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Abstract

Fine needle aspiration cytology is commonly used for

diagnosis of breast cancer, with traditional practice being

based on the subjective visual assessment of the breast cy-

topathology cell samples under a microscope to evaluate

the state of various cytological features. Therefore, there

are many challenges in maintaining consistency and repro-

ducibility of findings. However, digital imaging and com-

putational aid in diagnosis can improve the diagnostic ac-

curacy and reduce the effective workload of pathologists.

This paper presents a deep convolutional neural network

(CNN) based classification approach for the diagnosis of

the cell samples using their microscopic high-magnification

multi-views. The proposed approach has been tested us-

ing GoogLeNet architecture of CNN on an image dataset of

37 breast cytopathology samples (24 benign and 13 malig-

nant), where the network was trained using images of 54%

cell samples and tested on the rest, achieving 89.7% mean

accuracy in 8 fold validation.

1. Introduction

Cancer is the third leading cause of death worldwide

preceded only by cardiovascular, infectious and parasitic

diseases. Breast malignancy is the second most common

type of malignancy after lung cancer and the fifth most

common cause of cancer death worldwide. According to

the World Health Organization projections, breast cancer

caused 559,000 deaths worldwide in the year 2008. The

incidence rate of breast cancer is increasing rapidly in de-

veloping countries. By the year 2030, South-East Asia will

witness nearly 186,000 breast cancer deaths annually, more

than the higher income countries (176,000 deaths). World-

wide mortality due to breast cancer is expected to stand at

790,000 [22]1.

Fine needle aspiration cytology (FNAC) is one of the

most commonly used pathological investigations for screen-

ing, and diagnosis of breast cancer. The traditional practice

of breast FNAC is based on subjective assessment. Here,

microscopic appearance of the aspirates is visually evalu-

ated on various cytological criteria. Therefore, there are

many challenges in maintaining consistency and ensuring

reproducibility in findings are inevitable. Moreover, there

exists an overlap in the state of various cytological cri-

teria in benign and malignant lesions, and inadequate or

non-representative sampling may lead to equivocal diagno-

sis [18, 7]. With reported rates of 6.9− 20% [18] for equiv-

ocal diagnosis against the real gray zone of 2% [2], there

exists scope to reduce the rate of equivocal diagnosis.

Digital imaging and computational aid in diagnosis can

help to improve the diagnostic accuracy and to reduce the

effective workload of a pathologist. In this regard, re-

searchers and practitioners of pathology have been using

quantitative analysis for computer-aided diagnosis(CAD)

of pathology samples including breast FNAC [16, 6].

This paper presents a deep convolutional neural network

(CNN) based classification approach for the diagnosis of

the breast FNAC cell samples using their microscopic high-

magnification multi-views. The proposed approach of cell

sample classification uses majority voting based decision

scheme over class prediction obtained for individual views.

The Figure 1 summarizes the contribution of this paper in-

1GBD 2004 Summary Tables, compiled and published by Health statis-

tics and informatics Department, World Health Organization, Geneva,

Switzerland
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cluding the creation of image dataset of high-magnification

multi-views of breast cytopathology samples and CNN

based breast FNAC cell sample classification.

The rest of the paper is organized as- Section 2 describes

the prior art for computer vision, and machine learning

techniques used in breast cancer diagnosis by FNAC image

analysis and deep learning techniques used in histopathol-

ogy image analysis, Section 3 describes the image dataset

developed by us and used during experimentation for this

paper, Section 4 describes our methodology, Section 5

presents details of the experimental setup used, Section 6

presents classification results obtained along with discus-

sion of the findings. Conclusions for the study are presented

in Section 7.

2. Prior Art

Researchers and practitioners of pathology have been us-

ing quantitative analysis to improve diagnostic accuracy and

to reduce the effective workload of a pathologist. With re-

cent developments in cost-effective and high-performance

computer technology, the digital pathology has become

amenable to the application of quantitative analysis in the

form of decision support systems [30, 31] and computer vi-

sion and machine learning techniques based CAD systems.

The CAD systems for digital pathology applications are be-

ing developed and deployed for some time now [16, 6]. Re-

view of the prior art shows that computer vision systems

commonly used in cytological diagnosis apply the bottom-

up approach of diagnostic reasoning from evidence to hy-

pothesis [23]. It involves segmentation of primitives such as

clusters, cells, and nuclei using image processing and seg-

mentation techniques [10]; quantification of diagnostically

significant cytological criteria [13] using techniques that ex-

tract morphometric, densitometric, textural and structural

features [24]; followed by pattern recognition techniques

for prediction of abnormalities and anomalies [20].

Recently deep neural networks like autoencoders [32]

are increasingly finding their way into solving whole slide

histopathology image analysis challenges while jointly

learning the representative feature space and classification

margin. Some contributions related to radiological and in-

terventional image analysis include [26, 1, 21]. The prior

art [27] on the breast cancer histopathological image classi-

fication dataset (BreakHis database) [28] had earlier used an

AlexNet [19] based CNN architecture for classifying whole

slide histopathology and achieved 84-90% accuracy. Das

et. al [5] in their approach combine predictions by transfer

learned GoogLeNet [29] architecture of a CNN for random

multiple images of a breast histopathology sample acquired

at multiple magnifications to arrive at whole slide diagnosis

achieving 94.67% accuracy in multifold validation over the

BreakHis database.

3. Breast FNAC image dataset

To validate the efficacy of the CNNs in the represen-

tation of breast cytopathology features and tuning of the

classification margin we have developed an image dataset

of 37(24 Benign + 13 Malignant) cell sample slides from

archives of our institute. Where cell samples were obtained

from routine FNAC performed on the patients with palpable

masses in the breast by an expert cytologist with freehand

aspiration. The slides were prepared by wet fixation and

H&E staining methods commonly used for primary diag-

nosis from FNAC [13]. To create the image dataset, the

slides were imaged at high magnification (an image per

field of view with relevant cytological information) using

Leica DM750 microscope, where each cell sample was rep-

resented by 4-6 views selected by a pathologist containing

cytological evidence sufficient for diagnosis by an expert.

For each of the high magnification views an image of size

1024× 768 pixels was captured and pre-processed for non-

uniform luminance correction [33] and white balance cor-

rection [11]. Followed by the manual selection of multiple

regions of interests (ROI) of size 256 × 256 pixels to rep-

resent the cell samples. Overall, 918 ROIs from 175 high

magnification views over 37 samples constitute the image

dataset.

The microscope setup involved imaging using

40×, 0.65NA magnification objective lens and Leica

DFC295 camera attached to the microscope via a 0.5×

optocoupler and housing a 1/2” 1024×768 resolution color

image sensor (2x2 binning). During image acquisition, the

camera was programmed to provide RGB coded pixel data

without any preprocessing. Focus and field illumination

settings were user defined, with variations within the

acceptable range, over which images retain their diagnostic

value for a human expert.

4. Training CNN for breast FNAC image clas-

sification

The deep learning method used in these experiments em-

ployed (i) training of the CNN to represent breast FNAC

features and tune the classification margin; (ii) majority vot-

ing based cell sample classification using ROI classifica-

tions.Here, the GoogLeNet [29] a pre-defined architecture

of CNN consisting of two convolution layers, five pooling

layers, and nine inception layers, was trained to classify the

breast FNAC ROI images. In the GoogLeNet architecture, a

inception layer consists of 6 different sizes of filters within a

single layer, with 4th and 7th inception layers connected to

2 auxiliary classifiers over the network. The auxiliary clas-

sifier helps to fix the vanishing gradient problem associated

during error back-propagation during training of a big neu-

ral network. For experimentation, the NVIDIA Deep Learn-

ing GPU Training System (DIGITS) was used. Where,
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Figure 1. Overview of our proposed approach for benign vs. malignant classification of breast FNAC cell samples using multiple views of

the sample at high magnification and consequent benchmarking with conventional computer vision approaches to breast FNAC diagnosis.

models parameters of learning rate, step size, epochs and

batch size were set to 0.001, 20, 200, and 64 respectively.

The weights initialization method for the convolution layers

was done by the method proposed by [14] and optimization

technique used was ADAM [17].

Since clinicians report histopathology using multiple

views, we use a majority voting scheme based on such im-

ages for classifying a cell sample. For the cell sample clas-

sification by voting scheme, a cell sample was classified as

malignant if more than 30% of its ROI images were classi-

fied as malignant otherwise it was classified as benign.

5. Experimental Setup

5.1. Multi­experiment validation

To estimate the expected classification efficacy of the

CNN, a sample level, randomized train-test trial based vali-

dation (eight experiments) was performed. During each ex-

periment, the ROI image dataset was split into two groups

at cell sample level, where, training data used to train the

CNN comprised of ROIs corresponding to 20 randomly se-

lected samples (12 benign and 8 malignant). The testing

data comprised of remaining ROIs.
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5.1.1 A Train-test experiment

A train-test trial in the context of this paper consisted of

an experiment to train and test the classification accuracy

for a training data-classifier combination. In this regard,

the features data was randomly split into non-overlapping

sets of training and test data, and CNN was then trained

and tested with the sets respectively. The measures of accu-

racy, positive predictive value and negative predictive value

in two class classification problem have been used as objec-

tive measures in these studies. Where a positive sample is

from a malignant breast lesion and a negative sample from a

benign breast lesion. The process of a randomized train-test

trial is depicted in Figure 2.

Sample classification

Randomized non-overlapping 

 split of the dataset 

Training data Test data

Features / image dataset

Classifier training

Decisions

Accuracy, 

positive predictive value

and negative predictive value

for the trial

Classification accuracy 

calculation

Figure 2. A train-test trial for estimation of classification accuracy,

positive predictive value and negative predictive value

5.2. Comparative methods

In this paper, the classification performance of the CNN

technique has been benchmarked against our custom imple-

mentation of the conventional bottom-up approach of diag-

nostic reasoning from evidence to hypothesis [23]. Where,

five cytological criteria of- nuclear size, nuclear shape, nu-

clear membrane, nuclear chromatin and cellular/nuclear

pleomorphism [13], quantified using handcrafted features

extracted using the same 175 high magnification views, are

applied as evidence for classification by multiple statistical

classifiers.

This approach of using nuclear cytological criteria as

evidence for cell sample diagnosis, involved (i) segmenta-

tion of isolated nuclei in the high magnification images of

a sample using a multistage segmentation system involv-

ing various image processing [11, 12] and segmentation

techniques [10]; (ii) quantification of nuclear features and

derivation of features to represent the cell samples in the

classification problem (selection of optimal set of features

by analysis of a master dataset of handcrafted features us-

ing Feature Usability Index technique [25] (feature ranking

+ forward addition)); followed by classification by naive

Bayes [8], support vector machine [4], and random forest

classifiers [3] for prediction of abnormalities and anoma-

lies.

The master feature dataset involves 63 features repre-

senting each of the cell samples. To determine the 63 fea-

tures, mean, variance and worst values of 21 nuclear fea-

tures (11-morphometric, 7-textural, and 3-densitometric)

computed over isolated nuclei in the high magnification im-

ages of the cell sample were used. Where mean of largest

10% feature values for the sample were used as ’worst’

value of the nuclear features computed over isolated nu-

clei. Eleven morphometric features extracted from each of

the segmented nuclei include- area, mean radius, equivalent

diameter, major axis length and minor axis length quanti-

fying nuclear size; perimeter quantifying nuclear size and

shape; dynamic range of radius, eccentricity, and solidity

quantifying nuclear shape; and variance of distance of pe-

ripheral points from centroid and number of concave points

that quantify the state of nuclear membrane. seven textu-

ral features extracted for each of the segmented nuclear re-

gions include- contrast, homogeneity, correlation, and en-

ergy measures computed using the gray level co-occurrence

matrix [15], and gray level and run-length non-uniformity

measures calculated using gray level run length matrix [9].

The three densitometric features are (i) mean hematoxylin

stain quantity computed over a nuclear region, (ii) mean

hematoxylin stain quantity combined with the area, and

(iii) mean hematoxylin stain quantity combined with the

variance of the nuclear area over the sample.

To determine expected classification for the classifiers

1000 randomized train-test experiments were conducted.

During experimentation, the computed features data for 37

cell samples was split into two groups as training data corre-

sponding to 24 randomly selected samples (16 benign and

8 malignant) and testing data comprising of remaining 13

samples (8 benign and 5 malignant). Linear dot product

kernel was used for the support vector machine classifier,

where margin selection was performed by sequential min-

imal optimization over 2000 iterations with the tolerance

level of 1× 10−3. The random forest was defined as a clas-

sifier consisting of 32 tree-structured decision makers where

the minimum number of samples terminating at a leaf was

set to three, and each tree casts a unit vote.

6. Results

Results for the multi-experiment cross-validation as de-

scribed in Section 5.1 are presented in Table 1. The table

presents classification accuracy performance across each

experiment along with the details of training and test data

in each experiment. From the results, it can be observed
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that in general GoogLeNet [29] can learn visual features and

classification margin from different training samples during

transfer learning and achieves the ROI level classification

accuracy of 80.76%. The voting scheme based cell sample

classification achieves the accuracy of 89.71% at 85.48%

positive predictive value and 92.96% negative predictive

value. This accuracy is comparable with the accuracy of

84 − 90% that [27] achieved on the breast histopathology

dataset. However, it is less than the classification accuracies

achieved with conventional approach of breast cancer diag-

nosis summarized in Table 2, which achieves up to 99.39%

accuracy using just as many as 14 handcrafted features.

7. Conclusion

In this paper, we presented an image dataset of high-

magnification multi-views of breast cytopathology samples,

along with the performance of GoogLeNet CNN archi-

tecture in breast FNAC cell sample diagnosis in malig-

nant or benign categories. It was observed that in gen-

eral GoogLeNet can learn visual features and classifica-

tion margin from different training samples included in the

dataset and achieves the ROI level classification accuracy

of 80.76%. The voting scheme based cell sample classifica-

tion achieves the accuracy of 89.71%. which is less than the

classification accuracies achieved with conventionally de-

fined ‘Computed Feature Dataset’ and statistical classifiers.

The proposed scheme can be considered as a baseline for

future research. Data augmentation by adding more sam-

ples and data replication, transfer learning can be used to

improve classification.
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