
An Early Experience Toward Developing Computer Aided Diagnosis for

Gram-Stained Smears Images

Johanna Carvajal †, Daniel F. Smith †, Kun Zhao †, Arnold Wiliem †, Paul Finucane⋄,

Peter Hobson⋄, Anthony Jennings⋄, Rodney McDougall⋄, Brian Lovell †

†
The University of Queensland, Australia

⋄
Sullivan Nicolaides Pathology, Australia

Abstract

Gram stained direct smears test is clinically useful

in early identification of infections. Unfortunately, this

practice is considered time consuming and labour inten-

sive. Most existing effort in this area is to perform high-

magnification analysis of images taken from manually se-

lected areas. In this paper, we address the problem of the

automatic selection of candidate areas (or patches) for sub-

sequent high-magnification analysis. Specifically, we ex-

plore and study the possibility of selecting good working

areas based on low-magnification images, where bacteria

are likely to be found when viewed in high-magnification

images. To this end, we develop an approach to classify

the areas of interest according to the textural information

of the image patch. We explore and study the efficacy of tra-

ditional textural features such as Histogram of Gradients,

Local Binary Patterns, and 2 Dimensional Discrete Cosine

Transform. Experiments show that the best variant method

is able to select working areas where it is likely to find bac-

teria in high-powered objective images in a wide range of

images.

1. Introduction

Pathology is a key foundation in our modern health-

care system as often results from pathology tests help

physicians in making accurate diagnoses. Unfortunately,

some pathology tests requiring microscopy readings are

considered subjective, time consuming and labour inten-

sive. Recent effort to address these issues is by develop-

ing Computer Aided Diagnosis (CAD) systems that allow

the pathologists to spend their precious time on the posi-

tive cases [1, 11, 16, 34]. In fact, the CAD systems can be

used for the following scenarios: (1) rejecting easy nega-

tive cases [34]; (2) providing estimated numbers of objects

of interest [4, 21] and (3) localising good areas to anal-

yse [11, 16].

Whilst many CAD systems have been developed, in this

work we address the development of CAD systems for the

Gram stained direct smears test. For the sake of brevity

we shall name this test as the Gram stain test. The Gram

stain test offers a fast and inexpensive way for physicians

to manage patients with bacterial infections [22]. Despite

its benefits, the test still requires manual microscopy read-

ings. To our knowledge, the highest state of automation for

this test is only at the pre-analytical process [2]. Existing

works [6, 13] primarily aim to detect the existence of bac-

teria, leukocytes and epithelial cells. Although progress has

been made by these works, unfortunately, these works as-

sume that the areas of interest have been pre-selected. Auto-

matic area of interest selection is an important step to have

a fully automated CAD system for this application. This

is because, generally, the analysis is done by using high-

powered objectives (e.g. 100x) and therefore capturing the

whole slide using the high-powered objective is not practi-

cal for real scenarios due to extremely long scanning time,

large image storage, and processing time. Moreover, when

making a diagnosis, it is a common practice only to exam-

ine a fixed number of regions of each slide, rather than the

entire slide.

The problem of automatically selecting areas of interest

has been investigated in various pathology tests [1, 11]. For

instance, Angulo and Flandrin [1] use a mathematical mor-

phology approach to select areas of interest for peripheral

blood smears. Unlike images taken from the Gram stain

test, the peripheral blood smears images are relatively more

consistent. Thus, the segmentation approach such as pro-

posed by Angulo and Flandrin in [1] may require manual

tuning for each slide; thus, making it unsuitable to address

our problem. Another approach is to train an area of in-

terest detection by constructing a training dataset consist-

ing of positive (i.e. the locations of interest) and nega-

tive (i.e. background/other locations) samples. Some ap-

proaches proposed for histopathology image analysis fol-

low this fashion [11]. However, these works aim at detect-

ing much bigger structures such as suspicious lesions. Un-
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like these works, our main aim is to find good areas using

low-magnification images to look for the existence of bac-

teria when viewed at higher magnification. In other words,

we are looking for areas to examine for bacteria, not bac-

teria itself. As bacteria size is generally extremely small.

For example, an average coccus-shaped bacterium size is

about 0.5-1.0 micrometer in diameter and an average bacil-

lus size is 0.5-1.0 micrometer wide by 1.0-4.0 micrometer

long [12].

Bacteria are almost impossible to see using naked eyes

under low-magnification objective such as 2.5x. This means

that in this paper we ask a much more difficult question that

states whether it is possible to extract useful information

extracted from low-magnification objective images that will

indicate good areas to look for the existence of bacteria.

Contributions: We list our contributions as follows. (1)

In order to stimulate the interest in the community on this

problem, we propose a benchmark evaluation dataset. The

dataset comprises 1,293 images which were extracted from

various body parts of patients with different medical con-

ditions. It is expected that the dataset will be expanded in

the future. (2) We explore various design choices such as

feature choices in developing the area of interest detector.

The best performing method will set the baseline for the

proposed dataset.

We continue our paper as follows. Section 2 presents

related works, followed by the problem definition in Sec-

tion 3. The dataset is described in Section 4. Section 5

describes our proposed baseline approach. Experiments are

presented in Section 6. Finally, we present the main find-

ings and future work in Section 7.

2. Related Work

The discussion in this section is divided into three sub-

sections: (1) the Gram stained direct smears test; (2) fea-

tures used in microscopic image analysis, and (3) the prob-

lem of imbalanced training data.

Gram stained direct smears test - Existing works in this

domain focus on the detection, recognition, counting, and

classification of bacteria [5, 6, 14]. For instance, a contour

technique is used for bacterial shape detection and identifi-

cation in [5]. Hiremath et al. proposed an automatic clas-

sification of bacterial growth phases of bacilli cells in dig-

ital microscopic cell images [14]. To this end, geometric

features were extracted and several classifiers were used,

such as: k-NN, Neural Network, and Fuzzy classifiers. Fi-

nally, leukocyte and epithelial cell detection in Gram stain

images was obtained via a multiple region covariance ap-

proach in [6]. The multiple region covariance approach pro-

vided an efficient way to classify cells.

Microscopic image descriptors - Computer vision tex-

ture descriptors have been used for microscopic image char-

acterisation. Among them we can find Histogram of Gradi-

ents (HOG), Local Binary Patterns (LBP), 2-Dimensional

Discrete Cosine Transform (2D-DCT), morphology, shape

features, wavelets, and colour [19, 24, 35]. For instance,

HOG features were used to extract anatomical information

in brain images. If two anatomical structures in the brain

images depict comparable appearance and are positioned

in a similar area both should be considered as the same

label class [29]. HOG features were also explored for re-

nal disease detection using microscopic images of the kid-

neys [17].

LBP is another popular feature descriptor that has been

used for microscopic images. Some of the LBP variants are

examined for the classification of different types of human

breast tissue images [36]. LBP is also employed to classify

human embryo microscope images aiming to automatically

evaluate whether the embryo is suitable for implantation in

in-vitro fertilisation [37]. Texture features based on LBP,

higher-order spectra, and Laws texture energy are used to

describe microscopic images containing oral sub-mucous fi-

brosis for the oral cancer identification [18].

Besides HOG and LBP, 2D-DCT features have been also

employed in microscopic images. 2D-DCT are extracted

to recognise blast cells in the bone marrow of patients af-

fected from Acute Lymphoblastic Leukaemia (ALL) [23].

The aim is to describe microscopic images with specimen

blood samples and classify the image into benign or ma-

lignant. The combination of HOG and LBP features has

been used to recognise signs of some lung lesions using

computed tomography images [33]. HOG and 2D-DCT are

fused to identify organelles from fluorescence microscopy

images of HeLa cells [15]. Organelles are employed to indi-

vidualise new-found genes or genes with an unknown func-

tion. A wide range of feature types are amalgamated for the

detection and classification of cancer in microscopic biopsy

images in [19]. The feature types used encompass texture,

morphology, shape, HOG, wavelets, colour, among others.

Deep learning has become very successful for several ap-

plications within the computer vision community [28, 30].

The success is mainly due to the latest advances in central

and graphics processing units and the availability of enor-

mous amount of data [28]. However, it has been reported

that deep learning techniques are powerful only when the

datasets are large which, for medical images, can be infea-

sible or difficult to collect sufficient data [30].

Imbalanced data - An imbalanced dataset is defined as

a dataset that considerably contains more data samples of

one class and fewer samples of the other class [8, 20]. Im-

balanced data is a common limitation in the medical im-

age field given the difficulty to find positive (interesting,
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alarm-worthy) samples, while negative (uninteresting) sam-

ples are easier to obtain. For our Gram stain problem, we

aim to automate the detection of some regions that, at high-

magnification, can help in the detection of bacteria. The

number of interesting regions can be easily surpassed by

the number of regions that are not ideal for identifying the

presence of bacteria.

There are different ways to deal with the imbalanced data

problem. For example, some approaches simply adjust or

optimise the relative weight parameter in the Support Vec-

tor Machine (SVM) during the training stage [38]. Another

approach uses sampling techniques (under-sampling, over-

sampling, and/or a combination of both) [8]. Hard Nega-

tive Mining (HNM) is an iterative technique where an initial

training set is created using all positive samples and only a

subset of the negative samples. The remaining set of nega-

tive samples is tested with the trained model and the result-

ing false positive samples replace the initial subset. This

process is iterated several times until the system stabilises

or until a maximum number of iteration is reached.

3. Problem Definition

Let Ih be the high-magnification tile image and I
l be

the low-magnification tile image captured at the same loca-

tion within a slide using different objective magnification.

Generally, either 100x or 63x objectives are used to capture

I
h (i.e., hence we call this image a high-magnification ob-

jective image), whereas I l is taken using a much lower ob-

jective magnification such as 5x or 2.5x. As mentioned, the

time to scan a slide using the high-magnification objective

is much longer than using the low-magnification objectives.

This is because a higher number of tile images are required

to cover the whole slide using the high-magnification ob-

jective compared to the low-magnification objective. How-

ever, not all of the slide areas are useful to scan for diagnosis

purposes. Indeed, the long scanning times and large image

sizes make it desirable to only scan a subset of Ih images.

To this end, it is desirable to select and scan a small set of

high-magnification tile images that would sufficiently cater

for the pathologists/scientists to make their decisions. Gen-

erally, the tile images in this selected set may be useful to

find objects of interest such as bacteria, leukocytes, and ep-

ithelial cells. In this work, the set is selected based upon the

information from the low-magnification tile images.

Now we are ready to present the formal description of

the problem. Let us assume that we have already scanned

the whole slide using both low and high-magnification ob-

jectives. Let H = {Ih
i }

N
i=1

and L = {I l
j}

M
j=1

be the set

of tile images scanned using high-magnification and low-

magnification, respectively; and N >> M . Let R ⊂ H
be the set of high-magnification objective tile images where

necessary information for the pathologists/scientists is con-

tained. In the ideal case where the full scan of high-

magnification tile images are available (i.e., H is provided),

our aim is to develop a detector f : Ih ∈ H 7→ {−1,+1},

where +1 means Ih ∈ R. Basically, f(·) is an area of inter-

est detector. However, in a clinical scenario where a labo-

ratory may have a high number of Gram stain tests per day,

then it is almost impossible to perform a full scan of each

Gram stain test using a high-magnification objective. Thus,

the central problem considered in this paper is to develop

f̂ : I l ∈ L 7→ {−1,+1}, where +1 means the correspond-

ing I
h taken from the same location as I

l is a member of

R.

4. Dataset

Gram stain is employed as an initial step in the iden-

tification of bacteria [3, 32]. Gram stain is a common

staining technique used in microbiology to distinguish bac-

terial species into two groups: Gram-positive and Gram-

negative [32]. Christian Gram developed this technique in

1883 [3]. Gram discovered the ability where bacteria either

retain or lose the stain. The cells are stained either pink

(Gram negative) or violet (Gram positive) depending on the

cell wall properties.

One publicly available dataset with Gram stain images

focuses on the classification of micro-organisms within the

image slides [6]. The dataset used in [6] contains 150 colour

images with positive and negative examples of leukocyte

and epithelial cells. Another dataset presented in [5] con-

tains 320 stained slide images not only using the Gram stain

technique but also other different staining techniques. The

problem addressed in [5] is the automatic detection of mi-

crobes and the extraction of bacterial clusters.

There are no datasets that can be used for the task of se-

lecting candidate areas for subsequent high-magnification

analysis. We have created a novel dataset. This dataset con-

sists of eight Gram stain images. We used a Zeiss Imager Z2

microscope and the images are captured using a PixeLINK

PL-B623CF camera. Figure 2 shows the slide images at

2.5x objective.

To create the dataset, 200 areas or patches were ran-

domly selected per image. Each patch size is 51×38 pixels

to match the size of the image when viewed with the 63x ob-

jective. In total, we have collected 1,600 patches from the

eight different slide images. Three subjects independently

labelled each patch. For the labelling procedure, each sub-

ject is shown three images: (i) an image captured at low res-

olution where the potential candidate area (patch) is high-

lighted, (ii) the patch itself, and (iii) the high-magnification

image corresponding to that patch (See Figure 1 for an ex-

ample). Based on that observation, each subject assigned

a label number that can be one, two, three, or four. A la-

bel four indicates that the specific patch is considered a best

candidate area for high-magnification, a label three is an

area that pathologists may look if no bacteria are seen in ar-
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Figure 1: A patch captured using a low-magnification ob-

jective is used in conjunction with its high-magnification

image to label the dataset. Best viewed in colour.

eas with labels four, label two is a dense and dark area where

it is difficult to make a diagnosis, and label one is usually

a background area or an area with some kind of unwanted

artefacts such as dirt, dust, oil, etc. The results of the la-

belling process were analysed and we found that all subjects

agreed for 1,293 images. We decided to discard the remain-

ing 307 images in order to create an unbiased dataset. These

images often contained out-of-focus or incorrectly stained

areas where the subjects had different opinions on their use-

fulness. This dataset is available for download from the fol-

lowing URL: http://www.itee.uq.edu.au/sas/datasets/.

5. Proposed Baseline Approach

Using the randomly selected patches from low-

magnification images, we extract the following descriptors:

HOG, LBP, and 2D-DCT. Each patch size is r × c. To ob-

tain HOG descriptors, the horizontal and vertical gradients

are calculated in small cells. The gradient of each patch

contains two values, the magnitude and direction of gradi-

ent. HOG computes a histogram of oriented gradients per

cell, normalises the result, and returns a descriptor which is

the concatenation of the bins per cell [7]. The parameters

for HOG are the cell size (pixels per cell) and the number of

orientations (o). LBP is a popular texture descriptor which

is locally computed by comparing each pixel with its neigh-

bouring pixels [25]. To this end, two parameters are used,

the number of points n and the radius r of the circle. DCT is

a finite representation of a sequence of data points in terms

of a sum of cosine functions oscillating at different frequen-

cies [31]. 2D-DCT is a multi-dimension variant of DCT

where DCTs are calculated along each dimension. In total,

r × c coefficients are generated using 2D-DCT. Given that

the energy coefficients are in descending order, only the first

2D-DCT coefficients are used which correspond to the top-

left-most region (q × w) of the resulting r × c matrix [27].

The first coefficients represent low-frequency information.

To deal with imbalanced data, we employ the hard nega-

tive mining (HNM) approach. We construct an initial train-

ing set using all positive samples and a subset of the neg-

ative samples. The model is trained using SVM with this

initial training set. The model is tested using the remaining

negative samples. The resulting false positives (hard neg-

ative samples) replace the negative samples in the original

subset, always maintaining the same ratio of negative and

positive samples. This process is repeated until the number

of false positives is considerably reduced or until we reach

a maximum number of iterations.

6. Experiments

We use the new dataset described in Section 4. Instead

of using the four label categories of the original dataset,

we combine the images labelled as one and two as nega-

tive samples, as those are samples representing areas that

a pathologist will never select for high-magnification. As

positive samples we use all samples with labelled as four.

Samples labelled as three are not considered.

Each patch with size 51× 38 pixels is converted into the

gray scale colour. We use the leave-one-out cross validation

approach (LOOCV). The LOOCV protocol takes out all the

patches from one Gram stain slide image for testing and

uses all patches from the seven remaining Gram stain slide

images for training. This is executed for every testing image

in a rotating basis, and the overall accuracy is obtained by

averaging the accuracy of all validations.

We report the results using the Receiver Operating Char-

acteristic curve (ROC curve). The ROC curve shows the

performance of a binary classifier [10, 26]. Given a classi-

fier and a testing sample, there are four possible outcomes.

If the sample is positive and it is classified as positive, it is

counted as a true positive, but if it is classified as negative, it

is counted as a false negative. If the sample is negative and it

is classified as negative, it is counted as a true negative, but

if it is classified as positive, it is counted as a false positive.

In a ROC curve the true positive rate is plotted as a function

of the false positive rate for different thresholds [10]. The

closer the curve follows the upper left corner, the higher the

overall accuracy of the test [26].

For the calculation of HOG features we fix the cell

size to 17 × 19 pixels and vary the number of orienta-

tions o = {2, 4, 8, 16, 32, 64}. For LBP features we vary

both the radius r = {2, 3, 4} and the number of points

n = {2, 4, 6, 8, 10}. For 2D-DCT features we take the top-

left-most region with q = w with q = {1, 2, · · · , 10}. Fig-

ure 3 depicts in (a), a positive patch sample, and in (b),

(c), and (d) the visualisation of the three types of extracted

features under consideration. It can be seen how HOG fea-

tures in Figure 3(b) divide each patch into several cells and

each cell is represented by a star which shows strength of

the edge orientations in the histogram. The LBP features in

Figure 3(c) depict the texture patterns. The 2D-DCT fea-

tures are visualised using a heat-map in Figure 3(d). Look-

65



Figure 2: Novel dataset containing 8 Gram-stain slide images. Images are captured using a 2.5x objective (low-

magnification).

(a) positive patch (b) HOG (c) LBP (d) 2D-DCT

Figure 3: (a) A positive patch sample and the extracted fea-

tures: (b) HOG, (c) LBP, and (d) 2D-DCT. Best viewed in

colour.

ing at the first 232 coefficients in a 17× 19 grid, we can see

how the energy is concentrated in the top left-most region.

HNM is used to deal with our imbalanced dataset. The

initial training set is constructed using all 172 positive sam-

ples and selecting a total of 172 × 3 = 516 negative sam-

ples. We adopt SVM as the classifier and use the Library for

Large Linear Classification (LibLinear) [9]. We train with

the default type of solver and the default parameter c (cost).

For comparison purposes, we also show the results with a

SVM classifier without HNM (no-HNM). The ROC curves

for no-HNM and HNM are shown in Figure 4 and Figure 5,

respectively. For a better visualisation, we selected only the

top 2 results for each feature type. 2D-DCT performance

drops when the number q is increased. The best perfor-

mance for 2D-DCT is given when q = 1, which means that

the first coefficient concentrates the most part of the image

energy. For both approaches, LBP produces the best trade-

off performance between a low false positive rate and a high

true positive rate.

HNM and no-HNM curves exhibit a similar tendency

for LBP and HOG as seen in Figure 6. HNM in combina-

tion with 2D-DCT significantly improves the performance

of no-HNM with 2D-DCT. This suggests that, for our task,

Figure 4: ROC-CURVE for no-HNM. We only show the

two best results for each feature type.

Figure 5: ROC-CURVE for HNM. As per Figure 4.

HNM is only useful under the presence of high false posi-

tives.
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Figure 6: ROC-CURVE comparison for top results for no-

HNM and HNM.

7. Main Findings and Future Work

We have presented our early experience in developing a

system that automatically selects candidate areas for sub-

sequent high-magnification analysis. We have used a low-

magnification objective to find potential candidate areas,

trying to replicate what pathologists do when they choose

areas for high-magnification viewing. We make use of ex-

isting features for texture and biomedical images. The fea-

tures analysed are HOG, LBP, and 2D-DCT. Given that we

have an imbalanced set of positive and negative samples we

use the HNM approach to deal with this problem. Exper-

iments have shown that the HNM approach behaves better

than its no-HNM counterpart when a high number of false

positive samples are generated. This is the case with 2D-

DCT features. Among all the feature types analysed, LBP

features exhibit the best performance.

Although our dataset is small in terms of the number of

slides, we have provided 1,600 image patches with their cor-

responding labels. Our next step is to increase the number

of slides and label them. This work can be also extended

with the construction of a ranking system approach. Our

dataset provides labels that rank each patch according to its

importance.

Another potential area of inquiry is to merge the fea-

tures and see if we can increase the system performance.

Moreover, we can also experiment with other features used

for medical images such as wavelets, morphological, shape,

colour, among others. Undoubtedly deep learning should be

also considered for our task. To overcome the lack of a large

dataset, transfer learning could be an interesting alternative

to explore as in [28].
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