
Deep Learning-based Vehicle Classification

using an Ensemble of Local Expert and Global Networks

Jong Taek Lee and Yunsu Chung

Electronics and Telecommunications Research Institute (ETRI)

Daegu, South Korea

Abstract

Vehicle classification has been a challenging problem

because of pose variations, weather / illumination changes,

inter-class similarity and insufficient training dataset. With

the help of innovative deep learning algorithms and large

scale traffic surveillance dataset, we are able to achieve

high performance on vehicle classification. In order to im-

prove performance, we propose an ensemble of global net-

works and mixture of K local expert networks. It achieved

a mean accuracy of 97.92%, a mean precision of 92.98%, a

mean recall of 90.24% and a Cohen Kappa score of 96.75%

on unseen test dataset from the MIO-TCD classification

challenge.

1. Introduction

Visual analysis on traffic surveillance has recently at-

tracted significant attention in the computer vision commu-

nity. Vehicle classification and detection have been con-

sidered as difficult problems due to the variations of object

and camera poses, image quality, lighting and weather con-

ditions. More importantly, the lack of large-scale vehicle

dataset has limited applicable methods. Recently, a large-

scale vehicle dataset, CompCars [11], was released for fine-

grained categorization and verification. With the help of this

large-scale dataset, Yang et al. [11] showed that deep con-

volutional networks can successfully classify hundreds of

different car models.

While CompCars dataset focused on fine-grained cate-

gorization with hundreds of car models, the classification

challenge dataset of the MIOvision Traffic Camera Dataset

(MIO-TCD) [1] focused on the categorization of 11 traf-

fic surveillance relevant objects as shown in Figure 1. Al-

though the number of categories in the MIO-TCD classifi-

cation challenge is much smaller than the number of cate-

gories in CompCars dataset, the MIO-TCD classification is

a highly challenging problem because the dataset acquired

at different times and periods by thousands of cameras in a
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Figure 1: Sample images from 11 categories of MIO-TCD clas-

sification dataset: (a) articulated truck, (b) background, (c) bicy-

cle, (d) bus, (e) car, (f) motorcycle, (g) non-motorized vehicle, (h)

pedestrian, (i) pickup truck, (j) single unit truck, and (k) work van

wide range of areas. Also, significant inter-class similarity

between certain types of vehicles such as articulated truck

and single unit truck makes the classification more difficult.

This paper presents an ensemble approach for robust

classification on the MIO-TCD challenge. Our system is

composed of local expert networks with a gating func-

tion [5, 3] and global networks. The local expert and global

networks are trained with the particular subsets and entire

training set, respectively. An ensemble of these two groups

of networks enables our system to reduce an error rate by
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Figure 2: Training phase. Local expert networks are individually trained with each subset of the training data, and global networks are

trained with the entire set of training data.

6.5% relative to an ensemble of only global networks. In

order to improve individual deep networks of the ensem-

ble, they are trained by applying several classification tech-

niques such as pre-training and multi-crop testing.

The rest of this paper is organized as follows. Section 2

briefly presents prior work related to deep learning based

classification networks. We describe the details of our clas-

sification framework with training and testing method in

Section 3. Section 4 explains the MIO-TCD classification

challenge dataset and shows extensive experimental results

on the individual networks and their ensemble. Finally, Sec-

tion 5 concludes the paper.

2. Related work

After Krizhevsky et al. [7] presented an outstanding per-

formance in the ImageNet LSVRC (ILSVRC)-2010 con-

test [8] using deep convolutional neural networks (DCNNs),

tremendous deep learning research has been performed to

solve classification problems. Szegedy et al. [10] pro-

posed a novel deep architecture using inception modules

which can increase the depth of networks without boost-

ing the number of parameters. Simonyan and Zisserman [9]

showed that 3 × 3 receptive fields in the first convolutional

layer were more effective than 11 × 11 receptive field with

stride 4 [7] or 7 × 7 with stride 2 [10, 12], and multi-

scale training improved performance in the ILSVRC con-

test. ResNet [3] firstly exceeded the reported human-level

performance [8] by using residual learning and parametric

rectified linear units. An ensemble prediction of multiple

networks is proven to be effective to reduce error rates in

the ILSVRC competition [10, 12, 3].

3. Classification framework

We first generate subsets of training samples by the ratio

and size of images, respectively. Local expert DCNNs are

individually trained with each subset of the training data,

and global DCNNs are trained with the entire set of training

data. For testing an image, each DCNN provides a classi-

fication results by averaging softmax on multi-crops of the

image. The final classification results are calculated by the

weighted summation of all DCNN softmax average. The

more details of the framework are explained the following

subsections.

3.1. Network models

We use three well known deep convolutional neural

network structures: AlexNet [8], GoogLeNet [10], and

ResNet18 [4]. AlexNet has 8 layers, GoogLeNet has 22

layers, and ResNet18 has 18 layers. In our framework, all

of the three structures take 224 × 224 RGB input images

and their last fully convolutional layer has 11 outputs as 11

categories exist in the MIO-TCD Classification challenge.

3.2. Training

The overview of our classification framework for train-

ing is shown in Figure 2. In order to train K local expert net-

works, we generated K/3 groups of subsets from the training
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set. Each group consists of three subsets, which can be mu-

tually exclusive or partially overlapped. Also, the rule of

subset generation is based on the width to height (aspect)

ratio of the input images and the size of the input images.

All K expert networks have the same GoogLeNet architec-

ture with the weights initiated by the pre-trained ImageNet

model, but they are trained by using generated K different

subsets.

Unlike K local expert networks, M global networks are

trained by using the entire training set. We trained AlexNet,

GoogLeNet and ResNet18 models with random initial-

ized weights. In addition to three networks, we trained a

GoogLeNet model pre-trained on ImageNet by using three

different scales of the images: 224 × 224, 240 × 240 and

256 × 256. In total, we trained 18 networks with 12 local

expert and 6 global networks. When we have more number

of networks in an ensemble, it is hard to see the improve-

ment of classification performance.

Four groups of local expert networks are

3.3. Testing

At test time, an expert network gating function decides

which expert networks to turn on. Here, we use a rule based

gating function. The conditions of the gating function for K

expert networks are same to those of the K subset genera-

tion the based on the H/W ratio and size of an input image.

The image is then resized to 224 × 224 and 240 × 240

for single image and multi-scale testing, respectively. For

multi-scale testing, we crop the centered 224 × 224, 228 ×

228, 232 × 232, 236 × 236 and 240 × 240 from the image

and its horizontal flip. Because we want to classify a main

(focused) object which are mostly located in the center of

images when there are multiple objects in the image, crop

is applied only to the centers of the image. The cropped

images are resized to 224 × 224, and the selected expert

networks and global networks classify the images. Finally,

a prediction is generated by combining the outputs of the

local expert and global networks as shown in Figure 3.

3.4. Implementation details

The image is resized to 240 × 240 (squash) unless the

resize dimension is defined. At every training epoch, a 224

× 224 crop is randomly sampled from the resized image

and its horizontal flip. Our training used stochastic gradient

descent with a mini-batch size of 128 and 0.01 initial learn-

ing rate. The learning rate is decreased by a factor of 10

every 10 epochs, and learning is stopped after 30 epochs.

Our implementation is derived from Caffe library [6] and

Nvidia DIGITS [2]. The DIGITS system allows us to easily

perform training and testing on multi-GPUs (GeForce GTX

TITAN X).

Local Expert Network (LN) 

Selection

Softmax

Sum

Prediction

LN #1 LN #2 LN #K

…

GN #1 GN #2 GN #M

…

Figure 3: Testing phase. LN and GN stands for local expert net-

work and global network, respectively.

4. Experiments on MIO-TCD classification

challenge dataset

4.1. MIO­TCD challenge dataset

The MIO-TCD dataset is a large-scale traffic surveil-

lance challenge for classification and localization. There

are 648,959 images for classification and 137,743 images

for localization. In this paper, we focus only on the clas-

sification challenge dataset. There are 11 traffic surveil-

lance related categories in the classification challenge, in-

cluding nine types of vehicles, pedestrian, and background.

The size and aspect ratio of an image severely varies in the

dataset. One large image can be 18 times larger than a small

image, and aspect ratio can be smaller than 0.2 and larger

than 14. For example, the aspect ratios of upper images

in Figure 1 are smaller than the aspect ratios of lower im-

ages in Figure 1. Because the MIO-TCD dataset is collected

from real traffic surveillance environments, The counts of

car and pickup truck images are much higher than those

of bicycle, motorcycle and non-motorized vehicle images.

More detail of image count for category is shown in Fig-

ure 4.

Difficult cases. The MIO-TCD classification is challeng-

ing due to the interclass similarity and the diversity of pose,

lighting and image resolution. More specific difficult cases
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Case 1: tow trucks carrying multiple cars

Case 2: two different types of vehicles staying together

Case 3: low resolution images with compression error

Case 4: parts of vehicles not showing

Case 5: very small part of vehicles showing

Case 6: modified vehicles

Case 7: lighting variations at daytime and night

Case 8: fog (left two) and motion blur problem (right two)

Case 9: pedestrian carrying (not riding) a bicycle (left four)

and painting on a vehicle (right one)

Table 1: Difficult cases for the MIO-TCD vehicle classification.

are presented in Table 1. In case 1, a huge tow truck carries

multiple cars, but only its cargo and carried cars are visible

in the images. Their ground truth labels are non-motorized

vehicle, which makes sense to human, but it can be hard to
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Figure 4: The number of images for each category. Categories

are sorted in descending order of image count.

train a classifier with such images. In case 2, two different

vehicles stay together and it is hard to choose one vehicle

for classification. Their ground truth (GT) labels are car. In

case 3, the left three low resolution images look like pedes-

trian but their labels are bicycle. Also, it is hard to catego-

rize the rightmost image due to compression error. In case

4, the parts of vehicles are missing. Some parts of a vehicle

in the two leftmost images are cropped, and the major parts

of vehicles in the two center images are occluded while their

GT labels are car. Case 5 is similar to case 4, but their GT

labels are background as a very small part of the vehicles

is visible. Case 6 presents one of the most confusing cases:

vehicle modification. The leftmost three cars look like a

wagon(car) or a pickup truck with a tonneau cover. In case

7 and 8, classifying images is difficult due to color changes

or motion blur. In case 9, the GT labels in the four leftmost

images are pedestrian as people carrying a bicycle instead

of riding one.

4.2. Comparative evaluation

We extensively evaluated all M global networks and K

local expert networks. Without pre-training, the error rates

for single image testing of ResNet18 were 0.3% and 0.5%

lower than GoogLeNet and AlexNet, respectively. How-

ever, GoogLeNet with weights from the pre-trained Ima-

geNet model reduced the error rate by 19.6% relative to the

same network with random weights for single image testing.

Figure 5 shows that pre-training helps a network not only

learn faster but also converge at a higher accuracy rate. We

also compared the kernels of the first convolutional layer

of three networks: (a) a pre-trained network, (b) a scratch

network trained with whole training data (500K), and (c)

a scratch network trained with small training data (1.1K)

in Figure 6. A deep neural network can take an advantage

when it is trained with a large-scale dataset. The error rates

of networks trained with different scales of images became

similar when we applied multi-crop testing.

As shown in Table 2, a few of local experts achieved bet-
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Figure 5: Comparison of network learning with / without pre-

training, showing faster convergence and higher accuracy when

using pre-trained weights.

ter performance than the global networks. The lowest error

rate of expert networks was 1.73% and the biggest error rate

was 3.79%. Also, an ensemble of 12 local expert networks

achieved 2.15% error rate for single image testing, which

is slightly better than an ensemble of 6 global networks. In

almost all networks, error rates were reduced when the net-

work tested with multi-crops. However, the reduction be-

came small when a network achieved a very low error rate

or we use an ensemble of multiple networks. The error rate

of an ensemble of all networks (18) with multi-crop testing

was reduced by only 3.1% relative to the one with single

image testing. With an ensemble of all trained network by

multi-crop testing, we were able to achieve a 2.0% error rate

on vehicle classification.

A confusion matrix of the proposed vehicle classifica-

tion network on the MIO-TCD challenge unseen test set is

shown in Table 3. The classification accuracy rates of car

and background are higher than other categories as the sam-

ples of these two classes are dominant. Articulated truck

and single unit truck, work van and car, and non-motorized

vehicle and single unit truck are pairs hard to distinguish.

Recall was the lowest on non-motorized vehicle, 68.72%,

and the highest on background, 99.66%.

5. Conclusion

In this work, we evaluated various deep convolutional

neural networks and their ensemble for large scale traf-

fic surveillance image classification. We demonstrated that

multi-crop testing and model training with local expert and

global networks is effective with an ensemble of them. Our

approach achieved a 98.0% accuracy rate on validation set

and a 97.92% accuracy rate on unseen test set in MIO-TCD

classification challenge. Future work will explore cluster-

Table 2: Mean error rates of global and local expert networks

and its ensemble. IN refers to using pre-trained ImageNet mod-

els. ME represents mutually exclusive subsets, and OL indicates

overlapping subsets. Error rates in Parentheses of local experts are

generated from the entire test set.

Error rates(%)

Method Single Multi-crop

Global Networks

AlexNet 3.292 2.887

GoogLeNet 3.091 2.744

ResNet18 2.804 2.531

GoogLeNet IN 224 2.501 2.448

GoogLeNet IN 240 2.603 2.421

GoogLeNet IN 256 2.737 2.500

Local Expert Networks

GoogLeNet IN Ratio 1 ME 3.79(6.50) 3.74(6.59)

GoogLeNet IN Ratio 2 ME 2.70(5.66) 2.64(5.61)

GoogLeNet IN Ratio 3 ME 1.73(9.30) 1.89(9.2)

GoogLeNet IN Ratio 1 OL 3.10(4.01) 3.06(3.97)

GoogLeNet IN Ratio 2 OL 2.56(4.84) 2.47(4.75)

GoogLeNet IN Ratio 3 OL 2.02(6.03) 1.92(5.84)

GoogLeNet IN Size 1 ME 2.80(14.74) 2.72(15.00)

GoogLeNet IN Size 2 ME 3.33(7.14) 3.20(6.44)

GoogLeNet IN Size 3 ME 2.13(15.39) 2.11(14.42)

GoogLeNet IN Size 1 OL 2.99(7.94) 2.84(7.97)

GoogLeNet IN Size 2 OL 3.16(4.87) 2.95(4.58)

GoogLeNet IN Size 3 OL 2.18(7.43) 2.11(6.71)

Ensemble of

Global Networks (6) 2.176 2.144

Local Expert Networks (12) 2.151 2.114

All Networks (18) 2.070 2.005

Figure 6: Comparison among kernels of size 7 × 7 × 3 learned by

the first convolutional layer of a network with (a) ImageNet pre-

trained, (b) a random initial weights trained with 500K images,

and (c) a random initial weights trained with 1.1K images.

ing methods for generating K subsets and low resolution

image enhancement for tiny image classification.
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