

tion, longitudinal shape analysis, trajectory classification,

etc. In this work we address the problem of statistical in-

ference of diffusion processes of shapes. We formulate a

general Itô diffusion on the manifold of deformable land-

marks and propose several drift models for the evolution

of shapes. We derive explicit formulas for the maximum

likelihood estimators of the unknown parameters in these

models, and demonstrate their convergence properties on

simulated sequences when true parameters are known. We

further discuss how these models can be extended to a more

general non-parametric approach to shape estimation.

1. Introduction

The subject of studying diffusions of shapes dates back

to the work of Kendall [13], where Brownian motion is con-

sidered on the space of points in R
n after excluding similar-

ity transformations. A more recent work by Ball et. al. [3]

adds an additional drift term to the random perturbations of

the shapes to construct Ornstein-Uhlenbeck processes in the

appropriate Kendall and Goodal-Mardia coordinates. The

authors obtain the stationary distributions of the proposed

processes which facilitates the parameter estimation. In our

work we focus on shapes which do not change their topol-

ogy so their deformations can be appropriately described by

stochastic flows of diffeomorphisms [14]. Such processes

have been studied in the context of images in [6], in the

context of landmarks in [22], and extended to the infinite-

dimensional spaces of curves and surfaces in [21]. Stochas-

tic fluid flows derived from variational principles are intro-

duced in [10], and [1] addresses the problem of noise es-

timation in such models. In the context of template and

variance estimation, the authors in [16] and [17] propose to

look for most probable paths as realizations of a diffusion

process on the manifold of landmarks to eliminate the need

to resort to linearization of the nonlinear space.

While these previous works are motivated by the

computational anatomy problems of registration under

uncertainty and variance estimation, and concentrate on

obtaining random shape perturbations as deviations from

geodesic paths, we focus on the task of constructing more

informative parametric deformations for shapes (here 2D

contours) and estimating their underlying parameters from

a sequence of observations. Our approach is geometric,

we define a diffusion process on the landmark manifold

whose drift terms describe the shape’s intrinsic ‘trend’ and

are obtained as a gradient of a function over the shape. The

unknown parameters represent the strength of the effect

of the drift term and Girsanov formula provides the form

of the likelihood ratio with respect to the law of a process

with no drift, which eventually is maximized to obtain their

estimates1.

Organization. We begin with a brief introduction of the ge-

ometry of the landmark manifold. In Section 2.1 we de-

scribe several different ways for constructing diffusions on

manifolds and highlight the ones which are suited for nu-

merical simulation in our context. Next in Section 3, we

define the noise model of our choice and relate the corre-

sponding diffusion to Brownian motion on a Riemannian or

sub-Riemannian manifold. In Section 4 we introduce sev-

eral drift models and in Section 5 we show sample shape

paths they can yield. In Section 6 we address the task of

estimating the missing diffusion parameters.

2. Diffusions of Shapes

We represent the boundary of the shape by a sequence
of m distinct points in R

2 denoted by χ. The space of all
such discretized contours M forms a 2m-dimensional man-
ifold as described in Section 30.3.2 [20]. Fortunately, many
geometric objects on this manifold can be derived and com-
puted: geodesics, exponential map, parallel transport [25],
curvature [15], etc. We define the Riemannian metric on the
manifold of landmarks by

‖c‖2χ = c
T
K(χ)−1

c, (1)

1this work appears in [18]
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where c is a tangent vector on the shape manifold. We as-

sume that the matrix K(χ) is block-diagonal and each block

consists of the evaluations K(xi, xj) = e−‖xi−xj‖/2σ
2

I2,

where xi and xj are two points in R2, and I2 is the 2 × 2
identity matrix. Note that this representation does not

include invariance under transformations such as transla-

tion/scale. Often when we observe a sequence of shapes,

we are interested in their motion or growth, which requires

studying both affine and more general nonlinear deforma-

tions.

Our goal is to define diffusion equations on M of the
form

dχt = A(χt, θ)dt+B(χt)dWt, (2)

where χt specifies a process on M, A(χt, θ) is an element

of Tχt
M with a parameter θ, and B(χt)dWt corresponds

to a Brownian motion on M with a mixing matrix B(χt)
whose details we will specify later. In the following sec-

tions, we will denote by M a general d-dimensional Rie-

mannian manifold, with a generic element X or x. Special-

izing the discussion to landmark manifold results, we take

M = M, d = 2m, and a generic element will be denoted

by χ.

2.1. Diffusions on Manifolds

There are several approaches for formulating diffusion

processes (and their corresponding SDE’s) on manifolds.

Here we introduce the ones relevant to our work; for a more

extensive treatment of the topic one can refer to the rich lit-

erature in [7, 11, 5]. We discuss both Stratonovich and Itô

formulations.

Stratonovich SDE’s on Manifolds. Since Stratonovich
calculus follows classical differentiation rules, it is easy
to define Stratonovich SDE’s in local coordinates, which
would appropriately transform under change of coordinates.
For that we simply define A to be a smooth vector field
on a d-dimensional manifold M and B(Xt) to be a map-
ping from R

n to TXt
M (n ≤ d) at each Xt, and define the

stochastic differential equation on M as

dXt = A(Xt)dt+B(X) ◦ dWt, (3)

where Wt is an n-dimensional Brownian motion, and B
converts a Brownian motion on R

n to a process on the tan-
gent bundle of M (a more general formulation allows for a
time-dependent drift A(Xt, t), but will focus on the time-
independent case). A solution of (3) is any process Xt

which satisfies the above equation in any local chart. Let
{ai}di=1 and {bik}

d
i=1 be the coefficients of the vector fields

A,B1, ...Bn in the local chart. The Stratonovich equation
then takes the form

dX
i(t) = a

i(Xt)dt+
n∑

k=1

b
i
k(Xt) ◦ dwk(t), i = 1, ..., d, (4)

and under change of parameterization ϕ : R
d → R

d the
equations transform according to

dϕ
i(Xt) =

n∑

j=1

∂jϕ
i
a
j(ϕ(Xt)) +

+

n∑

j=1

n∑

k=1

∂jϕ
i
b
j
k(ϕ(Xt)) ◦ dwk(t). (5)

Alternatively, we can consider n smooth vector fields on
M denoted as B1, ..., Bn (Bi : M → TM for i = 1, ..., n)
and define the SDE

dXt = A(Xt)dt+

n∑

k=1

Bk(Xs) ◦ dwk(s), (6)

whose solution satisfies for any smooth function with com-
pact support on M

f(Xt)− f(X0) =

∫ t

0

Af(Xs)ds+

∫ t

0

n∑

k=1

Bkf(Xs) ◦ dwk(s).

(7)

Selecting n = d is not necessary, however, this choice
becomes important in the special case when the manifold
of interest is parallelizable, i.e. when there exists a global
frame of vector fields on M . Then the local representation
becomes global. Fortunately, this is true when M = M.
By evaluating the kernel at each individual point on the
curve, we obtain a basis of vector fields on the tangent
space: {K(χ, x1)ep, ...,K(χ, xm)ep} (p = 1, 2), which
varies smoothly when changing the points, i.e. we have 2m
smooth vector fields which when evaluated at a fixed point
form a basis for the tangent space at that point. We denote
them by E1(χ), ..., E2m(χ). Then we can write the above
SDE in this basis

dχt =
2m∑

k=1

αk(χt)Ek(χt)dt+
2m∑

k=1

Ek(χt) ◦ dwk(t). (8)

Itô SDE’s on Manifolds. In a given coordinate chart we
can define the following Itô equation [12]:

dX
i(t) = â

i(Xt)dt+

n∑

k=1

b
i
k(Xt) · dwk(t), i = 1, ..., 2m, (9)

where the pairing b · dw corresponds to the classical Itô dif-
ferential. Under change of coordinates, Itô equations are
required to satisfy Itô’s formula:

dϕ
i(Xt) =

d∑

j=1

∂jϕ
i
â
j(Xt)dt+

+
1

2

d∑

j=1

n∑

k=1

n∑

l=1

∂klϕ
i
b
j
k(Xt)b

j
l (Xt)dt+

+
d∑

j=1

n∑

k=1

∂jϕ
i
b
j
k(Xt) · dwk(t), (10)
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and the equation can be converted from Itô to Stratonovich

form and vice versa using the standard rules

dX
i(t) =

[

â
i(Xt)−

1

2

d∑

j=1

n∑

k=1

b
j
k(Xt)∂jb

i
k(Xt)

]

dt+

+

n∑

k=1

b
i
k(Xt) ◦ dwk(t), i = 1, ..., d.

(11)

One can observe that in order for the Itô formula to be

satisfied, under change of coordinates the transformation of

â has to depend on the bk’s, i.e. it cannot be defined as a

vector field on the manifold.

Diffusions through the Riemannian Exponential
Map. An alternative approach to defining Itô equations
resorts to the Riemannian structure on the manifold of in-
terest and the associated exponential map (Baxendale[4],
Belopolskaya-Daletsky[5] forms). Let expX : TXM → M
be the Riemannian exponential map on M and consider the
solution of equation

dXt = expXt
(A(Xt)dt+B(Xt)dWt), (12)

where the forward stochastic differential

A(Xt)dt+B(Xt)dWt (13)

corresponds to the class of diffusion processes in TXt
M

whose drift and noise terms coincide locally with A and B,
i.e. they satisfy the equation

u(t+ s) =

∫ t+s

t

Ã(uτ )dτ +

∫ t+s

t

B̃(uτ )dwτ , (14)

where Ã(uτ ) is a vector field on TXt
M , and B̃(uτ ) : R

n →
TXt

M , Ã(0) = A(Xt) and B̃(0) = B(Xt) in a neighbor-

hood around the origin of TXt
M and zero outside.

The Taylor series expansion for any curve X(t) on M in
local chart is

X(t) = X(0) + tẊ(0) +
1

2
t
2
Ẍ(0) + o(t2), (15)

which provides an approximation for the exponential map

expX(tv) = X + tv −
1

2
t
2
ΓX(v, v) + o(t2), (16)

where ΓX

(

∂
∂xi ,

∂
∂xj

)

= Γk
ij

∂
∂xk and Γk

ij the Christoffel
symbols associated with the connection on M . Using this
expansion one can obtain a local chart formulation of (12):

dXt = A(Xt)dt−
1

2

d∑

k=1

Γk
ij

n∑

l=1

b
i
l(Xt)b

j
l (Xt)

∂

∂xk
dt+

+
n∑

k=1

bk(Xt) · dwk(t). (17)

We observe that the drift coefficients of the Itô equation
contain a correction term due to the non-flatness of the man-
ifold:

â
k = a

k −
1

2
Γk
ij

n∑

l=1

b
i
l(Xt)b

j
l (Xt). (18)

Diffusions as a Limit of a Random Walk on a Mani-

fold. Intuitively, a diffusion should be a limit of small steps

on the manifold in a given direction with noise added to

them. Baxendale [4] introduces an approach closest to this

idea.

Let µ be a zero mean Gaussian measure on C(TM) (the
continuous vector fields on M ), and let Wt be the associated
Wiener process. Let A be a smooth vector field on M . Set
Vt = tA+Wt. Define a partition π = {t0 = 0, t1, ..., tN =
T}. Suppose Xπ

tj satisfies

X
π
tj+1

= expXπ
tj

(∆jVt(Xtj )), j = 0, ..., N − 1. (19)

It can be shown that under suitable conditions Xπ
tj con-

verges to a Markov process Xt on [0, T ] as the mesh π be-
comes denser, which corresponds to the Itô SDE:

dXt = dVt = Adt+ dWt. (20)

and justifies the discretization scheme below for small val-
ues of dt

Xt+dt = expXt
(A(Xt)dt+B(Xt)Wt). (21)

On the shape manifold we can numerically compute the

exponential map by solving a system of ordinary differen-

tial equations (in Hamiltonian form [20], eq. 30.5). Thus

the Baxendale/Belopolskaya/Daletsky approach of defining

a diffusion process through the exponential map is prefer-

able for simulating diffusion paths and eliminates the need

to resort to Stratonovich equations or computing correction

terms.

3. Noise Models

In this section we define the form of the vector fields
B1, ..., Bn, which in turn determines the covariance of the
noise in the diffusion equations. We temporarily assume the
drift A(χt) is zero, i.e. the motion of individual points is
driven only by the mixing of the individual Brownian mo-
tions. There is zero mixing when B1, ..., Bn form an or-
thonormal frame, and in that case the process corresponds
to a standard Brownian motion on the manifold. This re-
quires that the local coordinates satisfy bikgijb

j
l = δk,l.

When n = m this is equivalent to bikb
j
k = gij , where gij

are the coefficients of the inverse of the Riemannian metric.
Let bil(χt) be the il’th entry of Σ(χm), then in matrix form
this entails to:

Σ(χm)Σ(χm)T = K(χm, χm). (22)
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Since K is symmetric positive-definite, a unique symmetric
positive-definite square root exists:

Σ(χm) = K(χm, χm)1/2. (23)

Using the exponential map formulation the Brownian
motion on the shape manifold can be written as

dχt = expχt
(Σ(χt)dWt). (24)

Suppose χn is a subset of the points in χm. We can
reduce the computational burden of computing the ex-
ponential map by restricting the random deformations to
be driven by the motion of these points (hence called
them control points [2, 24, 19]). For that we require
that the vector fields driving the deformations belong to
the tangent bundle of the submanifold associated with
this subset of points. Geometrically, we restrict to hor-
izontal paths on a sub-Riemannian manifold, and if we
set Σ(χm) to be the positive-semidefinite square root of
K(χm, χn)K(χn, χn)

−1K(χn, χm):

Σ(χm) = K(χm, χn)K(χn, χn)
−1/2

, (25)

(24) is the horizontal Brownian motion on the shape mani-

fold as defined in [9].

4. Drift Models

Next we propose several models for the diffusion drifts.

4.1. Constant Drift

A simple drift formulation assumes the coefficients of
the vector field are constant with respect to some basis of
vector fields E1, ...En on M:

A(χt, θ) =

n∑

i=1

Ei(χt)θi. (26)

The choice of a basis is important: a drift constant with
respect to one basis may not be constant with respect to
another one. We will consider two special cases: the basis
obtained by evaluating the kernel at a set of control points
(i.e. the covector associated with the drift is fixed):

A(χt,θ) =
n∑

i=1

K(χt, xi)θi = K(χt)θ, (27)

or an orthonormal basis as defined in Section 3

A(χt, θ) = Σ(χt)θ. (28)

We allow for the vector fields E1(χt), ..., En(χt) to span

only a subspace of the tangent space when n < m.
The diffusion process with this drift written in exponen-

tial map form

dχt = expχt
(K(χt)θdt+Σ(χt)dWt), (29)

can be interpreted as a random walk with a fixed trend.

4.2. Shape Gradient Drifts

Although intuitively simple, the constant drift model
does not preserve its properties under change of coordi-
nates. Thus, we are urged to construct models which pos-
sess drift terms with intrinsic properties. A natural approach
is to consider a “potential” function U :→ R, and the corre-
sponding stochastic gradient flow with a drift −∇U . Thus
the drift will “push” the process toward the minimizer of
the potential function. The “strength” of this push can be
determined by a parameter θ, yielding a process

dχt = expχt
(θ∇U(χt) +Σ(χt)dWt), (30)

where B(χt) can represent the Brownian motion coeffi-

cients in a Riemannian or sub-Riemannian sense, and the

diffusion is in Belopolskaya-Daletsky form.
Riemannian gradient. As U is a function on the Rie-

mannian manifold M, the gradient is a vector field on M
and satisfies for any other vector field v:

(dU |v)χ = 〈∇U, v〉χ, (31)

where (dU |v)χ represents the action of the differential of U

on v evaluated at χ.
In local coordinates the inner product can be written as

〈∇U, v〉χ = (∇U
M

χ )TK(χ, χ)−1
vχ, (32)

where by ∇UM
χ we denote the evaluation of the Rieman-

nian gradient to distinguish from the Euclidean gradient
∇Uχ. Further, the action of the differential can be written
in terms of the Euclidean inner product

(dU |v)χ = ∇U
T
χ vχ. (33)

The condition in (31) becomes

∇U
T
χ vχ = (∇U

M

χ )TK(χ, χ)−1
vχ, (34)

hence the form of the Riemannian gradient is

∇U
M

χ = K(χ, χ)∇Uχ. (35)

Horizontal gradient. When working on a sub-Riemannian
manifold and equipped only with a sub-Riemannian metric,
we resort to the definition of a horizontal gradient: a vector
field in the distribution H which satisfies for every horizon-
tal vector field v

(dU |v) = 〈∇H
U, v〉H. (36)

Let’s assume the form of the horizontal gradient in lo-
cal coordinates is ∇H

χm
U = K(χm, χn)α and the form

of an arbitrary vector field in local coordinates is v =
K(χm, χn)β. According to (36) the coefficients of the hor-
izontal gradient need to satisfy

∇U
T
χm

K(χm, χn)β = α
T
K(χn, χn)β, (37)

i.e.

α = K(χn, χn)
−1

K(χn, χm)∇χmU, (38)
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and therefore

∇H

χm
U = K(χm, χn)K(χn, χn)

−1
K(χn, χm)∇χmU. (39)

This formulation will be used in the models in the next two

sections.

4.2.1 Mean-reverting drift

In this section we mathematically describe a process for
which the shape is free to vary from step to step but in
the long run does not deviate much from a fixed template
shape. We are motivated by the following definition of the
Ornstein-Uhlenbeck process on R:

dXt = θ(µ−Xt)dt+ dWt, θ > 0. (40)

Like Brownian motion, this process is Gaussian and Marko-
vian, however, it also admits a stationary distribution (and
is the unique process which possesses these three properties
simultaneously). The stationary behavior can be understood
by rewriting the drift of the process as a gradient of a func-
tion:

dXt = expχt
(θ∇Xt

[

−
(Xt − µ)2

2

]

+ dWt). (41)

The drift of the process can now be interpreted as a force
pushing toward the minimizer of the squared distance be-
tween Xt and the fixed element µ, and, due to the stochas-
tic effect of the Brownian motion term, the process ends
up oscillating around the mean (hence the commonly used
name “mean-reverting” process). To transfer this idea to
the space of shapes, we define the potential function as
U = dist(χt, µ) where µ is a mean shape (in practice, it
can be represented by a template shape calculated from a set
of training data). In a Riemannian framework it is natural
to take this distance to represent the length of the geodesic
path connecting Xt and µ, i.e. solution of the following
minimization problem:

dist(χt, µ) = min
v: χt=expµ(v)

‖v‖ (42)

The calculation of the gradient of the distance involves com-
puting the logarithm map between χt and µ, which requires
solving an optimization problem, and relies on having the
correct correspondence of the landmarks of the two shapes.
To simplify this step, we instead define U to be a function
which measures the area of mismatch between the shapes
determined by χt and µ. Since area is invariant under pa-
rameterization, it is an intrinsic geometric property. For that
first we can construct two binary images of the same pre-
determined size Iχt

and Iµ which are nonzero in the interior
of the corresponding contours. Then we let U = |Iχt

− Iµ|,
i.e. the number of mismatched pixels. The continuous ver-
sion of U would give us the area of mismatch of the two
regions, and can be written as an integral of a function over

the region enclosed by χt (denoted by Ωχt
):

U(χt) =

∫

R2

|Iχt − Iµ|dx (43)

∝

∫

Ωχt

(|1− Iµ(x)| − |0− Iµ(x)|
︸ ︷︷ ︸

F (x)

)dx. (44)

We observe that the function U(χt) can be written as an

integral of a function over the domain of the shape χt:
∫

Ωχt

F (x)dx. We can obtain the gradient by applying the

divergence theorem to convert the integral to one over the

boundary of the region which can be further discretized to

obtain an explicit form. We provide details in Section 4.2.3.

The parameter θ determines how strongly the shape is
attracted to the mean shape:

dχt = expχt

(

−θ∇M
U(χt)dt+Σ(χt)dWt

)

. (45)

This model can easily be generalized to the case when
we have multiple template shapes µ1, ..., µp and we would
like to learn how the object is attracted to each of them. We
can consider

dχt = expχt

(

−

p∑

i=1

θi∇
M

dist(χt, µi) +Σ(χt)dWt

)

. (46)

We call this a “regression drift”.

4.2.2 Shape descriptor drifts

In the absence of a template shape, we consider more gen-
eral characteristics of the shape. For example, suppose that
we have knowledge about the average length Lµ and area
Aµ of the object. Since these are scalar measures, the po-
tential function can simply be set to the quadratic deviation
of the shape’s length and area from the mean values: we set
U1(χt) = − 1

2
|Lχt

−Lµ|
2, U2(χt) = − 1

2
|Aχt

−Aµ|
2, and

define A(χt, θ) = θ1∇
MU1(χt) + θ2∇

MU2(χt):

dχt = expχt

(

θ1∇
M

U1(χt) + θ2∇
M

U2(χt) +Σ(χt)dWt

)

.

(47)

The gradients of these functions are also computable and

we provide the derivations in the next section.

We can generalize to p shape descriptors mi with aver-
age values mi

µ by defining a potential function

U(χt) =

p∑

i=1

θidist(m
i(χt),m

i
µ)

2
, (48)

where the distance is appropriate for the space each shape

descriptor is defined in.
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4.2.3 Discretized gradients

In this section we provide explicit calculations of the

gradients appearing in the shape models described in

the previous two sections. We first obtain the Euclidean

gradients and then Riemannian/sub-Riemannian gradients

can be obtained by equations (35) and (39).

Template mismatch:
The mismatch from the template is calculated according to

U =

∫

Ωχt

F (x)dx, (49)

where F (x) = |1−Bµ(x)| − |Bµ(x)| = 1− 2Bµ(x). The
gradient can be approximated by

∇U ≈
m∑

i=1

F (xi)Ni|xixi+1|, (50)

where Ni indicates the outward normal (when points are

ordered clockwise) at the midpoint of the line segment

xixi+1, and |xixi+1| is the length of the segment.

Area:
The area of a polygonal curve with points x1..., xm is

A =
1

2

m−1∑

i=1

det(xi, xi+1). (51)

The Euclidean gradient of the discretized area with respect
to the xi’th point takes the form:

∇xiA =
1

2

[

x
(2)
i+1 − x

(2)
i−1

x
(1)
i−1 − x

(1)
i+1

]

, (52)

where the superscripts indicate the coordinates of the

points.

Length:
We represent the length in the following way

L(χ) =

m−1∑

i=1

‖xi − xi+1‖, (53)

where ‖ · ‖ is the Euclidean norm. The length gradient is

∇xiL =
xi − xi+1

‖xi − xi+1‖
−

xi−1 − xi

‖xi−1 − xi‖
. (54)

5. Simulation of Shape Paths

We generate realizations of the proposed dynamical

shape models by numerically integrating the corresponding

SDEs. The initial shape is a circle of radius 10 represented

by 63 points and the number of control points is 9. The

deformation kernel width is set to σ = 10. In Figure 1

we display the simulated sequences on a 3D plot in which

Figure 1: Simulated 2D shape diffusion paths: the third di-

mension indicates time (the black traces correspond to the

positions of the control points)

the third dimension corresponds to time. The diffusion is

simulated up to time T = 30. The black stripes corre-

spond to the locations of the control points. The template in

the Ornstein-Uhlenbeck drift is a dumbbell, and the process

eventually starts to oscillate around this shape. Note, since

the distance to the template is based on the area of over-

lap, the number of points on the ellipse does not need to be

equal to the number of points on the circle. The templates

in the regression drift are two ellipses: as a result the con-

tour stretches along its path both vertically and horizontally.

The shape drift contains terms forcing the deformed shapes

to have length and area similar to those of the original circle,

thus the simulation path stays rigid.
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6. Estimation of Drift Parameters in Shape Dif-

fusions

Given observations {χt, t ∈ [0, T ]} from the Itô process
χt on M satisfying

dχt = expt(A(χt, θ)dt+B(χt)dWt), (55)

(note we assume we have continuous measurements) we

would like to find an estimate for the drift parameters stored

in θ. Although in practice we can never obtain observations

in continuous time, methods for estimating the parameters

in this case lead to natural approaches to the problem in

the case when observations occur at discrete times. We

consider likelihood-based estimation, but before addressing

how to solve the problem on the space of shapes, we briefly

review the methodology for processes in Euclidean space.

6.1. Maximum Likelihood for Processes on R
n

Let Xt be a diffusion process on R
n:

dXt = A(Xt, θ)dt+B(Xt)dWt, t ∈ [0, T ]. (56)

Let Pθ be the measure generated by the process Xt. A like-
lihood function for θ is obtained by introducing the mea-
sure P corresponding to process (56) when A(Xt, θ) = 0
(driftless diffusion), and considering the Radon-Nikodym
derivative of Pθ with respect to P . Assume that the matrix
C(x) = B(x)B(x)T is non-singular. Girsanov theorem
states that under the following Novikov condition

Eθ exp

(∫ T

0

A(Xt, θ)
T
C(Xt)

−1
A(Xt, θ)dt

)

< ∞, (57)

Pθ is absolutely continuous with respect to P and the cor-
responding Radon-Nikodym derivative takes the form

dPθ

dP
(X) =

∫ T

0

A(Xt, θ)
T
C(Xt)

−1
dXt−

−
1

2

∫ T

0

A(Xt, θ)
T
C(Xt)

−1
A(Xt, θ)dt. (58)

When C is not invertible (which is always the case when

n < m), C−1 can be substituted with B((BTB)†)2BT ,

where (BTB)† is the generalized pseudo-inverse of BTB

[23]. A likelihood function can be defined l(θ,X) =
dPθ

dP (X), and an MLE estimate for θ can be obtained by

maximizing l with respect to θ.
When measurements are observed at discrete equally

sampled times: t0, t1, ..., tN with h = ti+1 − ti, the ap-
proximation of the likelihood ratio is

lh,N (θ,X) =

N∑

i=1

A(Xti−1
, θ)TC(Xti−1

)−1(Xti −Xti−1
)−

−
h

2

N∑

i=1

A(Xti−1
, θ)TC(Xti−1

)−1
A(Xti−1

, θ).

(59)

which can be maximized to obtain an MLE estimate for θ.

6.2. Discrete Likelihood Ratio

To obtain intuition of what the likelihood ratio represents
for diffusions on a manifold, we look at its approximation
by considering a discretized version of the diffusion eval-
uated at finitely many time points t0, ..., tN with distance
between them ∆j = tj+1 − tj . Using the exponential map
form of the Itô equation, we can write the process as

χtj+1
= expχtj

(

∆jA(χtj , θ) +
√

∆j

n∑

i=1

Bi(χtj )εi(tj)

)

,

(60)

where j = 0, ..., N − 1, and εi’s are independent standard

normally distributed r.v.’s.
We are interested in the ratio of the joint probability

density function of χt0 , ..., χtN denoted by pθ(χ0:N ), and
p(χ0:N ), the probability density function of a diffusion pro-
cess without a drift

χtj+1
= expχtj

(
√

∆j

n∑

i=1

Bi(χtj )εi(tj)

)

. (61)

After some algebraic manipulations we obtain

pθ(χ1:N )

p(χ1:N )
∝ exp

( N∑

j=0

logχtj
(χtj+1

)TB(χtj )
−T

B(χtj )
−1

A(χtj , θ)−

−
∆j

2
A(χtj , θ)

T
B(χtj )

−T
B(χtj )

−1
A(χtj , θ)

)

.

6.3. Girsanov Theorem on Manifolds

Girsanov theorem has been generalized to differentiable
manifolds by Elworthy in [7] (p. 263). Let Xt and Yt be
two processes on an m-dimensional Riemannian manifold
M (with a metric 〈, 〉):

dXt = A(Xt, θ)dt+

m∑

k=1

Bk(Xt) ◦ dwk(t), (62)

dYt =

m∑

k=1

Bk(Yt) ◦ dwk(t). (63)

Let’s denote by PX and PY the measures corresponding to
Xt and Yt. Girsanov theorem states that under sufficient
regularity conditions PX is absolutely continuous with re-
spect to PY , and for orthonormal B1, ..., Bn

dPX

dPY
(X) = exp

(∫ T

0

〈A(Xt, θ), dXt〉−

−
1

2

∫ T

0

〈A(Xt, θ), A(Xt, θ)〉dt

)

. (64)

Let ρ ∈ C([0, T ],M), i.e. it is a continuous path on M .
To find an estimate for the unknown parameters we need to
maximize the function lρ(θ):

lρ(θ) = E

[
dPX

dPY
(X)

∣
∣
∣
∣
X = ρ

]

(65)

with respect to θ, where ρ is the observed process.
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6.4. Likelihood­ratio Estimators

We derive the likelihood ratio function for the drift mod-

els proposed in Section 4. Given observations χt0 , ..., χtN ,

we approximate the integrals in the likelihood ratio by

sums and the differential dχtj by log(χtj , χtj+1
), where

log(χtj , ·) is the Riemannian logarithm map at χtj . The

validity of such discretization is justified in Theorem 7.37

[8]). We note that in all the considered cases the drift is

linear with respect to the parameter θ. This simplifies the

likelihood maximization and we provide explicit MLE

estimates (denoted by θ̂ below).

Constant drift:

θ̂ =
1

T

N−1∑

j=1

K(χtj )
−1 log(χtj , χti+1

) (66)

Mean-reverting drift:

θ̂ =

∑N−1
j=0 〈∇dist(χtj , µ), log(χti , χti+1

)〉
∑N−1

j=0 ‖∇dist(χtj , µ)‖
2dt

(67)

Shape descriptor drift:

[
θ̂1

θ̂2

]

=

(
N−1∑

j=0

Mj∆j

)−1

b, (68)

where Mj as the Grammian matrix of ∇|L(χtj )− L|2 and

∇|A(χtj )−A|2, and

b =

[ ∑N−1
j=0 〈∇|L(χtj )− L|2, log(χtj , χtj+1

)〉
∑N−1

j=0 〈∇|A(χtj )−A|2, log(χtj , χtj+1
)〉

]

(69)

6.5. Estimation results

We present the performance of the likelihood ratio esti-

mator for the different types of diffusion drifts in Figure 2.

We look at the empirical convergence of the estimates as

time increases while keeping the time step fixed. We per-

form the experiment 100 times and plot how each estimate

of θ changes with time. On the left the parameter estimates

for each experiment are plotted against the true parameter

represented by a red line; on the right we summarize the

distribution by displaying the quantiles for the sample at

different levels. In all cases, we observe that as time in-

creases, the average of the MLE estimates approaches the

true parameter. The code for the experiments can be found

at https://github.com/valentina-s/ShapeDriftEstimation.

7. Conclusion

We have proposed methodology for modeling and esti-

mation of drifts in diffusion processes of shapes. The ap-

proach provides many opportunities for describing shape

variations: from ones constrained to oscillate around a fixed

(a) Constant drift

(b) Mean-reverting drift:

(c) Area Drift

(d) Length Drift

Figure 2: Empirical convergence of parameter estimates:

(a) estimation of one of the constant drift’s parameters; (b)

estimation of a mean reverting-drift parameter - initial shape

is a circle, template shape is a dumbbell; (c,d) estimation

of the coefficients in a shape descriptor drift; there is sig-

nificant variation in the initial estimates of the coefficients,

some of which are outside of the vertical range of the plots,

but with time they quickly approach the true parameter.

shape, to ones which only restrict the geometric properties

of the shape (such as length and area) without imposing spe-

cific structure. It is trivial to include higher-order shape de-

scriptors, such as curvature and torsion, and as each closed

contour can be represented by its moments, this can provide

a nonparametric framework for learning shape evolution.

The promising numerical convergence of the parameter es-

timates on simulated shapes motivates future work to estab-

lish their theoretical properties and test the performance on

contours extracted from image segmentations. Going be-

yond estimation, the likelihood ratio can be used in testing

and classification, and can turn into a powerful tool for the

statistical analysis of shape time series.

45

https://github.com/valentina-s/ShapeDriftEstimation


References

[1] A. Arnaudon, D. D. Holm, A. Pai, and S. Sommer.

A stochastic large deformation model for computational

anatomy. arXiv:1612.05323, 2016. 1

[2] F. Arrate, T. Ratnanather, and L. Younes. Diffeomorphic ac-

tive contours. SIAM J. Imaging Sci., 3(2):176–198, 2010.

4

[3] F. Ball, I. Dryden, and M. Golalizadeh. Brownian mo-

tion and Ornstein-Uhlenbeck processes in planar shape

space. Methodology and Computing in Applied Probability,

10(1):1–22, 2008. 1

[4] P. Baxendale. Measures and Markov processes on function
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