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Abstract

Vehicle Make and Model Recognition (VMMR) has

evolved into a significant subject of study due to its impor-

tance in numerous Intelligent Transportation Systems (ITS)

and corresponding components such as Automated Vehic-

ular Surveillance (AVS). A highly accurate and real-time

VMMR system significantly reduces the overhead cost of re-

sources otherwise required. The VMMR problem is a multi-

class classification task with a peculiar set of issues and

challenges like multiplicity, inter- and intra-make ambigu-

ity among various vehicle makes and models, which need to

be solved in an efficient and reliable manner to achieve a

highly robust VMMR system.

In this paper, facing the growing importance of make and

model recognition of vehicles, we present an image dataset1

with 9, 170 different classes of vehicles to advance the cor-

responding tasks. Extensive experiments conducted using

baseline approaches yield superior results for images that

were occluded, under low illumination, partial or non-

frontal camera views, available in our VMMR dataset. The

approaches presented herewith provide a robust VMMR sys-

tem for applications in realistic environments.

1. Introduction

Over the recent years, a deluge of innovative technolo-

gies and solutions are bringing Intelligent Transportation

Systems (ITS) closer to reality. Identification and classifica-

tion of vehicles is of great interest in such applications, due

to elevated security concerns in ITS and demanding areas

such as targeted advertisement, behavior analysis and un-

derstanding or surveillance for crime prevention and safety.

Vehicles offer several unique properties compared to other

objects. They provide a more diverse and challenging set of

issues and facilitate a range of novel research topics in fine-

grained image classification. The first set of issues stems

1The latest version of dataset will be available upon request by contact-

ing the corresponding author.

(a) Multiplicity Problem

(b) Ambiguity Problem

Figure 1: VMMR Challenges

from one vehicle model of the same make having different

shapes and/or appearances in different years (Figure 1(a)),

referred to as multiplicity. The second category of prob-

lems, called ambiguity, can be further classified into two

types: (a) Inter-class similarity, and (b) Intra-class variabil-

ity. The former ambiguity refers to the issue of vehicles of

different manufactures having visually similar shape or ap-

pearance, i.e., two different make-model classes have sim-

ilar front or rear views. The latter kind of ambiguity is a

result of similarity between different models of the same

make. Samples of such differences are depicted in Fig-

ure 1(b). Additionally, the considerably large number of

car models, including different car manufactures and mod-

els depending on the year has made VMMR one of the

most challenging fine-grained classification problems. This

application, thus, can potentially foster more sophisticated

computer vision models and algorithms.

Traditional vehicle identification systems recognize

makes and models of vehicles relying on manual human ob-

servations or automated license plate recognition (ALPR)
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systems [2, 7, 30]. Both approaches are failure-prone and

have several limitations. It is practically difficult for human

observers to remember and efficiently distinguish between

the wide variety of vehicle makes and models. On the other

hand, the AVS systems that rely on license plate suffer from

several limitations. First, many surveillance cameras are not

installed for license plate capturing, thus, plate recognition

performance drops dramatically on images/video data cap-

tured by these cameras. Furthermore, license plates are easy

to be forged, damaged, modified, occluded, or invisible due

to uneven lighting conditions. Moreover, in some areas, it

may not be required to have the license plate at the front or

rear of vehicle. This could lead to retrieving the wrong in-

formation regarding make or model of the vehicle from the

registry [31].

To overcome the above shortcomings in traditional vehi-

cle identification and classification systems, the make and

model of the vehicle recognized by the VMMR system can

complement the ALPR systems by providing a higher level

of robustness against fraudulent use of license plates or poor

image quality and consequently further enhance security.

Furthermore, in applications such as electronic toll collec-

tion, vision-based AVS systems could serve as a comple-

mentary tool in improving efficiency of existing systems to

apply different rates to different types of vehicles inexpen-

sively and automatically. In traffic control or traffic mon-

itoring, statistics of vehicle flow, associated with vehicle

models, is more helpful in an intelligent transportation sys-

tem.

In this paper, we present a new dataset covering most of

the existing vehicle makes and models to help experiments

in this direction by providing sufficient amount of data en-

riched by information automatically extracted to define each

vehicle's make, model and production year.

2. Background

The task of VMMR is the most advanced use case of cars

understanding, with high sensitivity on details, environment

changes, rapid variations in manufacturer production and

maintenance. However, the amount of relevant scientific

literature is relatively small. Generally, existing work falls

into three major approaches.

The first one is based on appearance and identifies cars by

their inherent features including dimensions, shapes, and

textures. These methods rely on the pose and position of

the cameras [11, 19, 28]. The second approach is feature-

based and classifies car models using local or global in-

variant features including low-level features such as edge-

based [1, 24] and contourlet transform features [5] as well

as high-level features, such as, Speeded Up Robust Features

(SURF) [3, 4], Histogram of Gradient (HoG) [16], PHOG

and Gabor features [33]. The third approach is model-based

and follows the intuition that distinctive features of a fine-

grained category are most naturally represented in 3D ob-

ject space, representing both the appearance of the parts and

their location with respect to the target object [13, 15, 17].

Many of the above methods have good performance

when dealing with the classification of a few number of ve-

hicle makes or models; but their performance usually can-

not meet the requirements in realistic applications, deal-

ing with a large number of classes [19]. Moreover, most

of these works rely heavily on hand-crafted low-level fea-

tures which might not be saliently distinctive among dif-

ferent subordinate-level categories that have extremely sim-

ilar appearance. To address the fine-grained recognition

problem more specifically, recently deep networks are be-

ing used to extract discriminative hierarchical features from

the data [9, 10, 29].

2.1. Existing Datasets

Most research efforts on VMMR so far have been fo-

cused on medium-scale datasets. There are two main rea-

sons for the limited effort on large-scale image based ve-

hicle classification. First, there are only a few publicly

available large-scale benchmark datasets for VMMR. This

is mostly because class labels are expensive to obtain. In

fact, most existing fine-grained image classification bench-

mark datasets only consist of a few thousands (or less) of

training images. As of existing vehicle datasets, they either

cover a subset of makes and models [24,32], or only catego-

rize vehicles at a high level (i.e., SUV, Truck, Sedan) [6,20],

and those usable mainly for vehicle related tasks such as de-

tection and pose estimation [8, 17, 22]. Second, large-scale

classification is difficult because it poses more challenges

than its medium-scale counterparts. Having the appropri-

ate set of training data can improve the performance of de-

signed classifiers. Indeed, it is necessary to have a very

large number of images for each class to cover the wide

range of variations of view angles, lighting, as well as the

fairly wild appearance difference within the same class.

The lack of public and standard datasets has moved re-

searchers to use their own databases. Accordingly, it is

very complicated to establish a performance comparison

between the different approaches. A very recently pub-

lished example is CompCars dataset [31]. This dataset

consists of web-nature and surveillance-nature parts. The

former is made of 136, 727 vehicles from 153 car makes

with 1, 716 car models, taken from different viewpoints,

covering many commercial car models in the recent ten

years, most of which are Chinese, and the latter con-

tains 44, 481 frontal images of vehicles taken from surveil-

lance cameras. The CompCars dataset was originally used

for fine-grained car classification, car attribute prediction

and car verification. Sochor et al. collected and an-

notated the BoxCars dataset [29] containing vehicle im-

ages taken from surveillance cameras accompanied with
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their 3D bounding boxes. This dataset is composed of

21, 250 vehicles (63, 750 images in diverse viewpoints) of

27 different makes, 102 make-model classes, 126 make-

model-submodel classes, and 148 make-model-submodel-

year classes. Lin et al. [17] published FG3DCar dataset

including 300 images of 30 classes. The data provided in

FGComp [15] includes 8, 144 images of cars, covering only

196 makes and models out of which 60% are 2012 mod-

els. A vehicle re-identification dataset, VehicleID, collected

from multiple real-world surveillance cameras and includ-

ing over 200, 000 images of about 26, 000 vehicles, was in-

troduced in [18]. Almost 90, 000 images of 10, 319 vehicles

in this dataset have been labeled with the vehicle model in-

formation. A summary of the existing datasets addressing

the task of VMMR is featured in Table 1.

Table 1: Summary of existing VMMR datasets

Ref. Year Viewpoint # Samples # Classes

2004 [25] Front 1132 77

2005 [23] Front 180 5

2008 [5] Front 830 50

2009 [26] 3D free 400 36

2011 [27] Front 90 10

2011 [24] Front 262 74

2012 [1] Rear 400 10

2013 [15] Mixed 16185 196

2014 [13] 3D free 190 8

2014 [14] Front 6936 29

2014 [19] Rear 1342 52

2015 [31] Mixed 136727 1716

2016 [29] 3D free 63750 126

3. Proposed VMMR Dataset

Despite the ongoing research and practical interests, car

make and model analysis attracts limited attention in the

computer vision community, due to the aforementioned di-

versity and limitations of existing datasets. Thus, we col-

lected a comprehensive dataset, VMMRdb, where each im-

age is labeled with the corresponding make, model and pro-

duction year of the vehicle.

The dataset used in our experiments contains images that

were taken by different users, different imaging devices,

and multiple view angles, ensuring a wide range of vari-

ations to account for various scenarios that could be en-

countered during testing, in a real-life scenario. The cars

are not well aligned, and some images contain irrelevant

background. The data was gathered by crawling web pages

related to vehicle sales, mainly on craigslist.com and ama-

zon.com, including 712 areas covering all 412 sub-domains

corresponding to U.S. metro areas. Images were automati-

cally annotated using the title and description the sellers had

provided for each post. We developed a semi-automated

process to prune the data and remove the undesired images

belonging to interior parts of vehicles and noisy labels.

The VMMR dataset is much larger in scale and diversity

compared with the existing car image datasets, containing

9,170 classes consisting of 291,752 images, covering mod-

els manufactured between 1950 to 2016. The distribution

of images in different classes of the dataset is illustrated in

Figure 2. Each circle is associated with a class, and its size

represents the number of images in the class. The classes

with labels are the ones including more that 100 images.

The dataset will be publicly available on our website in a

few months. In the meantime, the dataset's latest version

will be available upon request by contacting the correspond-

ing author.

4. Impact of the Proposed VMMR Dataset

We compared the effect of multiple network architec-

tures, including the ones evaluated in [31]. Here, we

only report results using ResNet [12] as it outperforms

other models. Considering the superior validation accuracy

achieved by the model with 50 layers, referred to as ResNet-

50, with respect to having less parameters, we choose this

model for the evaluations. We used the model pre-trained

on ImageNet, and fine-tuned on the datasets under experi-

ment with the same mini-batch size, number of epochs, and

learning rate.

In the first experiment, we analyze the importance of

having diversity in data to handle real-world surveillance

applications. We commence our evaluations by comparing

the performance of our dataset with the CompCars dataset

employing the same settings as the ones used in [31], us-

ing CNN learners. Despite having hierarchical labels of

make, model and year in their dataset, Yang et al. [31] have

merged all production years of each model to the same class

in their experiments. This has resulted in 431 classes, many

of which are Chinese manufacturers. To have a proper com-

parison, we choose only those classes existing in our dataset

(125 classes) and following their approach, we use the la-

bels at the make-model level only. We pick the exact year

for which any image is included in CompCars. In the result-

ing 51 classes, with corresponding datasets referred to as

CompCars-51 and VMMRdb-51, following the experimen-

tal settings in [31], we divide the images into two halves for

training and testing. Table 2 details the number of images

in each dataset.

Table 2: Specifications of the overlap data between Comp-

Cars and VMMRdb datasets

Dataset # Classes # Train # Test

CompCars-51 51 1527 1506

VMMRdb-51 51 1986 1984
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Figure 2: Distribution of images per class in VMMRdb

We investigated the classification accuracy of networks

trained on each dataset in confronting with samples from

other datasets. The nature of images provided in CompCars

are very different from VMMRdb images in the sense that

they are mostly captured in more controlled environment

with much higher resolution. The purpose of these experi-

ments is to see how well the model performs given images

collected in more challenging scenarios. We, also, generate

a third dataset which we refer to as CompCarsVMMRdb-

51, by merging the discussed datasets. The performances

of these experiments are summarized in Table 3. We report

the Top-1 and Top-3 accuracies of car make-model classifi-

cation, which denote the classification accuracy considering

the first and up to three top matches, respectively, for each

pair of train and test set.

As we expected, the model trained on CompCars, despite
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its significant performance on the test set with images of

similar nature, degrades considerably on the test images se-

lected from VMMRdb-51. The performance of the model

trained on VMMRdb-51 is just slightly better with respect

to non-VMMR images. The merged dataset, however, out-

performs both previous cases, proving the fact that employ-

ing additional training data can boost classification results

by increasing data diversity in training examples.

Table 3: Classification results for the models trained on dif-

ferent datasets

Test

Train
CompCars-

51

VMMRdb-

51

CompCars

VMMRdb-51

CompCars

-51

96.88

97.88

36.10

50.05

62.23

70.69

Top-1

Top-3

VMMRdb

-51

40.28

52.85

90.26

93.48

68.22

75.93

Top-1

Top-3

CompCars

VMMRdb-51

96.61

97.48

94.10

96.47

95.16

96.91

Top-1

Top-3

5. Fine-grained VMMR

We extend the CNN-based experiments to train a model

for classification of vehicles make, model and production

year on another subset of our dataset which we will refer

to as VMMRdb-3036. In order to have enough data for

training CNN, in this dataset, we have only considered the

classes containing more than 20 images. It has 3036 classes

and 246, 173 images. In each class we split the images into

70% and 30% for train and test, respectively. Figure 3 de-

picts the distribution of different classes based on the num-

ber of images. The distribution of images in the sub-classes

of a selected make is visualized in Figure 4.

Figure 3: Distribution of number of images per class in

VMMRdb-3036

Following the previous experiments, we used the model

pre-trained on ImageNet, and fine-tuned it on VMMRdb-

3036. We set the parameters to initial learning rate 0.01,

and 200 training epochs. The learning rate decay was selec-

tively applied after initial 30 epochs. In training, all inputs

Figure 4: Distribution of number of images per model-year

in VMMRdb-3036 for the sample make 'Chrysler'

were color-normalized with the mean and standard devia-

tion from ImageNet images after scale, aspect ratio, color,

and horizontal flip augmentations. During the test phase,

all detections were center-cropped and color-normalized by

the system. We trained the models with a minibatch size

of 32 within 110 hours on a NVIDIA GeForce GTX 1080

GPU using ~8 Gb of memory.

The model trained on VMMRdb-3036 achieved the Top-1

and Top-5 accuracy of 51.76% and 92.90%, respectively.

This decrease in accuracy compared to the results of Table

3, in addition to the considerable increase in the number of

classes, illustrates the level of difficulty by going deeper in

the hierarchy of fine-grained classification where we have

included manufacture year as well as make and model.

Figure 5 displays some predictions, indicating that the

model accounts for variations in viewpoints and lighting

conditions. Below each image is the ground truth class and

the probabilities for the Top-5 predictions with the matched

class in the top bar. As we can see, the Top-1 match usu-

ally has a high confidence versus the rest of predictions.

In these examples, the prediction matches the target make,

model and production year. In Figure 6, however, few ex-

amples of images predicted to the true make and model, but

incorrect year are displayed. These samples represent the

multiplicity problem. The left example, shows an image of

“Toyota Camry 2009” which has been matched to “Toyota

Camry 2010”. The interesting point is that in many of these

samples, we are dealing with images which are partially oc-

cluded or have an uncommon viewpoint. A few samples of

images incorrectly classified to a different model or make,

representing the ambiguity problem, are illustrated in Fig-

ure 7.

To observe the learned feature space of the models with

the aforementioned challenges, 2D projection of the last

fully connected layer for sample classes are visualized

in Figure 8. We have employed t-Distributed Stochastic

Neighbor Embedding (t-SNE) [21] for the projection of ran-

domly selected images from the presented classes. The

classes have been selected to represent the different chal-
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Figure 5: Top-5 predicted classes of ResNet-50 for sample images from VMMRdb-3036 classified correctly by the model

Figure 6: Top-5 predicted classes of ResNet-50 for sample images from VMMRdb-3036, incorrectly classified due to the

multiplicity issue

lenges of VMMR depicted in Figure 1. We can see that

features from the same model are closer to each other com-

pared to the ones visually very different.

6. Conclusions and Future Work

In this paper we presented a very large dataset to ad-

dress the problem of fine-grained classification of vehicles

in hierarchies of make, model and manufacture year. For

fine-grained recognition tasks, specifically, the challenge is

in discovering and locating the regions that contain the dis-

criminative details of each class. We make VMMRdb pub-

licly available for future reference and benchmarking. Be-

cause of the natural environments and unconstrained image

settings, our dataset can be used as a baseline for training a

robust model in several real-life scenarios.

Our dataset can offer valuable situational information

for law enforcement units in a variety of civil infrastruc-

tures. To demonstrate the effectiveness of our proposed ap-

proaches for VMMR, in our future work, we target an im-

portant real-life surveillance application where our system

would be able to analyze video data acquired from multiple

surveillance cameras to monitor and track vehicles under

varying environment and capture conditions.
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