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Abstract

In this paper, we present deep residual network (ResNet)-
based vehicle classification and localization methods using
real traffic surveillance recordings. We utilize a MIOvision
traffic dataset, which comprises 11 categories including a
variety of vehicles, such as bicycle, bus, car, motorcycle,
and so on. To improve the classification performance, we
exploit a technique called joint fine-tuning (JF). In addi-
tion, we propose a dropping convolutional neural network
(DropCNN) method to create a synergy effect with the JF.
For the localization, we implement basic concepts of state-
of-the-art region based detector combined with a backbone
convolutional feature extractor using 50 and 101 layers of
residual networks and ensemble them into a single model.
Finally, we achieved the highest accuracy in both classifica-
tion and localization tasks using the dataset among several
state-of-the-art methods, including VGG16, AlexNet, and
ResNet50 for the classification, and YOLO Faster R-CNN,
and SSD for the localization reported on the website.

1. Introduction

The development of intelligent traffic surveillance sys-
tems has emerged as an important issue in recent years. One
of the most important functions in intelligent traffic surveil-
lance systems is analyzing and extracting useful informa-
tion from recordings. In particular, a technique that clas-
sifies and localizes vehicles or pedestrians can represent a
basic procedure for traffic surveillance analysis.

The MIOvision traffic camera dataset (MIO-TCD) that
was recently released is a representative large-scale image
dataset for vehicle classification and localization. The im-
ages in the dataset have been taken in real traffic surveil-
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lance environments at different times of the day and differ-
ent periods of the year by thousands of traffic cameras. Our
goal in this research is to develop classification and localiza-
tion algorithms that surpass the accuracy of state-of-the-art
methods for the MIO-TCD dataset.

To achieve our goal, we adopt a deep residual network
(ResNet), which is the most popular deep learning tech-
nique; it allows training of an ultra deep convolutional neu-
ral network (CNN) as a baseline network using identity
mapping [4]. Thanks to the ResNet, practitioners can easily
achieve good accuracy in image classification and localiza-
tion tasks by simply stacking many layers [4]. Based on the
technique, we obtain a 97.95% classification rate on aver-
age for the vehicle classification task and 79.24% in terms
of mean average precision (mAP) for the vehicle localiza-
tion task. Our methods show the best accuracy for each task
among the other state-of-the-art approaches reported on the
MIO-TCD website. '

The rest of our paper is organized as follows: We present
training details of our approach for the vehicle classifica-
tion task and propose a joint fine-tuning (JF) method with a
dropping CNN (DropCNN) for the model ensemble in Sec-
tion 2. For the vehicle localization task, we give implemen-
tation details of region-based, fully convolutional networks
(R-FCN) [1] in Section 3. Finally, we show our experimen-
tal results in Section 4, and concluding remarks are given in
in Section 5.

2. Classification
2.1. The training phase

Our network for the vehicle classification task is based
on a pre-activation ResNet, which has 18 layers applying
shortcut connections [5]. The network receives 224 x 224 x
3 images as input. The sizes of training images vary, so
we resize each training image such that the shorter side is

1 http://tcd.miovision.com/results/classification,
http://tcd.miovision.com/results/localization
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Figure 1. A conceptual sketch of JF for the model ensemble. Outputs of all CNNs are element-wise added, and they are used for the
final prediction. Each CNN has an auxiliary loss for preventing loss of previously learned information.

in [192, 341.33], and then we randomly crop it to 224 X
224 x 3. the RGB pixel values of each training image are
normalized as follows:

X(i,4) = x(i,7)/127.5 — 1, )

where x(i, j) is a vector that has RGB pixel values at the
coordinate of (i, 7).

Photometric distortions [6] and color augmentation [9]
are applied to obtain good results. We use rectified linear
units (ReLLU) as activation functions, and batch normaliza-
tion is used for each layer. The number of outputs of the
network is 11, which is the same as the number of cate-
gories of the dataset. For the final output, we utilize the
softmax layer.

2.2. Fully joint fine-tuning for model ensemble

The original JF method was first proposed by Jung et. al.
[8] The method shows better classification rates than tradi-
tional ensemble methods, such as averaging several models.
The original JF method only fine-tunes the final classifica-
tion layer, but we use fully JF for fine-tuning whole layers
of CNN models.

The total loss £, is defined as follows (For the sake of
simplicity of notation, we assume the mini batch size is 1.):

N
Et(0a017027"'70N) :Ee(0)+zﬁi(0i)7 (2)
i=1
where N is the number of CNN models, and L, is a loss
function for averaging models. Furthermore, £; is an aux-
iliary loss for the ¢-th CNN, and the loss is only used in the
training phase. o is defined as follows:

N
1
o(X; Wi, Wa,...,Wy) = NZOZ-()_(;WZ-), 3)
i=1

where 0, (X; w;) is the output of the i-th CNN with a trained
weight parameter of w; and X denotes input data normal-
ized by equation 1. Each network is fine-tuned as using
a very small value of learning rate 7) to minimize £; (e.g.,
n = le~® in this paper). Figure 1 shows a conceptual sketch
of JF for the model ensemble.

2.3. DropCNN

The traditional dropout method is used for preventing
overfitting of deep neural networks [13]. Inspired by the
dropout technique, we invent a dropping CNN method

Iteration #1

Iteration #2

(L

Figure 2. An illustration of DropCNN. CNNs are randomly cho-
sen at each iteration during the JF training.
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called by DropCNN. The method is used for maximizing
the effect of JF, and it improves performances in terms of
accuracy. The DropCNN is illustrated in Figure 2. CNNs
are selected uniformly and randomly with a probability of
1 — pg, where pg denotes a drop rate. (We use pg = 0.1
in this paper) Only selected CNNs are averaged for the pre-
diction in the training phase. This helps to make good pre-
dictions even with a small number of CNNs in the training
phase. Finally, this process gives better results when per-
forming predictions using all models in the test phase as
shown in Table 1. The metrics used in the experiment are
introduced in Section 4.

Table 1. Effectiveness of JF with DropCNN using a center crop

image.
Method | Ensemble | JF | JF DropCNN
Cohen Kappa 0.9567 | 0.9576 0.9578
Accuracy 0.9721 0.9727 0.9728
Mean Precision 0.9293 0.9314 0.9307
Mean Recall 0.9018 0.8985 0.8991
2.4. The test phase

For a more accurate prediction, we use a multi-crop test.
We change the fully connected layer at the top of the net-
work to the fully convolutional form as in [3, 12], and we
average the scores at multiple scales (the shorter side of in-
put image is in 224, 256, 384, 480). In addition, we average
the softmax outputs of the trained models after finishing JF
with DropCNN, as mentioned in Sections 2.2 and 2.3.

3. Localization

Region-based convolutional detectors [2, 10] are the
most promising approaches for object localization tasks
compared to other detection methods. A branch of the
region-based CNN methods achieved the highest accuracy
in terms of mAP with a given intersection on union (IoU).
A different version of the region based CNN was proposed
by Jifeng et al. [1] combining an R-FCN with a position-
sensitive score map and position-sensitive Rol pooling. For
convenience, we devided the R-FCN’s sublayers into two
parts, depending on their purpose and, labelled them as fol-
lows: the convolutional feature extraction (CFE) Layer and
the Rol feature localization (RFL) layer (see Figure 3. (b)).

We use the same architecture as in [ 1] with the position-
sensitive score map: ¢ (i, j[W) = >, ep(i ) Gige(@ +
L,y + m|w)/n. r.(i,j|w) is the response value estimated
by the pooled region in the (4, j)th bin B(i, j) for the c-th
category, a;_; . is a score map output of the k?(C'+ 1) score
map with k size of the position-sensitive Rol-pool layer and
C number of classes, (I,m) denotes the top-left corner in-
dex of a Rol, n is the number of pixels in the B, and w

denotes every learnable parameters of the model. We ap-
ply two types of ResNets with 50 and 101 layers [4] as a
backbone CNN network for convolutional feature extrac-
tion, and a region proposal network (RPN) [10] is used for
generating region candidates during the training process.
Figure 3 (a) shows a sampled image and its ground truth
annotation boxes from the MIO-TCD training dataset, and
Figure 3 (b) shows a illustration of the overall structure of
the R-FCN.

We trained the classifiers with the provided training data
and an objective function consisting of the summation of the
cross-entropy loss and the box regression loss: L(o, ) =
Les(0cx )+AIL(c*) Lreg(ty, ty-). Here, c* is the Rols ground
truth label, which has a background label when c* equals
zero, and I(c*) is an indicator that equals to 1 except
when ¢* has the background label (¢* = 0). Lgs(0c+) =
—log o+ is the cross-entropy loss for classification under
a given class output oc«, Ly.cq(ts, tp~) is the bounding box
regression loss with ¢, = (¢(z), t(y), t(w), t(h)) as defined
in [10], and A is balance weight A = 1 as in [2].

4. Experiments
4.1. Classification

The MIO-TCD-classification dataset has 648,959 color
images, such that 519, 164 can be used for training data and
129, 795 for test data. The dataset can be downloaded on
the website.” Metrics for the evaluation of the classification
task are as follows:

TP
# of Testing Images’

Accuracy = 4
where T'P is the number of true positive images. The mean
precision (m Pre) and mean recall (m Rec) of each category
are defined as follows:

mPre = mean(Pre,), %)

mRec = mean(Rec..), 6)

where Pre, = %ﬁ,—&, Rec, = % of category c.
mean(-) denotes averaging all values over c.

Our method shows the best performance among other
state-of-the-art methods, as illustrated in Table 2. The
single model of ResNet-18 with a center crop achieves
96.99%, and the accuracy of the the eight-model ensemble
(average) is 97.93%. Surprisingly, our ResNet-18 is better
than ResNet-50, which is a deeper model than our network
is. Our JF with DropCNN model achieved 97.95% accu-
racy, and this is superior to the averaging ensemble model.

Table 3 gives a confusion matrix of our JF with
DropCNN. Our method shows high accuracies in the bus,

Zhttp://podoce.dinf.usherbrooke.ca/challenge/dataset/
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Figure 3. Overview of the localization task. (a) A sampled image and its ground truth annotations from MIO-TCD. (b) Overall architecture
of the region based fully convolutional network (R-FCN). The R-FCN can be divided into two parts such that the convolutional feature
extraction (CFE) layer extracts CNN features from the backbone architecture and the Rol feature localization (RFL) layer localizes Rol
features and bounding boxes with NMS (non-maximum suppression).

Table 2. Experimental results for the classification task.

Method Cohen Kappa Score | Accuracy | Mean Precision | Mean Recall
VGG16+FineTune [12] 0.9403 0.9616 0.8802 0.8502
ResNet-50+FineTune [4] 0.9326 0.9568 0.8654 0.8239
ResNet50 [4] 0.9276 0.9539 0.8445 0.7802
VGG19 batch norm [12, 7] 0.9175 0.9467 0.8074 0.7971
AlexNet [9] 0.8957 0.9330 0.7729 0.7583
AlexNet+SVM [9] 0.8284 0.8930 0.8076 0.6182
ResNet-50+SVM [4] 0.8271 0.8921 0.8240 0.6305
VGG16+SVM [12] 0.8078 0.8808 0.8102 0.5924
ResNet-18 center crop 0.9535 0.9699 0.9223 0.9001
ResNet-18 8 models multi crop 0.9677 0.9793 0.9518 0.8987
ResNet-18 8 models JF + DropCNN 0.9681 0.9795 0.9530 0.8970

car, and background categories. Especially, for the back-
ground category, our method achieves near 100% accuracy.
We consider that there are not significantly large variations
in the background category because the images taken from
the traffic surveillance camera have a similar environment.

4.2. Localization

We performed experiments for localization on MIO-
TCD, which 110,000 training images and 27,743test im-
ages, with eleven object classes, as follows: articulated
truck, bicycle, bus, car, motorcycle, non-motorized vehi-
cle, pedestrian, pickup truck, single unit truck, work van,
and background. Both train and test datasets contain back-
ground and foreground objects with different properties,
and some specific regions of these images provide signif-
icant occlusion and clutter, inconsistent contrast, various
levels of illumination, and pose variation of objects.

We trained four R-FCN models with different ran-
dom initializations and layer depths (two ResNet-50s and
two ResNet-101s), and we tuned hyper-parameters of net-
works arbitrarily divided into training datasets using 5-fold

cross validation. For each model, we set the size of the
position-sensitive Rol-pool layer £ = 7, and then we used
72(11 + 1) channel convolutional layers to obtain position-
sensitive score map. We applied online hard example min-
ing (OHEM) [11] to balance positive and negative sam-
ples during training. We set the learning late 0.001 for
the initial 80k iterations and then multiplied 10! for each
step until 300k iterations were reached, with a weight de-
cay of 0.0005 and a momentum of 0.9 for every model.
Non-maximum suppression (NMS) was applied for post-
processing to merge the initially localized bounding boxes
with a threshold of 0.3 IoU, as a standard approach.

We also performed experiments to verify the effect of
the maximum number of region candidates produced by the
RPN, and then we fixed the maximum candidate regions
at 700 (see Table 4). Other layer specifications and hyper-
parameters followed the original configuration given in [1].
After training each R-FCN model, we ensembled the mod-
els into one localization model, as shown in Figure 4. Each
model receives an image as an input data, then forwards
it and generates initial bounding boxes on an input image.
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Table 3. Confusion matrix of our method (%). The labels in the leftmost column and on the top represent the ground truth and prediction

results, respectively.

Articulated Bicycle Bus Car Motorcycle Non-motorized Pedestrian Pickup Single Unit ‘Work Background
| | Truck | | Vehicle | Truck | Truck | Van |

Articulated Truck 93.24 0.00 0.35 0.93 0.00 0.23 0.00 0.23 4.33 0.15 0.54
Bicycle 0.18 89.49 0.18 245 0.70 0.00 6.48 0.00 0.00 0.00 0.53
Bus 0.23 0.00 97.79 1.47 0.00 0.00 0.00 0.35 0.08 0.08 0.00
Car 0.00 0.00 0.00 98.53 0.00 0.00 0.00 1.42 0.00 0.04 0.00
Motorcycle 0.00 1.82 0.00 222 91.11 0.00 0.40 0.00 0.00 0.00 4.44
Non-motorized Vehicle 10.73 0.23 0.23 091 0.00 52.28 0.68 3.65 13.01 2.05 16.21
Pedestrian 0.00 1.47 0.00 0.26 0.06 0.00 94.06 0.00 0.00 0.00 4.15
Pickup Truck 0.00 0.00 0.02 4.50 0.00 0.00 0.00 95.39 0.09 0.01 0.00
Single Unit Truck 10.31 0.00 0.16 0.47 0.00 0.16 0.00 2.58 83.36 1.09 1.88
Work Van 0.08 0.04 0.08 5.62 0.00 0.04 0.04 0.78 0.78 91.66 0.87
Background 0.04 0.00 0.02 0.07 0.00 0.00 0.00 0.01 0.01 0.02 99.84

Table 4. Localization mAP using different backbone CNNs with
the maximum number of top scoring boxes with NMS (the-cross
validation on training dataset).

Model (# maximum region proposals) | mAP (%)

ResNet-50 (300) 79.53
ResNet-50 (700) 80.45
ResNet-101 (300) 79.71
ResNet-101 (700) 80.56

RoIPooling
RPN
PSSM

RoIPooling

PSSM

Localization
+ with NMS
RoIPooling
RPN

PSSM

RoIPooling
RPN
PSSM

RFL Layer

CFE Layer

Figure 4. An illustration of the multi-network ensemble for
region-based object detector. For the an input data, each model
generates candidate boxes through the CFE and RFL layers, and
then the generated boxes are merged into an image by NMS.

These bounding boxes from each model are merged into fi-
nalized one applying NMS. Finally, we achieved 79.24%
mAP of the overall classes with the ensemble model using
four trained R-FCNs, which showed the highest accuracy
among the state-of-the-art models, as illustrated in Table 5.
Detailed mAPs in each class of the final ensemble models
are shown in Figure 5.

5. Conclusion

We presented methods that classify and localize vehicles
in surveillance recordings. For the classification task, we
basically used a deep ResNet with 18 layers and ReLU. Fur-
thermore, a new ensemble method called JF with DropCNN
was proposed, and it was useful for increasing the model’s
accuracy. For the localization task, we adopted an R-FCN

Table 5. Comparison of mAP among state-of-the-art models on the
test dataset with different detector settings.

Model | mAP (%)
YOLO-vl 62.65
Faster-RCNN 69.98
YOLO-v2-Pascal VOC 71.47
YOLO-v2-MIOTCD 71.83
SSD-300 73.97
R-FCN (ResNet-101) 77.76
R-FCN (ResNet-50) 77.99
R-FCN (2-models ensemble) 78.65
R-FCN (3-models ensemble) 78.98
R-FCN (4-models ensemble) 79.24

with deep residual models and implemented its ensemble
network to achieve more accurate results. Finally, our clas-
sification method outperformed other state-of-the-art mod-
els, such as AlexNet, ResNet 50+SVM, and VGG16+SVM,
and our localization method outperformed state-of-the-art
detectors, such as YOLO, F-RCNN, and SSD. In future, we
plan to analyze the joint fine-tuning with DropCNN to gain
deeper insights into the classification and exploit advanced
pre- or post-processing, such as soft NMS, for the localiza-
tion. We will soon release our models, and source codes are
publicly available.
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Figure 5. Per-class precision-recall curves from a four-ensemble model. Each class name and its average precision (AP) are shown over

each precision-recall curve.
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Figure 6. Example detection results for the test dataset from the configuration that achieved 77.99 % mAP with a single ResNet-50
model. Each image was randomly selected, and a score threshold of 0.5 is used for visualization.

67



