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Abstract

Dense video captioning aims to generate text descrip-
tions for all events in an untrimmed video. This involves
both detecting and describing events. Therefore, all previ-
ous methods on dense video captioning tackle this problem
by building two models, i.e. an event proposal and a cap-
tioning model, for these two sub-problems. The models are
either trained separately or in alternation. This prevents di-
rect influence of the language description to the event pro-
posal, which is important for generating accurate descrip-
tions. To address this problem, we propose an end-to-end
transformer model for dense video captioning. The encoder
encodes the video into appropriate representations. The
proposal decoder decodes from the encoding with different
anchors to form video event proposals. The captioning de-
coder employs a masking network to restrict its attention to
the proposal event over the encoding feature. This mask-
ing network converts the event proposal to a differentiable
mask, which ensures the consistency between the proposal
and captioning during training. In addition, our model em-
ploys a self-attention mechanism, which enables the use of
efficient non-recurrent structure during encoding and leads
to performance improvements. We demonstrate the effec-
tiveness of this end-to-end model on ActivityNet Captions
and YouCookII datasets, where we achieved 10.12 and 6.58
METEOR score, respectively.

1. Introduction
Video has become an important source for humans to

learn and acquire knowledge (e.g. video lectures, making
sandwiches [20], changing tires [1]). Video content con-
sumes high cognitive bandwidth, and thus is slow for hu-
mans to digest. Although the visual signal itself can some-
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Figure 1. Dense video captioning is to localize (temporal) events
from a video, which are then described with natural language sen-
tences. We leverage temporal convolutional networks and self-
attention mechanisms for precise event proposal generation and
captioning.

times disambiguate certain semantics, one way to make
video content more easily and rapidly understood by hu-
mans is to compress it in a way that retains the seman-
tics. This is particularly important given the massive
amount of video being produced everyday. Video sum-
marization [41] is one way of doing this, but it loses the
language components of the video, which are particularly
important in instructional videos. Dense video caption-
ing [19]—describing events in the video with descriptive
natural language—is another way of achieving this com-
pression while retaining the language components.

Dense video captioning can be decomposed into two
parts: event detection and event description. Existing meth-
ods tackle these two sub-problems using event proposal and
captioning modules, and exploit two ways to combine them
for dense video captioning. One way is to train the two
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modules independently and generate descriptions for the
best event proposals with the best captioning model [12].
The other way is to alternate training [19] between the
two modules, i.e., alternate between i) training the pro-
posal module only and ii) training the captioning module on
the positive event proposals while fine-tuning the proposal
module. However, in either case, the language information
cannot have direct impacts on the event proposal.

Intuitively, the video event segments and language are
closely related and the language information should be able
to help localize events in the video. To this end, we pro-
pose an encoder-decoder based end-to-end model for doing
dense video captioning (see Fig. 1). The encoder encodes
the video frames (features) into the proper representation.
The proposal decoder then decodes this representation with
different anchors to form event proposals, i.e., start and end
time of the event, and a confidence score. The captioning
decoder then decodes the proposal specific representation
using a masking network, which converts the event proposal
into a differentiable mask. This continuous mask enables
both the proposal and captioning decoder to be trained con-
sistently, i.e. the proposal module now learns to adjust its
prediction based on the quality of the generated caption. In
other words, the language information from caption now is
able to guide the visual model to generate more plausible
proposals. In contrast to the existing methods where the
proposal module solves a class-agnostic binary classifica-
tion problem regardless the details in the video content, our
model enforces the consistency between the content in the
proposed video segment and the semantic information in the
language description.

Another challenge for dense video captioning, and more
broadly for sequence modeling tasks, is the need to learn a
representation that is capable of capturing long term depen-
dencies. Recurrent Neural Networks (RNN) are possible
solutions to this problem, however, learning such represen-
tation is still difficult [23]. Self-attention [21, 24, 29] al-
lows for an attention mechanism within a module and is a
potential way to learn this long-range dependence. In self-
attention the higher layer in the same module is able to at-
tend to all states below it. This made the length of the paths
of states from the higher layer to all states in the lower layer
to be one, and thus facilitates more effective learning. The
shorter path length facilitates learning these dependencies
because larger gradients can now pass to all states. Trans-
former [29] implements a fast self-attention mechanism and
has demonstrated its effectiveness in machine translation.
Unlike traditional sequential models, transformer does not
require unrolling across time, and therefore trains and tests
much faster as compared to RNN based models. We employ
transformer in both the encoder and decoder of our model.

Our main contributions are twofold. First, we propose
an end-to-end model for doing dense video captioning. A

differentiable masking scheme is proposed to ensure the
consistency between proposal and captioning module dur-
ing training. Second, we employ self-attention: a scheme
that facilitates the learning of long-range dependencies to
do dense video captioning. To the best of our knowledge,
our model is the first one that does not use a RNN-based
model for doing dense video captioning. In addition, we
achieve competitive results on ActivityNet Captions [19]
and YouCookII [42] datasets.

2. Related Work
Image and Video Captioning. In contrast to earlier video
captioning papers, which are based on models like hidden
Markov models and ontologies [39, 6], recent work on cap-
tioning is dominated by deep neural network-based meth-
ods [32, 34, 37, 43, 36, 26]. Generally, they use Convolu-
tional Neural Networks (CNNs) [28, 15] for encoding video
frames, followed by a recurrent language decoder, e.g.,
Long Short-Term Memory [17]. They vary mainly based
on frame encoding, e.g., via mean-pooling [31, 10], recur-
rent nets [7, 30], and attention mechanisms [35, 22, 10].
The attention mechanism was initially proposed for ma-
chine translation [3] and has achieved top performance in
various language generation tasks, either as temporal atten-
tion [35], semantic attention [10] or both [22]. Our work
falls into the first of the three types. In addition to using
cross-module attention, we apply self-attention [29] within
each module.
Temporal Action Proposals. Temporal action proposals
(TAP) aim to temporally localize action-agnostic propos-
als in a long untrimmed video. Existing methods formu-
late TAP as a binary classification problem and differ in
how the proposals are proposed and discriminated from the
background. Shuo et al. [27] propose and classify pro-
posal candidates directly over video frames in a sliding win-
dow fashion, which is computationally expensive. More re-
cently, inspired by the anchoring mechanism from object
detection [25], two types of methods have been proposed—
explicit anchoring [11, 42] and implicit anchoring [8, 4].
In the former case, each anchor is an encoding of the vi-
sual features between the anchor temporal boundaries and
is classfied as action or background. In implicit anchor-
ing, recurrent networks encode the video sequence and, at
each anchor center, multiple anchors with various sizes are
proposed based on the same visual feature. So far, ex-
plicit anchoring methods accompanied with location regres-
sion yield better performance [11]. Our proposal module is
based upon Zhou et al. [42], which is designed to detect long
complicated events rather than actions. We further improve
the framework with a temporal convolutional proposal net-
work and self-attention based context encoding.
Dense Video Captioning. The video paragraph caption-
ing method proposed by Yu et al. [40] generates sentence



descriptions for temporally localized video events. How-
ever, the temporal locations of each event are provided be-
forehand. Das et al. [6] generates dense captions over the
entire video using sparse object stitching, but their work re-
lies on a top-down ontology for the actual description and
is not data-driven like the recent captioning methods. The
most similar work to ours is Krishna et al. [19] who intro-
duce a dense video captioning model that learns to propose
the event locations and caption each event with a sentence.
However, they combine the proposal and the captioning
modules through co-training and are not able to take ad-
vantage of language to benefit the event proposal [16]. To
this end, we propose an end-to-end framework for doing
dense video captioning that is able to produce proposal and
description simultaneously. Also, our work directly incor-
porates the semantics from captions to the proposal module.

3. Preliminary
In this section we introduce some background on Trans-

former [29], which is the building block for our model. We
start by introducing the scaled dot-product attention, which
is the foundation of transformer. Given a query qi ∈ Rd
from all T ′ queries, a set of keys kt ∈ Rd and values
vt ∈ Rd where t = 1, 2, ..., T , the scaled dot-product
attention outputs a weighted sum of values vt, where the
weights are determined by the dot-products of query q and
keys kt. In practice, we pack kt and vt into matricies
K = (k1, ..., kT ) and V = (v1, ..., vT ), respectively. The
attention output on query q is:

A(qi,K, V ) = V
exp

{
KT qi/

√
d
}

∑T
t=1 exp{kTt qi/

√
d}

(1)

The multi-head attention consists of H paralleled scaled
dot-product attention layers called “head”, where each
“head” is an independent dot-product attention. The atten-
tion output from multi-head attention is as below:

MA(qi,K, V ) = WO

 head1
· · ·

headH

 (2)

headj = A(W q
j qi,W

K
j K,W

V
j V ) (3)

where W q
j ,W

K
j ,W

V
j ∈ R d

H×d are the independent head
projection matrices, j = 1, 2, ...,H , and WO ∈ Rd×d.

This formulation of attention is quite general, for exam-
ple when the query is the hidden states from the decoder,
and both the keys and values are all the encoder hidden
states, it represents the common cross-module attention.
Self-attention [29] is another case of multi-head attention
where the queries, keys and values are all from the same
hidden layer (see also in Fig. 2).
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Figure 2. Transformer with 1-layer encoder and 1-layer decoder.

Now we are ready to introduce Transformer model,
which is an encoder-decoder based model that is origi-
nally proposed for machine translation [29]. The building
block for Transformer is multi-head attention and a point-
wise feed-forward layer. The pointwise feed-forward layer
takes the input from multi-head attention layer, and fur-
ther transforms it through two linear projections with ReLU
activation. The feed-forward layer can also be viewed as
two convolution layers with kernel size one. The encoder
and decoder of Transformer is composed by multiple such
building blocks, and they have the same number of layers.
The decoder from each layer takes input from the encoder
of the same layer as well as the lower layer decoder out-
put. Self-attention is applied to both encoder and decoder.
Cross-module attention between encoder and decoder is
also applied. Note that the self-attention layer in the de-
coder can only attend to the current and previous positions
to preserve the auto-regressive property. Residual connec-
tion [15] is applied to all input and output layers. Addition-
ally, layer normalization [2] (LayerNorm) is applied to all
layers. Fig. 2 shows a one layered transformer.

4. End-to-End Dense Video Captioning

Our end-to-end model is composed of three parts: a
video encoder, a proposal decoder, and a captioning de-
coder that contains a mask prediction network to generate
text description from a given proposal. The video encoder
is composed of multiple self-attention layers. The proposal
decoder takes the visual features from the encoder and out-
puts event proposals. The mask prediction network takes
the proposal output and generates a differentiable mask for
a certain event proposal. To make the decoder caption the
current proposal, we then apply this mask by element-wise
multiplication between it, the input visual embedding and
all outputs from proposal encoder. In the following sec-
tions, we illustrate each component of our model in detail.



4.1. Video Encoder

Each frame xt of the videoX = {x1, . . . , xT } is first en-
coded to a continuous representation F 0 = {f01 , . . . , f0T }.
It is then fed forward toL encoding layers, where each layer
learns a representation F l+1 = V (F l) by taking input from
previous layer l,

V(F l) = Ψ(PF(Γ(F l)),Γ(F l)) (4)

Γ(F l) =

Ψ(MA(f l1, F
l, F l), f l1)>

· · ·
Ψ(MA(f lT , F

l, F l), f lT )>

> (5)

Ψ(α, β) = LayerNorm(α+ β) (6)

PF(γ) = M l
2 max(0,M l

1γ + bl1) + bl2 (7)

where Ψ(·) represents the function that performs layer nor-
malization on the residual output, PF(·) denotes the 2-
layered feed-forward neural network with ReLU nonlinear-
ity for the first layer, M l

1, M l
2 are the weights for the feed-

forward layers, and bl1, bl2 are the biases. Notice the self-
attention used in eq. 5. At each time step t, f lt is given as
the query to the attention layer and the output is the weight
sum of f lt , t = 1, 2, ..., T , which encodes not only the in-
formation regarding the current time step, but also all other
time steps. Therefore, each time step of the output from the
self-attention is able to encode all context information. In
addition, it is easy to see that the length of the path between
time steps is only one. In contrast to recurrent models, this
makes the gradient update independent with respect to their
position in time, and thus makes learning potential depen-
dencies amongst distant frames easier.

4.2. Proposal Decoder

Our event proposal decoder is based on ProcNets [42],
for its state-of-the-art performance on long dense event pro-
posals. We adopt the same anchor-offset mechanism as in
ProcNets and design a set of N explicit anchors for event
proposals. Each anchor-based proposal is represented by an
event proposal score Pe ∈ [0, 1] and two offsets: center θc
and length θl. The associated anchor has length la and cen-
ter ca. The proposal boundaries (Sp, Ep) are determined by
the anchor locations and offsets:

cp = ca + θcla lp = la exp{θl},
Sp = cp − lp/2 Ep = cp + lp/2.

(8)

These proposal outputs are obtained from temporal convo-
lution (i.e. 1-D convolutions) applied on the last layer out-
put of the visual encoder. The score indicates the likelihood
for a proposal to be an event. The offsets are used to ad-
just the proposed segment boundaries from the associated
anchor locations. We made following changes to ProcNets:

• The sequential prediction module in ProcNets is re-
moved, as the event segments in a video are not closely
coupled and the number of events is small in general.
• Use input from a multi-head self-attention layer in-

stead of a bidirectional LSTM (Bi-LSTM) layer [14].
• Use multi-layer temporal convolutions to generate the

proposal score and offsets. The temporal convolutional
network contain three 1-D conv. layers, with batch
normalization [18]. We use ReLU activation for hid-
den layers.
• In our model, the conv. stride depends on kernel size

(dkernel sizes e) versus always 1 in ProcNets1.

We encode the video context by a self-attention layer
as it has potential to learn better context representation.
Changing stride size based on kernel size reduces the num-
ber of longer proposals so that the training samples is more
balanced, because a larger kernel size makes it easier to get
good overlap with ground truth. It also speeds up training
as the number of long proposals is reduced.

4.3. Captioning Decoder

Masked Transformer. The captioning decoder takes in-
put from both the visual encoder and the proposal decoder.
Given a proposal tuple (Pe, Sp, Ep) and visual representa-
tions {F 1, . . . , FL}, the L-layered captioning decoder gen-
erates the t-th word by doing the following

Y l+1
≤t = C(Y l≤t) = Ψ(PF(Φ(Y l≤t)),Φ(Y l≤t)) (9)

Φ(Y l≤t) =

Ψ(MA(Ω(Y l≤t)1, F̂
l, F̂ l),Ω(Y l≤t)1)

· · ·
Ψ(MA(Ω(Y l≤t)t, F̂

l, F̂ l),Ω(Y l≤t)t)

 (10)

Ω(Y l≤t) =

Ψ(MA(yl1, Y
l, Y l), yl1)>

· · ·
Ψ(MA(ylt, Y

l, Y l), ylt)
>

 (11)

F̂ l = fM (Sp, Ep)� F l (12)

p(wt+1|X,Y L≤t) = softmax(WV yLt+1) (13)

where y0i represents word vector, Y l≤t = {yl1, . . . , ylt}, wt+1

denotes the probability of each word in the vocabulary for
time t+1,WV ∈ Rν×d denotes the word embedding matrix
with vocabulary size ν, and � indicates elementwise mul-
tiplication. C(·) denotes the decoder representation, i.e. the
output from feed-forward layer in Fig. 1. Φ(·) denotes the
cross module attention that use the current decoder states to
attend to encoder states (i.e. multi-head attention in Fig. 1).
Ω(·) represents the self-attention in decoder. Notice that the
subscript≤ t restricts the attention only on the already gen-
erated words. fM : R2 7→ [0, 1]T is a masking function that
output values (near) zero when outside the predicted starting
and ending locations, and (near) one otherwise. With this

1s is a scalar that affects the convolution stride for different kernel size



function, the receptive region of the model is restricted to
the current segment so that the visual representation focuses
on describing the current event. Note that during decoding,
the encoder performs the forward propagation again so that
the representation of each encoder layer contains only the
information for the current proposal (see eq. 12). This is
different from simply multiplying the mask with the exist-
ing representation from the encoder during proposal pre-
diction, since the representation of the latter still contains
information that is outside the proposal region. The repre-
sentation from the L-th layer of captioning decoder is then
used for predicting the next word for the current proposal
using a linear layer with softmax activation (see eq. 13).
Differentiable Proposal Mask. We cannot choose any
arbitrary function for fM as a discrete one would prevent
us from doing end-to-end training. We therefore propose to
use a fully differentiable function to obtain the mask for vi-
sual events. This function fM maps the predicted proposal
location to a differentiable mask M ∈ RT for each time
step i ∈ {1, . . . , T}.
fM (Sp, Ep, Sa, Ea, i) = σ(g( (14)
[ρ(Sp, :), ρ(Ep, :), ρ(Sa, :), ρ(Ee, :),Bin(Sa, Ea, :)]))

ρ(pos, i) =

{
sin(pos/10000i/d) i is even
cos(pos/10000(i−1)/d) otherwise

(15)

Bin(Sa, Ea, i) =

{
1 if i ∈ [Sa, Ea]

0 otherwise
(16)

where Sa and Ea are the start and end position of anchor,
[·] denotes concatenation, g(·) is a continuous function, and
σ(·) is the logistic sigmoid function. We choose to use a
multilayer perceptron to parameterize g. In other words, we
have a feed-forward neural network that takes the positional
encoding from the anchor and predicted boundary positions
and the corresponding binary mask to predict the continu-
ous mask. We use the same positional encoding strategy as
in [29].

Directly learning the mask would be difficult and unnec-
essary, since we would already have a reasonable bound-
ary prediction from the proposal module. Therefore, we
use a gated formulation that lets the model choose between
the learned continuous mask and the discrete mask obtained
from the proposal module. More precisely, the gated mask-
ing function fGM is

fGM (Sp, Ep, Sa, Ea, i) =

PeBin(Sp, Ep, i) + (1− Pe)fM (Sp, Ep, Sa, Ea, i) (17)

Since the proposal score Pe ∈ [0, 1], it now acts as a gating
mechanism. This can also be viewed as a modulation be-
tween the continuous and proposal masks, the continuous
mask is used as a supplement for the proposal mask in case
the confidence is low from the proposal module.

4.4. Model Learning

Our model is fully differentiable and can be trained con-
sistently from end-to-end The event proposal anchors are
sampled as follows. Anchors that have overlap greater than
70% with any ground-truth segments are regarded as pos-
itive samples and ones that have less than 30% overlap
with all ground-truth segments are negative. The proposal
boundaries for positive samples are regressed to the ground-
truth boundaries (offsets). We randomly sample U = 10
anchors from positive and negative anchor pools that corre-
spond to one ground-truth segment for each mini-batch.

The loss for training our model has four parts: the regres-
sion loss Lr for event boundary prediction, the binary cross
entropy mask prediction loss Lm, the event classification
loss Le (i.e. prediction Pe), and the captioning model loss
Lc. The final loss L is a combination of these four losses,

Lr = Smooth`1(θ̂c, θc) + Smooth`1(θ̂l, θl)

Lim = BCE(Bin(Sp, Ep, i), fM (Sp, Ep, Sa, Ea, i))

Le = BCE(P̂e, Pe)

Ltc = CE(ŵt, p(wt|X,Y L≤t−1))

L = λ1Lr + λ2
∑
i

Lim + λ3Le + λ4
∑
t

Ltc

where Smooth`1 is the smooth `1 loss defined in [13], BCE
denotes binary cross entropy, CE represents cross entropy
loss, θ̂c and θ̂l represent the ground-truth center and length
offset with respect to the current anchor, P̂e is the ground-
truth label for the proposed event, ŵt denotes the ground-
truth word at time step t, and λ1...4 ∈ R+ are the coeffi-
cients that balance the contribution from each loss.
Simple Single Stage Models. The key for our proposed
model to work is not the single stage learning of a compo-
sitional loss, but the ability to keep the consistency between
the proposal and captioning. For example, we could make
a single-stage trainable model by simply sticking them to-
gether with multi-task learning. More precisely, we can
have the same model but choose a non-differentiable mask-
ing function fM in eq. 12. The same training procedure can
be applied for this model (see the following section). Since
the masking function would then be non-differentiable, er-
ror from the captioning model cannot be back propagated
to modify the proposal predictions. However, the caption-
ing decoder is still able to influence the visual representation
that is learned from the visual encoder. This may be unde-
sirable, as the updates the visual representation may lead to
worse performance for the proposal decoder. As a baseline,
we also test this single-stage model in our experiments.

5. Implementation Details
For the proposal decoder, the temporal convolutional

networks take the last encoding output from video encoder



as the input. The sizes of the temporal convolution ker-
nels vary from 1 to 251 and we set the stride factor s to
50. For our Transformer model, we set the model dimen-
sion d = 1024 (same as the Bi-LSTM hidden size) and set
the hidden size of feed-forward layer to 2048. We set num-
ber of heads (H) to 8. In addition to the residual dropout
and attention dropout layers in Transformer, we add a 1-D
dropout layer at the visual input embedding to avoid overfit-
ting. We use recurrent dropout proposed in [9] for this 1-D
dropout. Due to space limits, more details are included in
the supplementary material.

6. Experiments
6.1. Datasets

ActivityNet Captions [19] and YouCookII [42] are the
two largest datasets with temporal event segments anno-
tated and described by natural language sentences. Ac-
tivityNet Captions contains 20k videos, and on average
each video has 3.65 events annotated. YouCookII has 2k
videos and the average number of segments per video is
7.70. The train/val/test splits for ActivityNet Captions are
0.5:0.25:0.25 while for YouCookII are 0.66:0.23:0.1. We
report our results from both datasets on the validation sets.
For ActivityNet Captions, we also show the testing results
on the evaluation server while the testing set for YouCookII
is not available.
Data Preprocessing. We down-sample the video every
0.5s and extract the 1-D appearance and optical flow fea-
tures per frame, as suggested by Xiong et al. [33]. For
appearance features, we take the output of the “Flatten-
673” layer in ResNet-200 [15]; for optical flow features,
we extract the optical flow from 5 contiguous frames, en-
code with BN-Inception [18] and take output of the “global-
pool” layer. Both networks are pre-trained on the Activi-
tyNet dataset [5] for the action recognition task. We then
concatenate the two feature vector and further encode with
a linear layer. We set the window size T to 480. The in-
put is zero padded in case the number of sampled frames is
smaller than the size of the window. Otherwise, the video
is truncated to fit the window. Note that we do not fine-tune
the visual features for efficiency considerations, however,
allowing fine-tuning may lead to better performance.

6.2. Baseline and Metrics

Baselines. Most of the existing methods can only cap-
tion an entire video or specified video clip. For example,
LSTM-YT [31], S2YT [30], TempoAttn [35], H-RNN [40]
and DEM [19]. The most relevant baseline is TempoAttn,
where the model temporally attends on visual sequence in-
puts as the input of LSTM language encoder. For a fair
comparison, we made the following changes to the origi-
nal TempoAttn. First, all the methods take the same visual

feature input. Second, we add a Bi-LSTM context encoder
to TempoAttn while our method use self-attention context
encoder. Third, we apply temporal attention on Bi-LSTM
output for all the language decoder layers in TempoAttn
since our decoder has attention each layer. We name this
baseline Bi-LSTM+TempoAttn. Since zero inputs deteri-
orates Bi-LSTM encoding, we only apply the masking on
the output of the LSTM encoder when it is passed to the
decoder. We also compare with a a simple single-stage
Masked Transformer baseline as mentioned in section 4.4,
where the model employs a discrete binary mask.

For event proposals, we compare our self-attention
transformer-based model with ProcNets and our own base-
line with Bi-LSTM. For captioning-only models, we use the
same baseline as the full dense video captioning but instead,
replace the learned proposals with ground-truth proposals.
Results for other dense captioning methods (e.g. the best
published method DEM [19]) are not available on the val-
idation set nor is the source code released. So, we com-
pare our methods against those methods that participated
in CVPR 2017 ActivityNet Video Dense-captioning Chal-
lenge [12] for test set performance on ActivityNet.
Evaluation Metrics. For ground-truth segment caption-
ing, we measure the captioning performance with most
commonly-used evaluation metrics: BLEU{3,4} and ME-
TEOR. For dense captioning, the evaluate metric takes both
proposal accuracy and captioning accuracy into account.
Given a tIoU threshold, if the proposal has an overlapping
larger than the threshold with any ground-truth segments,
the metric score is computed for the generated sentence and
the corresponding ground-truth sentence. Otherwise, the
metric score is set to 0. The scores are then averaged across
all the proposals and finally averaged across all the tIoU
thresholds–0.3, 0.5, 0.7, 0.9 in this case.

6.3. Comparison with State-of-the-Art Methods

We compare our proposed method with baselines on the
ActivityNet Caption dataset. The validation and testing set
results are shown in Tab. 1 and 2, respectively. All our mod-
els outperform the LSTM-based models by a large margin,
which may be attributed to their better ability of modeling
long-range dependencies.

We also test the performance of our model on the
YouCookII dataset, and the result is shown in Tab. 3.
Here, we see similar trend on performance. Our transformer
based model outperforms the LSTM baseline by a signif-
icant amount. However, the results on learned proposals
are much worse as compared to the ActivityNet dataset.
This is possibly because of small objects, such as utensils
and ingredients, are hard to detect using global visual fea-
tures but are crucial for describing a recipe. Hence, one
future extension for our work is to incorporate object detec-
tors/trackers [38, 39] into the current captioning system.



Table 1. Captioning results from ActivityNet Caption Dataset with
learned event proposals. All results are on the validation set and
all our models are based on 2-layer Transformer. We report BLEU
(B) and METEOR (M). All results are on the validation set. Top
scores are highlighted.

Method B@3 B@4 M

Bi-LSTM
2.43 1.01 7.49

+TempoAttn

Masked Transformer 4.47 2.14 9.43
End-to-end Masked Transformer 4.76 2.23 9.56

Table 2. Dense video captioning challenge leader board results.
For results from the same team, we keep the highest one.

Method METEOR

DEM [19] 4.82
Wang et al. 9.12
Jin et al. 9.62
Guo et al. 9.87
Yao et al.2(Ensemble) 12.84

Our Method 10.12

Table 3. Recipe generation benchmark on YouCookII validation
set. GT proposals indicate the ground-truth segments are given
during inference.

Method
GT Proposals Learned Proposals
B@4 M B@4 M

Bi-LSTM
0.87 8.15 0.08 4.62

+TempoAttn

Our Method 1.42 11.20 0.30 6.58

We show qualitative results in Fig. 3 where the proposed
method generates captions with more relevant semantic in-
formation. More visualizations are in the supplementary.

6.4. Model Analysis

In this section we perform experiments to analyze the
effectiveness of our model on different sub-tasks of dense
video captioning.
Video Event Proposal. We first evaluate the effect of self-
attention on event proposal, and the results are shown in
Tab. 4. We use standard average recall (AR) metric [8, 12]
given 100 proposals. Bi-LSTM indicates our improved
ProcNets-prop model by using temporal convolutional and
large kernel strides. We use our full model here, where the
context encoder is replaced by our video encoder. We have
noticed that the anchor sizes have a large impact on the re-
sults. So, for fair comparison, we maintain the same an-
chor sizes across all three methods. Our proposed Bi-LSTM
model gains a 7% relative improvement from the baseline
results from the deeper proposal network and more bal-
anced anchor candidates. Our video encoder further yields

2This work is unpublished. It employs external data for model training
and the final prediction is obtained from an ensemble of models.

Table 4. Event proposal results from ActivityNet Captions dataset.
We compare our proposed methods with our baseline method
ProcNets-prop on the validation set.

Method Average Recall (%)

ProcNets-prop [42] 47.01
Bi-LSTM (ours) 50.65
Self-Attn (our) 52.95

Table 5. Captioning results from ActivityNet Caption Dataset with
ground-truth proposals. All results are on the validation set. Top
two scores are highlighted.

Method B@3 B@4 M

Bi-LSTM
4.8 2.1 10.02

+TempoAttn

Our Method
1-layer 5.80 2.66 10.92
2-layer 5.69 2.67 11.06
4-layer 5.70 2.77 11.11
6-layer 5.66 2.71 11.10

a 4.5% improvement from our recurrent nets-based model.
We show the recall curve under high tIoU threshold (0.8)
in Fig. 4 follow the convention [19]. DAPs [8], is initially
proposed for short action proposals and adapted later for
long event proposal [19]. The proposed models outper-
forms DAPs-event and ProcNets-prop by significant mar-
gins. Transformer based and Bi-LSTM based models yield
similar recall results given sufficient number of proposals
(100), while our self-attention encoding model is more ac-
curate when the allowed number of proposals is small.
Dense Video Captioning. Next, we look at the dense
video captioning results in an ideal setting: doing the cap-
tioning based on the ground-truth event segments. This will
give us an ideal captioning performance since all event pro-
posals are accurate. Because we need access to ground-truth
event proposal during test time, we report the results on val-
idation set3 (see Tab. 5). The proposed Masked Transformer
(section 4.3) outperforms the baseline by a large margin (by
more than 1 METEOR point). This directly substantiates
the effectiveness of the transformer on both visual and lan-
guage encoding and multi-head temporal attention. We no-
tice that as the number of encoder and decoder layers in-
creases, the performance gets further boosts by 1.3%-1.7%.
As can be noted here, the 2-layer transformer strikes a good
balance point between performance and computation, and
thus we use 2-layer transformer for all our experiments.
Analysis on Long Events. As mentioned in section 4.1,
learning long-range dependencies should be easier with
self-attention, since the next layer observes information
from all time steps of the previous layer. To validate this
hypothesis directly, we test our model against the LSTM

3The results are overly optimistic, however, it is fine here since we are
interested in the best situation performance. The comparison is also fair,
since all methods are tuned to optimize the validation set performance.



Ground-truth
Event 0: Two teams are playing volleyball in 
a indoor court.
Event 1: Two teams wearing dark uniforms 
are doing a volleyball competition, then 
appears a team with yellow t-shirts.
Event 2: Then, a boy with a red t-shirt 
serves the ball and the teams start to hit and 
running to pass the ball, then another team 
wearing green shorts enters the court.
Event 3: After, team wearing blue uniform 
competes with teams wearing white and red 
uniforms.

Masked Trans. (ours)
Event 0: a large group of people are seen 
standing around a gymnasium playing a 
game of volleyball
Event 1: the people in black and yellow 
team scores a goal
Event 2: the people continue playing the 
game back and fourth while the people 
watch on the sidelines
Event 3: the people continue playing the 
game back and fourth while the camera 
captures their movements

Bi-LSTM+TempoAttn
Event 0: a large group of people are seen 
standing around a field playing a game of 
soccer
Event 1: the players are playing the game 
of tug of war
Event 2: the people continue playing with 
one another and end by walking away
Event 3: the people continue playing and 
ends with one another and the other  

Ground-truth
Event 0: A man is writing something on a 
clipboard.
Event 1: A man holds a ball behind his 
head and spins around several times and 
throws the ball.
Event 2: People use measuring tape to 
measure the distance.

Masked Trans. (ours)
Event 0: a man is seen standing in a large 
circle and leads into a man holding a ball 
and
Event 1: the man spins the ball around 
and throws the ball
Event 2: the man throws the ball and his 
throw the distance

Bi-LSTM+TempoAttn
Event 0: a man is seen standing on a field 
with a man standing on a field
Event 1: he throws the ball and throws it 
back and forth
Event 2: he throws the ball and throws it 
back and forth  

Figure 3. Qualitative results on ActivityNet Captions. The color bars represent different events. Colored text highlight relevant content to
the event. Our model generates more relevant attributes as compared to the baseline.

Figure 4. Event proposal recall curve under tIoU threshold 0.8 with
average 100 proposals per video.
Table 6. Evaluating only long events from ActivityNet Caption
Dataset. GT proposals indicate the ground-truth segments are
given during inference.

GT Proposals Learned Proposals
Method B@4 M B@4 M

Bi-LSTM
0.84 5.39 0.42 3.99

+TempoAttn

Our Method 1.13 5.90 1.04 5.93

baseline on longer event segments (where the events are at
least 50s long) from the ActivityNet Caption dataset, where
learning the long-range dependencies are crucial for achiev-
ing good performance. It is clear from the result (see Tab.

6) that our transformer based model performs significantly
better than the LSTM baseline. The discrepancy is even
larger when the model needs to learn both the proposal
and captioning, which demonstrate the effectiveness of self-
attention in facilitate learning long range dependencies.

7. Conclusion

We propose an end-to-end model for dense video cap-
tioning. The model is composed of an encoder and two
decoders. The encoder encodes the input video to proper
visual representations. The proposal decoder then decodes
from this representation with different anchors to form
video event proposals. The captioning decoder employs a
differentiable masking network to restrict its attention to
the proposal event, ensures the consistency between the
proposal and captioning during training. In addition, we
propose to use self-attention for dense video captioning.
We achieved significant performance improvement on both
event proposal and captioning tasks as compared to RNN-
based models. We demonstrate the effectiveness of our
models on ActivityNet Captions and YouCookII dataset.
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