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Abstract

Thanks to the success of deep learning, cross-modal re-
trieval has made significant progress recently. However,
there still remains a crucial bottleneck: how to bridge the
modality gap to further enhance the retrieval accuracy. In
this paper, we propose a self-supervised adversarial hash-
ing (SSAH) approach, which lies among the early attempts
to incorporate adversarial learning into cross-modal hash-
ing in a self-supervised fashion. The primary contribution
of this work is that two adversarial networks are leveraged
to maximize the semantic correlation and consistency of the
representations between different modalities. In addition,
we harness a self-supervised semantic network to discover
high-level semantic information in the form of multi-label
annotations. Such information guides the feature learning
process and preserves the modality relationships in both the
common semantic space and the Hamming space. Extensive
experiments carried out on three benchmark datasets vali-
date that the proposed SSAH surpasses the state-of-the-art
methods.

1. Introduction
Owing to the explosive increase in multimedia data from

a great variety of search engines and social media, cross-
modal retrieval has become a compelling topic in recen-
t years [20, 21, 22, 23, 24, 25, 29, 35, 36, 41, 42, 45].
Cross-modal retrieval aims to search semantically similar
instances in one modality (e.g., image) by using a query
from another modality (e.g., text). In order to satisfy the re-
quirements of low storage cost and high query speed in real-
world applications, hashing has been of considerable inter-
est in the field of cross-modal retrieval, which maps high-
dimensional multi-modal data into a common hash code s-
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pace in such a way that gives similar cross-modal items sim-
ilar hash codes. Since the instances from different modali-
ties are hetrogeneous in terms of their feature representation
and distribution, i.e., their modality gap, it is necessary to
explore their semantic relevance in sufficient detail to bridge
this modality gap. Most existing shallow cross-modal hash-
ing methods (in both unsupervised [2, 10, 14, 18] and su-
pervised settings [7, 17, 19, 26, 30, 40, 33]), always cap-
ture the semantic relevance in a common Hamming space.
Compared with their unsupervised counterparts, supervised
cross-modal hashing methods can achieve superior perfor-
mance by exploiting semantic labels or information con-
cerning relevance, thereby distilling a cross-modal corre-
lation. However, almost all these existing shallow cross-
modal hashing methods are based on hand-crafted features,
which may limit the discriminative representation of in-
stances and thus degrade the accuracy of the learned binary
hash codes.

In recent years, deep learning has become very success-
ful at learning highly discriminative features for various ap-
plications [1][13]. However, only a few works have per-
formed deep learning for cross-modal hashing [3, 9, 12,
31, 43], which can capture nonlinear correlations among
cross-modal instances more effectively. It is worth noting
that there are still some common disadvantages hindering
the current deep cross-modal hashing methods. First, these
methods simply and directly adopt single-class labels to
measure the semantic relevance across modalities [9][12].
In fact, in standard cross-modal benchmark datasets such
as NUS-WIDE [6] and Microsoft COCO [15], an image
instance can be assigned to multiple category labels [27],
which is beneficial as it permits semantic relevance to be
described more accurately across different modalities. Sec-
ond, these methods enforce a narrowing of the modality gap
by constraining the corresponding hash codes with certain
pre-defined loss functions [4]. The code length is usually
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Figure 1: The framework of our proposed SSAH.

less than 128 bits. This means that most of the useful infor-
mation is neutralized, making the hash codes incapable of
capturing the inherent modality consistency. In comparison,
high-dimensional modality-specific features contain more
abundant information that helps to bridge the modality gap.
Therefore, how to encourage more abundant semantic rel-
evance and build more accurate modality relationships be-
comes crucial to achieve satisfactory performance in real-
world retrieval applications.

In this paper, we propose a novel self-supervised adver-
sarial hashing (SSAH) method to aid in cross-modal re-
trieval. Specifically, we employ two adversarial network-
s to jointly learn the high-dimensional features and their
corresponding hash codes for different modalities. At the
same time, a self-supervised semantic network is seamless-
ly integrated to discover semantic information in the form of
multi-label annotations, with which the adversarial learning
is supervised to maximize the semantic relevance and the
feature distribution consistency between modalities. The
highlights of our work can be outlined as follows:
• We propose a novel self-supervised adversarial hash-

ing method for cross-modal retrieval. As far as we
know, this is one of the first attempts to utilize ad-
versarial learning in an aim to tackle the cross-modal
hashing problem.
• We integrate self-supervised semantic learning with

adversarial learning in order to preserve the seman-
tic relevance and the representation consistency across
modalities as much as possible. In this way, we can
effectively bridge the modality gap.
• Extensive experiments conducted on three benchmark

datasets demonstrate that our proposed SSAH signif-
icantly outperforms the current state-of-the-art cross-
modal hashing methods, including both traditional and
deep-learning-based methods.

The rest of this paper is organized as follows. Relat-
ed work in cross-modal hashing is introduced in Section 2.
Our proposed SSAH model and the learning algorithm are
presented in Section 3. Experiments are shown in Section 4
and Section 5 concludes this work.

2. Related Work
Cross-modal hashing methods can be roughly catego-

rized into unsupervised and supervised settings. Unsuper-
vised hashing methods [8, 34, 38, 46] learn hashing func-
tions by discovering the inter-modality and intra-modality
information belonging to the unlabeled training data. D-
ing et al. [8] learned a unified binary code by performing a
matrix factorization with a latent factor model. The work of
Song et al. [34] learns functions that can map features from
different modalities into the common Hamming space.

Supervised hashing methods [2, 4, 14, 16, 39, 40, 44] aim
to exploit available supervised information (such as labels
or the semantic affinities of training data) to improve per-
formance. Brostein et al. [2] present a cross-modal hashing
approach by preserving the intra-class similarity via eigen-
decomposition and boosting. Semantic correlation maxi-
mization (SCM) [44] utilizes label information to learn a
modality-specific transformation, which preserves the max-
imal correlation between modalities. Semantics-preserving
hashing (SePH) [16] generates a unified binary code by
modeling an affinity matrix in a probability distribution
while at the same time minimizing the Kullback-Leibler di-
vergence. Most of these methods depend on hand-crafted
features that have to be extracted by shallow architectures;
as such, these methods make it difficult to effectively exploit
the heterogeneous relationships across modalities.

Recently, some works have reported on deep cross-
modal hashing retrieval [3, 9, 12, 37]. Deep cross-modal
hashing (DCMH) [12] performs an end-to-end learning
framework, using a negative log-likelihood loss to preserve



the cross-modal similarities. Adversarial cross-modal re-
trieval (ACMR) [37] directly borrows from the adversarial-
learning approach and tries to discriminate between differ-
ent modalities using a classification manner that is the one
most closely related to ours. In comparison to [37], how-
ever, our SSAH utilizes two adversarial networks to jointly
model different modalities and thereby further capture their
semantic relevance and representation consistence under the
supervision of the learned semantic feature.
3. Proposed SSAH

Without loss of generality, we focus on cross-modal re-
trieval for bimodal data (i.e., image and text). Fig. 1 is a
flowchart showing the general principles of the proposed
SSAH method. This method mainly consists of three part-
s, including a self-supervised semantic generation network
called LabNet, and two adversarial networks called ImgNet
and TexNet for image and text modalities, respectively.

Specifically, the target of LabNet is framed in a way that
allows it to learn semantic features from multi-label anno-
tations. It can then be regarded as a common semantic s-
pace in which to supervise modality-feature learning over
two phases. In the first phase, modality-specific features
from separate generator networks are associated with each
other in a common semantic space. Since each output lay-
er in a deep neural network contains semantic information,
associating modality-specific features in a common seman-
tic space can help to promote the semantic relevance be-
tween modalities. In the second phase, semantic features
and modality-specific features are simultaneously fed into
two discriminator networks. As a result, the feature dis-
tributions of the two modalities tend to become consistent
under the supervision of the same semantic feature. In this
section, we present the details about our SSAH method, in-
cluding the methods behind the model formulation and the
learning algorithm.
3.1. Problem Formulation

Let O = {oi}ni=1 denote a cross-modal dataset with n
instances, oi = (vi, ti, li), where vi ∈ R1×dv and ti ∈
R1×dt are the original image and text features for the i-th
instance, and li = [li1, . . . , lic] is the multi-label annotation
assigned to oi, where c is the class number. If oi belongs to
the j-th class lij = 1, otherwise lij = 0. The image-feature
matrix is defined as V , the text-feature matrix as T , and the
label matrix as L for all instances. The pairwise multi-label
similarity matrix S is used to describe semantic similarities
between each of the two instances, where Sij = 1 means
that oi is semantically similar to oj , otherwise Sij = 0. In a
multi-label setting, two instances (oi and oj) are annotated
by multiple labels. Thus, we define Sij = 1 if oi and oj
share as least one label, otherwise Sij = 0.

The goal of cross-modal hashing is to learn a unified hash
code for the two modalities: Bv,t ∈ {−1, 1}K , where K is
the length of the binary code. The similarity between two

binary codes is evaluated using the Hamming distance. The
relationship between their Hamming distance disH(bi, bj)
and their inner product 〈bi, bj〉 can be formulated using
disH(bi, bj) = 1

2 (K − 〈bi, bj〉). So, we can use the in-
ner product to quantify the similarity of two binary codes.
Given S, the probability of S under the condition B can be
expressed as:

p (Sij |B) =

{
δ (Ψij) , Sij = 1

1− δ (Ψij) , Sij = 0
(1)

where δ (Ψij) = 1

1+e−Ψij
, and Ψij = 1

2 〈bi, bj〉. There-
fore, two instances with a larger inner product should be
similar with a high probability. The problem of quantifying
the similarity between binary codes in the Hamming space
can thereby be transformed into a calculation of the inner
product of the codes’ original features.

Here, we frame a couple of adversarial networks (ImgNet
and TxtNet) to learn separate hash functions for image and
text modalities (i.e., Hv,t = fv,t(v, t; θv,t)). At the same
time, we construct an end-to-end self-supervised semantic
network (LabNet) in order to model the semantic relevance
between image and text modality in a common semantic
space while learning the hash function for the semantic fea-
ture (i.e., H l = f l(l; θl)). Here, fv,t,l are hash functions,
and θv,t,l are the network parameters to be learned. With
the learned Hv,t,l, binary codes Bv,t,l can be generated by
applying a sign function to Hv,t,l:

Bv,t,l = sign(Hv,t,l) ∈ {−1, 1}K (2)
To make this easier to understand, we additionally use
F v,t,l ∈ Rs×n to denote the semantic features in a common
semantic space for images, text and labels, s is the dimen-
sion of the semantic space. In practice, F v,t,l correspond
to certain output layers of deep neural networks (ImgNet,
TxtNet and LabNet, respectively).

3.2. Self-supervised Semantic Generation
Taking the Microsoft COCO dataset as an example, there

is an instance that is annotated with multiple labels, such as
“person”, “baseball bat” and “baseball glove”. In this sce-
nario, the most natural thought is that it is possible to take
the multi-label annotation as a conduciveness with which to
bridge the semantic relevance between modalities at a more
fine-grained level. We have designed an end-to-end full-
connected deep neural network, named LabNet, to model
semantic relevance between different modalities. Given a
multi-label vector for an instance, LabNet extracts abstract
semantic features layer by layer; with these we can super-
vise the feature-learning process in both ImgNet and TxtNet.
Since a triplet (vi, ti, li) is used to describe the same i-th in-
stance, we regard li as self-supervised semantic information
for vi and ti. In LabNet, semantic features are projected into
their corresponding hash codes through nonlinear transfor-
mation. Our intention is that the similarity relationships be-
tween semantic features and their corresponding hash codes



is well preserved; this is the fundamental premise behind the
efficient association between different modalities. Accord-
ingly, for LabNet, the final objective can be formulated as
follows:

min
Bl,θl,L̂l

Ll =αJ1 + γJ2 + ηJ3 + βJ4

=−α
∑n
i,j=1

(
Sij∆

l
ij − log

(
1 + e∆l

ij

))
−γ
∑n
i,j=1

(
SijΓ

l
ij − log

(
1 + eΓlij

))
+η
∥∥H l −Bl

∥∥2

F
+ β

∥∥∥L̂l − L∥∥∥2

F

s.t. Bl ∈ {−1, 1}K
(3)

where ∆l
ij = 1

2 (F l∗i)
>(F l∗j), Γlij = 1

2 (H l
∗i)
>(H l

∗j), H l

are predicted hash codes and L̂l are predicted labels. α, γ,
η and β are hyper-parameters. In (3), J1 and J2 are two
negative-log likelihood functions. J1 is used to preserve
the similarity between semantic features, and J2 is used to
preserve the instances where the similar label information
has similar hash codes. J3 is the approximation loss for the
binarization of the learned hash codes, and J4 is the clas-
sification loss of the original label and the predicted label.

3.3. Feature Learning
As described above, the different modalities belonging

to a multi-modal instance are semantically relevant. In or-
der to preserve this semantic relevance, we supervise the
feature-learning process for two modalities under LabNet’s
guidance, including the supervision of the semantic features
and the learned binary codes. To address image modal-
ity, we have designed an end-to-end feature-learning net-
work, named ImgNet, which can project images into hash
codes. By supervising the image-feature learning using the
semantic network, we can keep the same semantic rele-
vance between ImgNet and the semantic network. This is
the self-supervised role of the semantic network when used
in ImgNet. Similarly, when considering text modality, we
use the semantic network to supervise the feature-learning
process of TxtNet in the same way. Thus, the objective func-
tion of self-supervised feature learning for different modal-
ities in v and t can be written as:

min
Bv,t,θv,t

Lv,t =αJ1 + γJ2 + ηJ3 + βJ4

=−α
∑n
i,j=1

(
Sij∆

v,t
ij − log

(
1 + e∆v,t

ij

))
−γ
∑n
i,j=1

(
SijΓ

v,t
ij − log

(
1 + eΓv,tij

))
+η‖Hv,t −Bv,t‖2F + β

∥∥∥L̂v,t − L∥∥∥2

F

s.t. Bv,t ∈ {−1, 1}K
(4)

where ∆v,t
ij = 1

2 (F l∗i)
>(F v,t∗j ), and Γv,tij = 1

2 (H l
∗i)
>(Hv,t

∗j ).
Hv,t are predicted hash codes and L̂v,t are predicted la-

bels for images and text, respectively. α, γ, η and β are
hyper-parameters. J1 and J2 are two negative-log likeli-
hood functions. J3 and J4 are approximation loss and clas-
sification loss defined in a way that is similar to that used
in LabNet. It should be noted that although (3) and (4) are
similar in structure they have different meanings. As such,
we use the supervised information F l∗i and H l

∗i (learned
from the semantic network) to guide the process of learn-
ing in ImgNet and TxtNet. The relevance can be established
using the semantic network. As a result, the modality gap
can then be alleviated.

In comparison to image modality, an instance in text
modality, generally represented by a bag-of-words (BoW)
vector, easily results in sparsity. Therefore, BoW is unsuit-
able when aiming to discover valuable information needed
for learning hash codes. To solve the problem, we have de-
signed a multi-scale fusion model, which consists of multi-
ple average pooling layers and a 1 × 1 convolutional layer.
Multiple average pooling layers are used to extract multiple
scale features for text data, following which the 1×1 convo-
lutional layer is used to fuse multiple features. Through this
process, the correlation between different words can also be
captured, which is useful when building semantic relevance
for text modality. More detailed parameter information is
given in Section 3.6.

3.4. Adversarial Learning
Under the supervision of LabNet, the semantic rele-

vance can be preserved across different modalities. Howev-
er, different modalities usually are inconsistently distribut-
ed, which is not beneficial if we want to generate unified
hash codes. In order to bridge this modality gap and en-
able more accurate retrieval, we have studied the distri-
bution agreement for different modalities in an adversari-
al learning manner. We have built two discriminators for
image and text modalities to discover their distribution dif-
ferences. For the image (text) discriminator, the inputs are
image (text) modality features and semantic features gen-
erated through LabNet, and the output is one single value,
either “0” or “1”. Specifically, we define the modality la-
bel for the semantic feature that has been generated from a
label as “1” and define the modality label for image (text)
semantic modality features generated from ImgNet (TxtNet)
as “0”. We feed F v and F l into the discriminator that has
been designed for images and feed F t and F l into another
discriminator that has been designed for text. To formu-
late this structure, let Y = {yi}3×ni=1 , yi ∈ {0, 1} denote
the modality label assigned to the semantic feature in the
shared common space. Let Y l = {yli}ni=1, yli = 1 denote
the modality labels for the label. Let Y v,t = {yv,ti }ni=1

and yv,ti = 0 denote the modality labels for image and text,
respectively. When training our model, these two discrim-
inators act as the two adversaries. As such, the objective
function can be written as follows:



Algorithm 1 Pseudopod showing the optimization of our
SSAH
Require: Image set V ; Text set T ; Label set L ;
Ensure: Optimal code matrixB

Initialization
Initialize parameters: θv,t,l, θv,tadv , α, γ, η, β
learnrate: µ, mini-batch size: Nv,t,l = 128, maximum iteration number:
Tmax.
repeat

for t iteration do
Update θl by BP algorithm:
θl ← θl − µ · ∇

θl
1
n (Lgen − Ladv)

Update the parameter θv,t by BP algorithm:
θ? ← θ? − µ · ∇θ? 1

n (Lgen − Ladv) , ? = v, t
Update θ?adv by BP algorithm:
θ?adv ← θ?adv − µ · ∇θ?adv

1
n

(
L(gen) − Ladv

)
, ? = v, t

end for
Update the parameterB by
B = sign(H + F +G)

until convergence

min
θ?,ladv

L?,ladv =

2×n∑
i=1

∥∥D?,l(x?li )− yi?,l
∥∥2

2
, ? = v, t (5)

where xv,t,li is the semantic feature in the common semantic
space, while the modality label is yv,t,li , 2 × n, denoting
the number of instances that are fed into each discriminator.
The result of (5) is that the discriminators act as two binary
classifiers, classifying the input semantic feature into class
“1” and class “0”.
3.5. Optimization

It is noted that three kinds of hash codes can be gener-
ated using our SSAH: Bv,t,l = sign(Hv,t,l). During the
training process, we make B = sign(Hv + Ht + H l) to
train our model to generate similar binary codes for seman-
tically similar instances. As mentioned above, the overall
objective function can be written as follows:

Lgen = Lv + Lt + Ll

Ladv = Lvadv + Ltadv
(6)

If we put them together, we can obtain:
(B, θv,t,l) = argmin

B,θv,t,l
Lgen(B, θv,t,l)− Ladv(θ̂adv)

θadv = argmax
θadv

Lgen(B̂, θ̂v,t,l)− Ladv(θadv)

s.t. B ∈ {−1, 1}K
(7)

Due to the discreteness of parameter B and the
vanishing-gradient problem caused by the minimax loss, the
optimization of (7) is intractable. Hence, we optimize the
objective (7) through iterative optimization. Firstly, we op-
timize theLl over θl,Bl, and L̂l by exploring label informa-
tion. Then, we optimize Lv over θv andBv by fixing θl and
Bl. Similarly, we leave θl and Bl fixed to learn θt and Bt,
allowing the optimization of Lt. During this process, two
kinds of modality features are learned in a self-supervised
learning manner. Finally, we optimizeLv,tadv over θv,t by fix-
ing θv,t,l. It is noted that all network parameters are learned

by utilizing the stochastic gradient descent (SGD) with the
back-propagation (BP) algorithm, which is widely adopted
in existing deep-learning methods. Algorithm 1 outlines the
whole learning algorithm in detail.

As for out-of-sample extensions: the proposed frame-
work can be applied to cross-modalities. Indeed, it is not
limited to two modalities; rather, it can easily be adapted to
solve the problems in situations with more than two modali-
ties. Hash codes for the unseen data-point, which may come
from different modalities, images or text, can be directly ob-
tained by feeding the original feature into our model:

bv,t,lq = sign(fv,t,l(bq; θ
v,t,l)) (8)

Moreover, by feeding the label information intoLabNetwe
can obtain hash codes for the label information, which can
then be used to retrieve the related results from both images
and text at same time.
3.6. Implementation Details

Self-Supervised Semantic Network: We built LabNet
with four-layer feed-forward neural networks, which are
used to project a label into hash codes (L → 4096 →
512 → N ). The nodes of output layer N are related to
the length of the hash code K and the total class labels c for
different datasets, N = K + c.

Generative Network for Images: We built ImgNet
based on CNN-F [5] neural networks. In order to apply
CNN to our SSAH model, we reserve the first seven lay-
ers (which were the same as those in CNN-F). Following
this, a middle layer fc8 (with 512 nodes) and final output
layer (with N nodes) are framed. In addition, we also eval-
uated our method using the vgg19 [32] network; here, we
replaced the CNN-F network with the vgg19 network and
left the rest remain unchanged.

Generative Network for Text: We built TxtNet using a
three-layer feed-forward neural network and a multi-scale
(MS) fusion model (T→MS→4096→512→N). MS con-
sists of a five-level pooling layer (1×1, 2×2, 3×3, 5×5,
and 10×10).

Adversarial Networks: We built the discriminator net-
works using a three-layer feed-forward neural network
(F v,t,l → 4096→ 4096→ 1).

Regarding the activate function used in SSAH: sigmoid
activation is used to output the predicted label; tanh acti-
vation is used to output the hash codes; and the rest of the
layers are all uniformly activated by the relu function. In
addition, SSAH is implemented via TensorFlow and is run
on a server with two NVIDIA TITAN X GPUs.
4. Experiment
4.1. Datasets

The MIRFLICKR-25K dataset [11] contains 25,000 in-
stances collected from Flickr. Each image is labeled with
its associated textual tags. Here, we follow the experimen-
tal protocols given in DCMH [12]. In total, 20,015 data



Table 1: Statistics of the datasets used in our experiments.

Dataset Total Train / Test Labels
MIRFLICKR-25K 20,015 10,000 / 2,000 24
NUS-WIDE 190,421 10,500 / 2,100 21
MS COCO 85,000 10,000 / 5,000 80

points have been selected for our experiment. The text for
each point is represented as a 1,386-dimensional BoW vec-
tor, and each point is manually annotated with at least one
of the 24 unique labels.

The NUS-WIDE dataset [6] is a public web image data-
set containing 269,648 web images. There are 81 ground-
truth concepts that have been manually annotated for search
evaluation. After pruning the data that is without any label
or tag information, a subset of 190,421 image-text pairs that
belong to some of the 21 most-frequent concepts are select-
ed to serve as our dataset.

The MS COCO dataset [15] contains about 80,000 train-
ing images and 40,000 validation images. Five thousand
images from the validation set are selected randomly. In
total, there are 85,000 data items have been used in our ex-
periment. Each data item consists of one image-text pair
for two different modalities, and each text is represented as
a 2,000-dimension BoW vector. Table 1 summarizes the
statistics of the three datasets.
4.2. Evaluation and Baselines

Evaluation: The Hamming ranking and hash lookup are
two classical retrieval protocols used to evaluate the perfor-
mance of a cross-modal retrieval task. In our experiments,
we use three evaluation criteria: mean average precision
(MAP), which is used to measure the accuracy of the Ham-
ming distances; the precision-recall (PR) curve, which is
used to measure the accuracy of the hash lookup protocol;
and the precision at n (P@n) curve used to evaluate preci-
sion by considering only the number of top returned points.

Baselines: We compare our SSAH using six state-of-
the-art methods, including several shallow-structure-based
methods (CVH [14], STMH [38], CMSSH [2], SCM [44],
SePH [16]), and a deep-structure-based method (DCMH
[12]). In order to conduct a fair comparison, we utilize
both CNN-F [5] and vgg19 [32], which have both been pre-
trained on the ImageNet datasets [28] in order to extract
deep features for all shallow-structure-based baselines.

In order to determine the hyper-parameters α, γ, η, and
β, we randomly select some data points (2,000 for each
dataset) from the retrieval database to serve as our valida-
tion set. A sensitivity analysis of these hyper-parameters is
provided in Fig. 2. It can be seen that high performance can
always be achieved whenα=γ=1 and η=β=10−4. For image
modality, we initialize the first seven layers of ImgNet with
the CNN-F network pre-trained on the ImageNet dataset.
For text modality, TxtNet randomly is initialized. The learn-
ing rate is chosen from 10−4 to 10−8. Following this, we
show the average results of the 10 runs.

4.3. Performance
Hamming Ranking: Table 2 reports the MAP results

for both our SSAH and the other compared methods with
CNN-F features on three popular datasets (MIRFLICKR-
25K, NUS-WIDE and MS COCO) in cross-modal retrieval.
“I→T” denotes that the query is image and the database is
text-based, and “T→I” denotes that the query is text and the
database is image-based. Compared with the shallow base-
lines of CVH, STMH, CMSSH, SCM and SePH, our SSAH
achieves absolute more than a 10% increase on MAP for
I→T/T→I on the MIRFLICKR-25K dataset. While when
comparing our SSAH with the deep-learning-based method
(DCMH), we run the source code provided by the author.
Here, it can be seen that SSAH can achieve more than a
5% increase on MAP. For another two datasets NUS-WIDE
and MS COCO with more instances and complex content,
which are more challenging, SSAH always provides superi-
or performance than other comparison methods, as present-
ed in Table 2. This may be because, during the learning pro-
cess, the proposed self-supervised adversarial network more
effectively facilitate the learning of semantic relevance be-
tween different modalities, which means that more discrim-
inative representations can be learned using our SSAH. As
a result, SSAH can more accurately capture correlations be-
tween modalities.

We further verify our SSAH using vgg19 features [32]
that have been pre-trained on the ImageNet dataset. Ta-
ble 3 shows the MAP results on three different datasets. As
shown in Table 3, we can see that almost all methods that
are based on vgg19 outperform those based on CNN-F. Not
only that, but it becomes evident that our SSAH consistent-
ly achieves the best performance. Compared with the shal-
low baselines (CVH, STMH, CMSSH, SCM and SePH),
SSAH achieves absolute more than 5% increase on an aver-
age MAP for I→T/T→I on the MIRFLICKR-25K dataset.
This means that the proposed SSAH can be applied to oth-
er networks and can achieve more accurate retrieval when
equipped with an effective deep-network structure.

Hash Lookup: When considering the lookup protocol,
we compute the PR curve for the returned points given any
Hamming radius. The PR curve can be obtained by vary-
ing the Hamming radius from 0 to 16 with a step-size of
1. Fig. 4 shows the PR curves of all the current state-of-
the-art methods with 16-bit hash codes on three benchmark
datasets. In this way, it can be seen that our SSAH signifi-
cantly outperforms all of its state-of-the-art competitors.

Ablation study of SSAH: We also verify the impact
of different network modules on our SSAH’s performance.
Three variants are designed as baselines of our SSAH net-
works: (a) SSAH-1 is built by removing the self-supervised
semantic network; (b) SSAH-2 is built by replacing TxtNet
with three full-connected layers; (c) SSAH-3 is built by re-
moving the adversarial learning module. Fig. 3 shows the



Table 2: MAP. The best accuracy is shown in boldface. The baselines are based on CNN-F features.

TASK Method Flickr-25K NUS-WIDE MS COCO
16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

I� T

CVH [14] 0.557 0.554 0.554 0.400 0.392 0.386 0.412 0.401 0.400
STMH [38] 0.602 0.608 0.605 0.522 0.529 0.537 0.422 0.459 0.475
CMSSH [2] 0.585 0.584 0.572 0.511 0.506 0.493 0.512 0.495 0.482
SCM [44] 0.671 0.682 0.685 0.533 0.548 0.557 0.483 0.528 0.550
SePH [16] 0.657 0.660 0.661 0.478 0.487 0.489 0.463 0.487 0.501

DCMH [12] 0.735 0.737 0.750 0.478 0.486 0.488 0.511 0.513 0.527
OURS 0.782 0.790 0.800 0.642 0.636 0.639 0.550 0.558 0.557

T� I

CVH [14] 0.557 0.554 0.554 0.372 0.366 0.363 0.367 0.359 0.357
STMH [38] 0.600 0.606 0.608 0.496 0.529 0.532 0.431 0.461 0.476
CMSSH [2] 0.567 0.569 0.561 0.449 0.389 0.380 0.429 0.408 0.398
SCM [44] 0.697 0.707 0.713 0.463 0.462 0.471 0.465 0.521 0.548
SePH [16] 0.648 0.652 0.654 0.449 0.454 0.458 0.449 0.474 0.499

DCMH [12] 0.763 0.764 0.775 0.638 0.651 0.657 0.501 0.503 0.505
OURS 0.791 0.795 0.803 0.669 0.662 0.666 0.537 0.538 0.529

Table 3: MAP. The best accuracy is shown in boldface. The baselines are based on vgg19 features.

TASK Method Flickr-25K NUS-WIDE MS COCO
16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

I� T

CVH [14] 0.557 0.554 0.554 0.405 0.397 0.391 0.441 0.428 0.402
STMH [38] 0.591 0.606 0.613 0.471 0.516 0.549 0.445 0.482 0.502
CMSSH [2] 0.593 0.592 0.585 0.508 0.506 0.495 0.504 0.495 0.492
SCM [44] 0.685 0.693 0.697 0.497 0.502 0.499 0.498 0.556 0.565
SePH [16] 0.709 0.711 0.716 0.479 0.501 0.492 0.489 0.502 0.499

DCMH [12] 0.677 0.703 0.725 0.590 0.603 0.609 0.497 0.506 0.511
OURS 0.797 0.809 0.810 0.636 0.636 0.637 0.550 0.577 0.576

T� I

CVH [14] 0.557 0.554 0.554 0.385 0.379 0.373 0.413 0.402 0.388
STMH [38] 0.600 0.613 0.616 0.472 0.526 0.550 0.446 0.478 0.506
CMSSH [2] 0.585 0.570 0.569 0.377 0.389 0.388 0.417 0.420 0.416
SCM [44] 0.707 0.714 0.719 0.567 0.583 0.597 0.492 0.556 0.568
SePH [16] 0.722 0.723 0.727 0.487 0.493 0.488 0.485 0.495 0.485

DCMH [12] 0.705 0.717 0.724 0.620 0.634 0.643 0.507 0.520 0.527
OURS 0.782 0.797 0.799 0.653 0.676 0.683 0.552 0.578 0.578
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Figure 2: A sensitivity analysis of the hyper-parameters.
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Figure 3: Precision@top1000 curves on MIRFLICKR-25K.

comparison results with 16 bits on the MIRFLICKR-25K
dataset. From the results, we can see that our method can
achieve a more accurate performance when using the de-
signed modules and that the self-supervised semantic net-
work significantly improves the performance.

Training efficiency: Fig. 5 shows the variation between
MAP and training time for SSAH and DCMH. We can see
that our approach reduces training time by a factor of 10
over DCMH. In comparison to DCMH, SSAH exploits Lab-
Net to learn more sufficient supervised information from
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Figure 4: Precision-recall curves. The baselines are based on CNN-F features. The code length is 16.
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Figure 5: Training Efficiency of SSAH and DCMH.

high-dimensional semantic features and hash codes, using it
to train ImgNet and TxtNet efficiently. Thus, more accurate
correlations between different modalities can be captured
and the modality gap can be bridged more effectively.

Comparison with ACMR: According to our curren-
t best knowledge, ACMR [37] is the first work that bor-
rows from adversarial learning approach for cross-modal
retrieval. However, ACMR is not a hashing-based method.
So as to be fairly compared with ACMR, we follow the ex-
periment settings used in ACMR. SSAH is conducted on an
NUS-WIDE-10k dataset, which is constructed by randomly
selecting 10,000 image/text pairs from the 10 largest cate-
gories within the NUS-WIDE dataset. Table 4 shows the
experiment results. The underlined results are reported in
ACMR. It can be seen that our method outperforms ACMR
significantly. This may be because two adversarial network-
s are used in our framework, with which SSAH can more

Table 4: MAP with CNN-F features on NUS-WIDE.

Method ACMR SSAH
Task I→ T T→ I I→ T T→ I
MAP 0.544 0.538 0.617 0.641

accurately learn the distribution of different modalities and
can thus capture the correlation more effectively.

5. Conclusion
In this work, we proposed a novel deep hashing ap-

proach, dubbed self-supervised adversarial hashing (S-
SAH), in order to address the problem of cross-modal re-
trieval more effectively. The proposed SSAH incorporates a
self-supervised semantic network coupled with multi-label
information, and carries out adversarial learning to maxi-
mize the semantic relevance and feature distribution con-
sistency between different modalities. The extensive exper-
iments show that SSAH achieves state-of-the-art retrieval
performance on three benchmark datasets.
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