
 

 

 

 

 

Abstract 

 

Histopathological characterization of colorectal polyps 

is an important principle for determining the risk of 

colorectal cancer and future rates of surveillance for 

patients. The process of characterization is time-intensive 

and requires years of specialized medical training. In this 

work, we propose a deep-learning-based image analysis 

approach that not only can accurately classify different 

types of polyps in whole-slide images, but also generates 

major regions and features on the slide through a model 

visualization approach. We argue that this visualization 

approach will make sense of the underlying reasons for the 

classification outcomes, significantly reduce the cognitive 

burden on clinicians, and improve the diagnostic accuracy 

for whole-slide image characterization tasks. Our results 

show the efficacy of this network visualization approach in 

recovering decisive regions and features for different types 

of polyps on whole-slide images according to the domain 

expert pathologists. 

 

1. Introduction 

At least half of western adults will have a colorectal 

polyp in their lifetime and one-tenth of these polyps will 

progress and transform to cancer [1]. If colorectal polyps 

are detected early they can be removed before this potential 

transformation. While there are multiple screening methods 

to detect colorectal polyps, colonoscopy has become the 

most common screening test in the United States [2]. 

Detection and histopathological characterization of 

colorectal polyps found in the tissue samples after 

colonoscopy are important parts of colorectal cancer 

screening, and allow for the distinction between high-risk 

and low-risk polyps. Specifically, sessile serrated polyps 

can develop more aggressively into colorectal cancer 

compared to other colorectal polyps, because of its 

associated serrated pathway in tumorigenesis [3] 

Differentiation between sessile serrated polyps and 

benevolent hyperplastic polyps, however, can be a 

challenging task even for experienced pathologists. This 

difficulty is likely caused by the lack the dysplastic nuclear 

changes that are innate to the conventional adenomatous 

polyps [4-7]. As evidence, a recent study of more than 

7,000 patients who underwent colonoscopy in 32 centers in 

the US, showed that, despite the statistical unlikeliness, no 

sessile serrated polyp was diagnosed in multiple centers. 

Therefore, there is still a significant disparity in the 

performance and education of pathologists with regard to 

histologic features of colorectal polyps, and their diagnostic 

consistency and accuracy among pathologists [8]. 

Considering this challenge, image analysis tools can help 

clinicians improve the histopathological characterization 

and diagnosis of colorectal polyps, explain the underlying 

justification and support of assessment outcomes, and 

reduce their cognitive burden to enhance their accuracy in 

this task. 

1.1. Related work 

Since 2012, deep-learning methods have proven to be the 

state-of-the-art approach for tasks of classification and 

segmentation on microscopic whole-slide images, 

compared to the previous image processing techniques [9-

11]. Janowczyk et al. performed a survey of the early 

applications of deep-learning in pathology, exploring 

domains such as lymphocyte detection and mitosis 

detection [11]. Some other applications of deep-learning for 

analyzing microscopic images include detecting metastatic 

breast cancer [12], finding mitotically active cells [13], 

identifying basal-cell carcinoma [14], and grading gliomas 

[15]. Most models that are mentioned in these applications 

used standard deep-learning architectures such as AlexNet 

[16] and VGG [17], which were, at the time, the best 

performing deep-learning architectures available. 

In a relevant application to the domain of our work, 
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Sirinukunwattana et al. previously presented a deep-

learning approach for nucleus detection and classification 

on microscopic images of colorectal cancer tumors [18]. 

This work was based on an 8-layer fully convolutional 

network [19], with an aim of identifying the centers of 

nuclei and classifying them into four categories as 

epithelial, inflammatory, fibroblastic, or miscellaneous.  

As another related work, our previous work outlines a 

successful deep-learning-based classification framework 

for colorectal polyps on whole-slide images [20]. In the 

ablation study presented in this work, we found that the 

residual network (ResNet) architecture [21] achieves a 

superior performance compared to other common deep-

learning architectures, such as GoogLeNet [22], VGG [17], 

and AlexNet [16]. In this paper, we adapt this previously 

presented ResNet architecture in a deep neural network 

visualization framework to allow for easier interpretation of 

whole-slide image analysis outcomes from deep-learning 

models. 

1.2. Our contribution in this paper 

Our work presented in this paper emphasizes studying 

the utility of different visualization methods as an approach 

to provide greater insight into whole-slide image 

classification results obtained from deep-learning models. 

Our proposed approach identifies decisive regions and 

features on whole-slide microscopic images that shape the 

classification outcomes for the slides. In this work, we 

utilize and evaluate several methods of backpropagation 

projections to achieve this goal. These methods project the 

predicted classification label for a slide through the non-

zero activations in a trained deep-learning classification 

model to identify features relevant for that class. The 

manual annotation and computation requirements for our 

approach proposed in this paper are much simpler than a 

traditional segmentation approach. This is because our 

proposed approach relies on image crops as loose regions 

of interest for polyp types, rather than exact boundaries 

required by segmentation methods. Also, in contrast to 

segmentation models, our visualization approach does not 

require extra training and relies on a single backpropagation 

pass on a previously trained classification model’s network. 

2. Methods 

The details of our deep neural network visualization 

approach are as follows. 

2.1. Whole-slide image classification 

Our approach to detect indicative features for colorectal 

polyps in whole-slide images relies on a pre-trained deep-

learning model for colorectal polyp classification presented 

in our previous work [20]. This classification model is 

based on ResNet architecture, and achieved average 

accuracy of 91.3% for the classification of 5 colorectal 

polyp classes covered in this paper and outperformed other 

common deep-learning architectures [20]. The standard 

ResNet architecture in this work consists of 152, 3×3 and 

1×1 convolutional layers, with additional mappings or 

shortcuts that can bypass several convolutional layers.  

This model performs classification on small patches from 

the the whole-slide, hematoxylin and eosin (H&E)-stained 

images. Subsequently, the classification of whole-slide 

images is done through generating small patches by a 

sliding window on these images, and performing a 

maximum-likelihood inference on the patch labels.  

2.2. Network visualization and understanding 

We argue that the visualization of higher-level features 

of the model described in the previous section can provide 

a useful tool in understanding the discriminative features of 

the colorectal polyps on H&E-stained images. 

Conceptually, assuming input whole-slide image x, and a 

neural network f(x) that outputs a probability distribution 

over a set of colorectal polyp classes, we can use first-order 

Taylor approximation to define f (which relies on its 

gradients). Since gradients, by definition, indicate the 

change of a function f with respect to input x, by visualizing 

these gradients, we could capture the discriminative 

features of polyps. In practice, however, visualization of 

gradients obtained by backpropagation tend to be 

ineffective due to the interference between positive and 

negative gradients at a given layer [23-24]. 

Backpropagation outputs are often modified by approaches 

such as deconvolution [25] or guided backpropagation [23] 

in order to reduce the noise in the gradients. While we 

explored all three of these methods (i.e., backpropagation, 

guided backpropagation, and deconvolution) in order to 

gain insight into what the network is learning, we have not 

found a measurable success to interpret the pixel-space 

visualizations outputted by these methods.  

As the aforementioned network visualization methods 

alone are hard to interpret to a human observer, we leverage 

the fact that understanding of a deep-learning model can 

also be obtained by visualizing only the last layer in these 

networks. While visualizing a fully connected layer is not 

feasible, as its activations are scalars, we can take 

advantage of a fully convolutional ResNet in order to 

visualize the output tensor in the last layer. This process, 

also known as class activation mapping (CAM), allows us 

to visualize a tensor associated with the classification 

activations of a class label [26]. As a result, this approach 

can show us “where the network looks” and, in turn, 

provide the regions of interest for pathologists to examine 

and verify the classification results of the model. 

In addition to CAM, we explore the follow-up work by 

Selvaraju et al., known as Grad-CAM for network 

visualization [24]. Grad-CAM allows us to obtain the class-

discriminative localization map by computing the gradient 
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of the score for the predicted class with respect to the 

feature maps of the convolutional layers. Much like CAM, 

Grad-CAM can be computed as a rectified weighted-

combination of feature maps. 

Selvaraju et al. also showed that by combining the Grad-

CAM approach with guided backpropagation, one can 

obtain even finer and more localized fine-grained gradient 

visualizations in a pixel space [24]. Therefore, we adapt the 

same approach, however, before presenting the projections 

on a pixel space, we normalize the projected weights to 

obtain an even more discriminative heat-map for the input 

image, which we later process to obtain candidate regions 

of interest. 

3. Experimentation 

The following section details our experimentation with 

different visualization methods on whole-slide, H&E-

stained images that contain the five most common 

colorectal polyps. 

3.1. Dataset 

The whole-slide images required to test and evaluate our 

methods were collected from patients who underwent 

colorectal cancer screening at Dartmouth-Hitchcock 

Medical Center, an academic quaternary care center, since 

January 2010. All these slides were scanned using high-

throughput Leica Aperio whole-slide microscopes, at 200x 

magnification. Our dataset includes H&E-stained, whole-

slide images for five types of colorectal polyps: 

hyperplastic polyp, sessile serrated polyp, traditional 

serrated adenoma, tubular adenoma, and 

tubulovillous/villous adenoma. A total of 176 whole-slide 

images have been collected in this study, and the 

distribution of which can be seen in Table 1. The use of data 

for this project was approved by our Institutional Review 

Board (IRB). 

 

Table 1. The distribution of colorectal polyp types in 

H&E-stained, whole-slide images used for evaluation in 

this work. 

Colorectal polyp type Acronym # Cases  

Hyperplastic polyp HP 37 

Sessile serrated polyp SSP 42 

Traditional serrated adenoma TSA 34 

Tubular adenoma TA 31 

Tubulovillous/villous 

adenoma 
TVA/V 32 

Total — 176 

 

3.2. Image annotation 

Our domain expert pathologist collaborators annotated 

the five different types of colorectal polyps in the H&E-

stained, whole-slide images in our dataset. We used these 

annotations as reference standards for to evaluate our deep-

learning visualization methods and to provide further 

insight into colorectal polyp classification on whole-slide 

images. Whole-slide, high-resolution images consist mostly 

of normal tissue, with only a small segment being related to 

the colorectal polyps. In this image annotation, two 

collaborator pathologists independently reviewed the 

whole-slide images in order to characterize the type of 

polyp present in it. Furthermore, these pathologists outline 

the regions in which the colorectal polyp is present by 

generating crops that are focused on colorectal polyps in 

whole-slide images. Following our previously described 

procedure [20], we extracted smaller crops at the same 

magnification of the whole-slide images, as this proved to 

yield superior results in previous histopathology 

applications [27]. Any disagreement in either classification 

or cropping was resolved through consultation with a third, 

senior gastrointestinal pathologist. When the agreement 

could not be reached on a polyp type or the correct 

cropping, the image was discarded. 

3.3. Architecture and framework 

Following the results from the ablation study in our 

previous work [20], we adopted the ResNet architecture, 

first introduced by Microsoft [21], with slight 

modifications. First, we replaced the last fully connected 

layer with a convolutional layer with the same input as the 

number of features, and one feature map output for each 

class. Then, we reduced the number of input features from 

the second-to-last convolutional layer from 2,048 to 1,024. 

Finally, we reduced the depth of the network to 101 layers, 

down from the original 152 layers. This is because we did 

not find any noticeable performance loss with the smaller 

network, while the smaller network gained marginal 

computational speed. 

3.4. Classification Model Training 

Our deep neural network visualization approach relies on 

a pre-trained, deep-learning classification model for 

colorectal polyps. To obtain this classification model, we 

trained a deep-learning classification model on a dataset 

consisting of the labeled patches of H&E-stained whole-

slide images. These patches were collected as part of our 

previous colorectal polyp classification study [20]. A total 

of 2,074 H&E-stained crops were available in this dataset, 

with a balanced distribution among the five types of 

colorectal polyps discussed in this paper. We used 80% of 
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the crops as a training set, 10% as a validation set, and 

reserved approximately 10% as a test set. The use of data 

for this project is approved by an appropriate IRB. Each 

crop is processed as follows. 

First, a patch is re-scaled to conform to the median of the 

respective axis that is computed on the training dataset. If 

the image size was below the median, we used zero-padding 

to conform it to the aspect ratio. We then subtracted the 

mean in order to compensate for deviation in staining 

concentration, and performed color jittering. Finally, we 

rotated the image and flipped it horizontally to make them 

invariant with respect to the orientation. We trained the 

optimal model for 100 epochs on the augmented training 

set, with an initial learning rate of 0.1, decreasing it 0.1 

times each 50 epochs, and with 0.9 momentum. The overall 

training time was 26 hours on two NVIDIA K40c GPUs. 

The model reached optimal test error at the 86th epoch. The 

overall classification accuracy on the test set was 94.1%, 

which was slightly better than the overall classification 

results previously reported on the same dataset [20]. 

 

3.5. Projecting Class Activations 

As discussed in the Methods section above, the 

visualization of indicative features and regions for 

colorectal polyp classification on whole-slide images relies 

on a gradient-based projection of the classification scores 

to the input pixels. To acquire this projection in our 

approach, we classified the whole-slide image and obtained 

the classification scores for different types of colorectal 

polyps through a forward pass on the pre-trained 

classification model. Subsequently, for each polyp class 

with a classification score greater than 0.7, we set the 

classification score to one, while setting the scores of the 

other classes to zero in the last layer of the classification 

network. This threshold for classification scores was 

proposed in our previous work through a cross-validation 

for binarizing the classification results [20]. Subsequently, 

we tried all discussed gradient-based backpropagation 

methods discussed earlier in the Methods section to project 

the scores of the predicted classes from the last layer to the 

Figure 1. Projected activations for five different predicted types of colorectal polyps on portions of whole-slide images. 

Figure 2. Projected activations for two types of colorectal polyps on a single H&E-stained, whole-slide image. 
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first layer of the network. These projections produce 

activation maps for the predicted classes on the the input 

pixel space. Figure 1 shows the projected activations for the 

five different predicted classes on parts of whole-slide 

images.  

3.6. Generating Regions of Interest 

We assign a pixel to the regions of interest of a certain 

class if the projected activation value of a pixel for that class 

is larger than a certain threshold. This threshold is learned 

through cross-validation on one-third of the images in our 

dataset. This threshold is 0.95 for the Grad-CAM projection 

method, and it is 0.85 for guided Grad-CAM method. 

Imposing thresholds on the projected activation values will 

produce a binary mask on the whole-slide image, which 

constructs the regions of interest in our application. To 

generate the regions of interest in guided Grad-CAM with 

boxes visualization method, we compute and utilize a 

surrounding rectangular bounding box for each region of 

interest on the slide. Figure 2 shows the projected 

activations for two types of polyps by guided Grad-CAM 

on a whole-slide image. Figure 3 shows the reference 

standard and the predicted regions of interest from these 

activations on the same slides.  

4. Evaluation 

In our evaluation, we consider a pixel that is predicted to 

be in the region of interest for a colorectal polyp type as a 

true positive if it is also recognized in the standard reference 

crops generated by our domain expert pathologist 

annotators for that polyp type. If the pixel in the predicted 

region of interest is not in a reference standard region, it is 

considered to be a false positive. For this evaluation, we 

measured the standard object detection evaluation metric of 

intersection over union (IOU) between the predicted 

regions of interest and the reference standard crops for a 

whole-slide image and a type of colorectal polyp. 

5. Results 

We applied the proposed methods in this paper on our 

dataset of 176 H&E-stained, whole-slide images to identify 

discriminative regions and features for detecting colorectal 

polyps. Table 2 shows average IOU results for different 

visualization methods on whole-slide images with different 

types of colorectal polyps. Of note, the results from 

backpropagation, guided backpropagation, deconvolution, 

and CAM visualization methods were not included in this 

table because their corresponding average IOU measures 

were low and less than 0.2. 

6. Discussion 

A major shortcoming of current deep-learning models for 

microscopic image analysis and classification is their 

“black box” approach to outcomes. These methods are 

mostly focused on the efficacy of final results and rarely 

provide sufficient evidence and details on factors that 

contribute to their outcomes. In this paper, we provide a 

complimentary method to assist pathologists in the 

diagnosis of colorectal polyps and decision-making on their 

characterization, in addition to creating new training 

opportunities. Therefore, we leverage deep neural network 

visualization methods to provide insight into the colorectal 

polyp characterization results of a pre-trained ResNet 

classification model. 

Figure 3. Manually annotated regions of interest by the domain expert pathologists and predicted regions of interest by our 

deep neural network visualization approach (guided Grad-CAM with boxes) for two types of colorectal polyps on a whole-

slide image. 
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Table 2. Average IOU results across different colorectal 

polyp types in our test set for different deep neural network 

visualization methods.  

Colorectal 

polyp type 

Grad-

CAM 

Guided 

Grad-CAM 

Guided Grad-

CAM w/ boxes 

HP 

(N=37) 
0.38 0.50 0.59 

SSP 

(N=42) 
0.28 0.52 0.61 

TSA 

(N=34) 
0.18 0.42 0.49 

TA 

(N=31) 
0.10 0.42 0.47 

TVA/V 

(N=32) 
0.22 0.45 0.51 

Total 

(N=176) 
0.24 0.47 0.55 

 

The proposed deep-learning understanding methods 

project the detected class activations back to the input pixel 

space to reveal which parts of the input image are important 

for classification. This projection approach provides a 

visualization that will identify regions and features of 

interest of the detected colorectal polyp on the whole-slide 

image. The identified regions and features are responsible 

for strong activations at higher layers in the colorectal polyp 

detection model. All the model understanding methods 

utilized in this work rely on gradient-based visualization 

approaches that provide this identification with minimal 

computational costs and easy interpretability. Given an 

image, a predicted class for the image, and a deep-learning 

classification model, a gradient-based approach assigns a 

score to the pixels of the image based on their influence on 

the predicted class using a single backpropagation pass 

through the model’s network. 

In a gradient-based approach, after applying the model to 

an image and detecting a specific colorectal polyp, we set 

the score of the predicted class to maximum (i.e., 1.0) in the 

last layer of our classification network, while setting the 

scores of other classes to zero. Subsequently, through 

backpropagation of gradients in the network, we map the 

detected class score back to the input pixel space and 

compute an influence score for each pixel of the input 

image. This influence score indicates the contribution of 

each pixel to the classification results of the whole-slide 

image. 

While in the domain of colorectal polyps, we found little 

to no use for pixel-space visualizations, regions of interest 

candidates proved to be a promising step for providing a 

clinical decision support mechanism for the 

characterization of colorectal polyps. Due to the nature of 

guided Grad-CAM, which discards negative gradients at 

each step, we can obtain highly-specific regions of interest 

for each type of colorectal polyps. Therefore, our proposed 

method not only allows the clinician to correctly classify 

the predominant class of polyp (which we previously 

showed to be feasible [20]), but also to localize multiple 

instances and multiple types of polyps on the same whole-

slide image. 

Through our proposed approach, the influential regions 

of a whole-slide image for histopathological 

characterization are identified in the form of a mask, which 

highlights the features that contribute to the results of our 

deep-learning characterization model for classification of 

colorectal polyps on that image. Of note, our method for 

detecting influential features of the detected polyps uses a 

pre-trained classification model. Therefore, no additional 

annotations, segmentations, or training is required to utilize 

our visualization methods. In addition, the detection of 

important regions and features of a whole-slide image is 

fast because our method only requires a single 

backpropagation pass on the classification model’s 

network. As future work, we plan to apply and evaluate the 

deep-learning visualization framework presented in this 

paper to other microscopic image analysis applications, 

such as histopathological characterization of lung cancer, 

breast cancer, and melanoma tumors on whole-slide 

images, to assist clinicians with interpreting deep-learning 

image analysis outcomes. 
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