
LiteFlowNet: A Lightweight Convolutional Neural Network
for Optical Flow Estimation

Tak-Wai Hui, Xiaoou Tang, Chen Change Loy
CUHK-SenseTime Joint Lab, The Chinese University of Hong Kong

{twhui,xtang,ccloy}@ie.cuhk.edu.hk

Abstract

FlowNet2 [14], the state-of-the-art convolutional neural
network (CNN) for optical flow estimation, requires over
160M parameters to achieve accurate flow estimation. In
this paper we present an alternative network that attains
performance on par with FlowNet2 on the challenging Sin-
tel final pass and KITTI benchmarks, while being 30 times
smaller in the model size and 1.36 times faster in the run-
ning speed. This is made possible by drilling down to archi-
tectural details that might have been missed in the current
frameworks: (1) We present a more effective flow inference
approach at each pyramid level through a lightweight cas-
caded network. It not only improves flow estimation ac-
curacy through early correction, but also permits seamless
incorporation of descriptor matching in our network. (2)
We present a novel flow regularization layer to ameliorate
the issue of outliers and vague flow boundaries by using a
feature-driven local convolution. (3) Our network owns an
effective structure for pyramidal feature extraction and em-
braces feature warping rather than image warping as prac-
ticed in FlowNet2. Our code and trained models are avail-
able at github.com/twhui/LiteFlowNet.

1. Introduction

Optical flow estimation is a long-standing problem in
computer vision. Due to the well-known aperture problem,
optical flow is not directly measurable [12, 13]. Hence, the
estimation is typically solved by energy minimization in a
coarse-to-fine framework [6, 20, 7, 36, 27, 22]. This class
of techniques, however, involves complex energy optimiza-
tion and thus it is not scalable for applications that demand
real-time estimation.

FlowNet [9] and its successor FlowNet2 [14], have
marked a milestone by using CNN for optical flow esti-
mation. Their accuracies especially the successor are ap-
proaching that of state-of-the-art energy minimization ap-
proaches, while the speed is several orders of magnitude

Feature warping

Feature warping
Cascaded inference

Feature warping
Cascaded inference
Flow regularization

Figure 1: Examples demonstrate the effectiveness of the proposed
components in LiteFlowNet for i) feature warping, ii) cascaded
flow inference, and iii) flow regularization. Enabled components
are indicated with bold black fonts.

faster. To push the envelop of accuracy, FlowNet2 is de-
signed as a cascade of variants of FlowNet that each net-
work in the cascade refines the preceding flow field by con-
tributing on the flow increment between the first image and
the warped second image. The model, as a result, com-
prises over 160M parameters, which could be formidable in
many applications. A recent network termed SPyNet [21]
attempts a network with smaller size of 1.2M parameters
by adopting image warping in each pyramid level. Nonethe-
less, the accuracy can only match that of FlowNet but not
FlowNet2. The objective of this study is to explore alter-
native CNN architectures for accurate flow estimation yet
with high efficiency. Our work is inspired by the successes
of FlowNet2 and SPyNet, but we further drill down the key
elements to fully unleash the potential of deep convolutional
network combined with classical principles.

There are two general principles to improve the design
of FlowNet2 and SPyNet. The first principle is pyrami-
dal feature extraction. The proposed network, dubbed Lite-
FlowNet, consists of an encoder and a decoder. The encoder
maps the given image pair, respectively, into two pyramids
of multi-scale high-dimensional features. The decoder then

1

https://github.com/twhui/LiteFlowNet

estimates the flow field in a coarse-to-fine framework. At
each pyramid level, the decoder infers the flow field by se-
lecting and using the features of the same resolution from
the feature pyramids. This design leads to a lighter network
compared to FlowNet2 that adopts U-Net architecture [23]
for flow inference. In comparison to SPyNet, our network
separates the process of feature extraction and flow estima-
tion. This helps us to better pinpoint the bottleneck of accu-
racy and model size.

The second general principle is feature warping.
FlowNet2 and SPyNet warp the second image towards the
first image in the pair using the previous flow estimate, and
then refine the estimate using the feature maps generated by
the warped and the first images. Warping an image and then
generating the feature maps of the warped image are two
ordered steps. We find that the two steps can be reduced to
a single one by directly warping the feature maps of the sec-
ond image, which have been computed by the encoder. This
one-step feature warping process reduces the more discrimi-
native feature-space distance instead of the RGB-space dis-
tance between the two images. This makes our network
more powerful and efficient in addressing the flow problem.

We now highlight the more specific differences between
our network and existing CNN-based optical flow estima-
tion frameworks:
1) Cascaded flow inference – At each pyramid level, we in-
troduce a novel cascade of two lightweight networks. Each
of them has a feature warping (f-warp) layer to displace
the feature maps of the second image towards the first im-
age using the flow estimate from the previous level. Flow
residue is computed to further reduce the feature-space dis-
tance between the images. This design is advantageous to
the conventional design of using a single network for flow
inference. First, the cascade progressively improves flow
accuracy thus allowing an early correction of the estimate
without passing more errors to the next level. Second, this
design allows seamless integration with descriptor match-
ing. We assign a matching network to the first inference.
Consequently, pixel-accuracy flow field can be generated
first and then refined to sub-pixel accuracy in the subse-
quent inference network. Since at each pyramid level the
feature-space distance between the images has been reduced
by feature warping, we can use a rather short displace-
ment than [9, 14] to establish the cost volume. Besides,
matching is performed only at sampled positions and thus a
sparse cost-volume is aggregated. This effectively reduces
the computational burden raised by the explicit matching.
2) Flow regularization – The cascaded flow inference re-
sembles the role of data fidelity in energy minimization
methods. Using data term alone, vague flow boundaries
and undesired artifacts exist in flow fields. To tackle this
problem, local flow consistency and co-occurrence between
flow boundaries and intensity edges are commonly used as

the cues to regularize flow field. Some of the representative
methods include anisotropic image-driven [32], image- and
flow-driven [28], and complementary [36] regularizations.
After cascaded flow inference, we allow the flow field to be
further regularized by our novel feature-driven local convo-
lution (f-lconv) layer1 at each pyramid level. The kernels of
such a local convolution are adaptive to the pyramidal fea-
tures from the encoder, flow estimate and occlusion prob-
ability map. This makes the flow regularization to be both
flow- and image-aware. To our best knowledge, state-of-
the-art CNNs do not explore such a flow regularization.

The effectiveness of the aforementioned contributions
are depicted in Figure 1. In summary, we propose a compact
LiteFlowNet to estimate optical flow. Our network inno-
vates the useful elements from conventional methods. e.g.,
brightness constraint in data fidelity to pyramidal CNN fea-
tures and image warping to CNN feature warping. More
specifically, we present a cascaded flow inference with fea-
ture warping and flow regularization in each pyramid level,
which are new in the literature. Overall, our network out-
performs FlowNet [9] and SPyNet [21] and is on par with
the recent FlowNet2 [14], while having 30 times fewer pa-
rameters and being 1.36 times faster than FlowNet2.

2. Related Work
Here, we briefly review some of the major approaches

for optical flow estimation.

Variational methods. Since the pioneering work by Horn
and Schunck [12], variational methods have dominated op-
tical flow estimation. Brox et al. address illumination
changes by combining the brightness and gradient con-
stancy assumptions [6]. Brox et al. integrate rich descriptors
into variational formulation [7]. In DeepFlow [31], Weinza-
epfel et al. propose to correlate multi-scale patches and in-
corporate this as the matching term in functional. In Patch-
Match Filter [16], Lu et al. establish dense correspondence
using the superpixel-based PatchMatch [4]. Revaud et al.
propose a method EpicFlow that uses externally matched
flows as initialization and then performs interpolation [22].
Zimmer et al. design the complementary regularization that
exploits directional information from the constraints im-
posed in data term [36]. Our network that infers optical
flow and performs flow regularization is inspired by the use
of data fidelity and regularization in variational methods.

Machine learning methods. Black et al. propose to repre-
sent complex image motion as a linear combination of the
learned basis vectors [5]. Roth et al. formulates the prior
probability of flow field as Field-of-Experts model [26] that
captures higher order spatial statistics [25]. Sun et al. study

1We name it as feature-driven local convolution (f-lconv) layer in order
to distinguish it from local convolution (lconv) layer of which filter weights
are locally fixed in conventional CNNs [29].

the probabilistic model of brightness inconstancy in a high-
order random field framework [28]. Nir et al. represent
image motion using the over-parameterization model [19].
Rosenbaum et al. model the local statistics of optical flow
using Gaussian mixtures [24]. Given a set of sparse
matches, Wulff et al. propose to regress them to a dense
flow field using a set of basis flow fields (PCA-Flow) [33].
It can be shown that the parameterized model [5, 19, 33]
can be efficiently implemented using CNN.

CNN-based methods. In the work of Fischer et al. termed
FlowNet [9], a post-processing step that involves energy
minimization is required to reduce smoothing effect across
flow boundaries. This process is not end-to-end trainable.
In our work, we present an end-to-end approach that per-
forms in-network flow regularization using the proposed
f-lconv layer, which plays similar role as the regulariza-
tion term in variational methods. In FlowNet2 [14], Ilg
et al. introduce a huge network cascade (over 160M pa-
rameters) that consists of variants of FlowNet. The cas-
cade improves flow accuracy with an expense of model size
and computational complexity. Our model uses a more ef-
ficient architecture containing 30 times fewer parameters
than FlowNet2 while the performance is on par with it. A
compact network termed SPyNet [21] from Ranjan et al. is
inspired from spatial pyramid. Nevertheless, the accuracy is
far below FlowNet2. A small-sized variant of our network
outperforms SPyNet while being 1.33 times smaller in the
model size. Zweig et al. present a network to interpolate
third-party sparse flows but requiring off-the-shelf edge de-
tector [37]. DeepFlow [31] that involves convolution and
pooling operations is however not a CNN, since the “filter
weights” are non-trainable image patches. According to the
terminology used in FlowNet, DeepFlow uses correlation.

An alternative approach for establishing point correspon-
dence is to match image patches. Zagoruyko et al. first in-
troduce to CNN-feature matching [35]. Güney et al. find
feature representation and formulate optical flow estimation
in MRF [11]. Bailer et al. [2] use multi-scale features and
then perform feature matching as Flow Fields [1]. Although
pixel-wise matching can establish accurate point correspon-
dence, the computational demand is too high for practical
use (it takes several seconds even a GPU is used). As a
tradeoff, Fischer et al. [9] and Ilg et al. [14] perform feature
matching only at a reduced spatial resolution. We reduce
the computational burden of feature matching by using a
short-ranged matching of warped CNN features at sampled
positions and a sub-pixel refinement at every pyramid level.

We are inspired by the feature transformation used in
Spatial Transformer [15]. Our network uses the proposed
f-warp layer to displace each channel2 of the given vector-

2We can also use f-warp layer to displace each channel differently when
multiple flow fields are supplied. The usage, however, is beyond the scope
of this work.

valued feature according to the provided flow field. Unlike
Spatial Transformer, f-warp layer is not fully constrained
and is a relaxed version of it as the flow field is not param-
eterized. While transformation in FlowNet2 and SPyNet is
limited to images, our decider network is a more generic
warping network that warps high-level CNN features.

3. LiteFlowNet
LiteFlowNet is composed of two compact sub-networks

that are specialized in pyramidal feature extraction and op-
tical flow estimation as shown in Figure 2. Since the spatial
dimension of feature maps is contracting in feature extrac-
tion and that of flow fields is expanding in flow estimation,
we call the two sub-networks as NetC and NetE respec-
tively. NetC transforms any given image pair into two pyra-
mids of multi-scale high-dimensional features. NetE con-
sists of cascaded flow inference and regularization modules
that estimate coarse-to-fine flow fields.
Pyramidal Feature Extraction. As shown in Figure 2,
NetC is a two-stream network in which the filter weights
are shared across the two streams. Each of them functions
as a feature descriptor that transforms an image I to a pyra-
mid of multi-scale high-dimensional features {Fk(I)} from
the highest spatial resolution (k = 1) to the lowest spatial
resolution (k = L). The pyramidal features are generated
by stride-s convolutions with the reduction of spatial reso-
lution by a factor s up the pyramid. In the following, we
omit the subscript k that indicates the level of pyramid for
brevity. We use Fi to represent CNN features for Ii. When
we discuss the operations in a pyramid level, the same op-
erations are applicable to other levels.
Feature Warping. At each pyramid level, a flow field is
inferred from high-level features F1 and F2 of images I1

and I2. Flow inference becomes more challenging if I1 and
I2 are captured far away from each other. With the motiva-
tion of image warping used in conventional methods [6, 20]
and recent CNNs [14, 21] for addressing large-displacement
flow, we propose to reduce feature-space distance between
F1 and F2 by feature warping (f-warp). Specifically, F2

is warped towards F1 by f-warp via flow estimate ẋ to
F̃2(x) , F2(x + ẋ) ∼ F1(x). This allows our network to
infer residual flow between F1 and F̃2 that has smaller flow
magnitude (more details in Section 3.1) but not the com-
plete flow field that is more difficult to infer. Unlike con-
ventional methods, f-warp is performed on high-level CNN
features but not on images. This makes our network more
powerful and efficient in addressing the optical flow prob-
lem. To allow end-to-end training, F is interpolated to F̃
for any sub-pixel displacement ẋ as follows:

F̃(x) =
∑

xi
s∈N(xs)

F(xi
s)
(
1−

∣∣xs − xi
s

∣∣) (1− ∣∣ys − yis
∣∣) ,
(1)

Figure 2: The network structure of LiteFlowNet. For the ease of representation, only a 3-level design is shown. Given an image pair (I1
and I2), NetC generates two pyramids of high-level features (Fk(I1) in pink and Fk(I2) in red, k ∈ [1, 3]). NetE yields multi-scale flow
fields that each of them is generated by a cascaded flow inference module M :S (in blue color, including a descriptor matching unit M and
a sub-pixel refinement unit S) and a regularization module R (in green color). Flow inference and regularization modules correspond to
data fidelity and regularization terms in conventional energy minimization methods respectively.

where xs = x + ẋ = (xs, ys)
> denotes the source coor-

dinates in the input feature map F that defines the sample
point, x = (x, y)> denotes the target coordinates of the
regular grid in the interpolated feature map F̃ , and N(xs)
denotes the four pixel neighbors of xs. The above bilinear
interpolation allows back-propagation during training as its
gradients can be efficiently computed [15].

3.1. Cascaded Flow Inference

At each pyramid level of NetE, pixel-by-pixel matching
of high-level features yields coarse flow estimate. A subse-
quent refinement on the coarse flow further improves it to
sub-pixel accuracy.

First Flow Inference (descriptor matching). Point cor-
respondence between I1 and I2 is established through com-
puting correlation of high-level feature vectors in individual
pyramidal features F1 and F2 as follows:

c(x,d) = F1(x) · F2(x + d)/N, (2)

where c is the matching cost between point x in F1 and
point x+d in F2, d ∈ Z is the displacement vector from x,
and N is the length of the feature vector. A cost volume C
is built by aggregating all the matching costs into a 3D grid.

We reduce the computational burden raised by cost-
volume processing [9, 14] in three ways: 1) We perform
short-range matching at every pyramid level instead of long-
range matching at a single level. 2) We reduce feature-space
distance between F1 and F2 by warping F2 towards F1

using our proposed f-warp through flow estimate3 ẋ from

3ẋ from previous level needs to be upsampled in spatial resolution (de-
noted by “↑s”) and magnitude (multiplied by a scalar s) to sẋ↑s for match-
ing the spatial resolution of the pyramidal features at the current level.

previous level. 3) We perform matching only at the sam-
pled positions in the pyramid levels of high-spatial resolu-
tion. The sparse cost volume is interpolated in the spatial
dimension to fill the missed matching costs for the unsam-
pled positions. The first two techniques effectively reduce
the searching space needed, while the last technique reduces
the frequency of matching per pyramid level.

In the descriptor matching unit M , residual flow ∆ẋm

is inferred by filtering the cost volume C as illustrated in
Figure 3. A complete flow field ẋm is computed as follows:

ẋm = M
(
C(F1, F̃2;d)

)︸ ︷︷ ︸
∆ẋm

+sẋ↑s. (3)

Second Flow Inference (sub-pixel refinement). Since
the cost volume in descriptor matching unit is aggregated
by measuring pixel-by-pixel correlation, flow estimate ẋm

from the previous inference is only up to pixel-level accu-
racy. We introduce the second flow inference in the wake
of descriptor matching as shown in Figure 3. It aims to
refine the pixel-level flow field ẋm to sub-pixel accuracy.
This prevents erroneous flows being amplified by upsam-
pling and passing to the next pyramid level. Specifically,
F2 is warped to F̃2 via flow estimate ẋm. Sub-pixel refine-
ment unit S yields a more accurate flow field ẋs by mini-
mizing feature-space distance between F1 and F̃2 through
computing residual flow ∆ẋs as the following:

ẋs = S
(
F1, F̃2, ẋm

)︸ ︷︷ ︸
∆ẋs

+ẋm. (4)

3.2. Flow Regularization

Cascaded flow inference resembles the role of data fi-
delity in conventional minimization methods. Using data

Figure 3: A cascaded flow inference module M :S in NetE. It con-
sists of a descriptor matching unit M and a sub-pixel refinement
unit S. In M , f-warp transforms high-level feature F2 to F̃2 via
upscaled flow field 2ẋ↑2 estimated at previous pyramid level. In
S, F2 is warped by ẋm from M . In comparison to residual flow
∆ẋm, more flow adjustment exists at flow boundaries in ∆ẋs.

term alone, vague flow boundaries and undesired artifacts
commonly exist in flow field [32, 36]. To tackle this prob-
lem, we propose to use a feature-driven local convolution
(f-lcon) to regularize flow field from the cascaded flow in-
ference. The operation of f-lcon is well-governed by the
Laplacian formulation of diffusion of pixel values [30]. In
contrast to local convolution (lcon) used in conventional
CNNs [29], f-lcon is more generalized. Not only is a dis-
tinct filter used for each position of feature map, but the
filter is adaptively constructed for individual flow patches.

Consider a general case, a vector-valued feature F that
has to be regularized has C channels and a spatial dimen-
sion M × N . Define G = {g} as the set of filters used in
f-lcon layer. The operation of f-lcon to F can be formulated
as follow:

fg(x, y, c) = g(x, y, c) ∗ f(x, y, c), (5)

where “∗” denotes convolution, f(x, y, c) is a w × w patch
centered at position (x, y) of channel c in F , g(x, y, c) is the
corresponding w×w regularization filter, and fg(x, y, c) is
a scalar output for x = (x, y)> and c = 1, 2, ..., C. To
be specific for regularizing flow field ẋs from the cascaded
flow inference, we replace F to ẋs. Flow regularization
module R is defined as follows:

ẋr = R(ẋs;G). (6)

The f-lcon filters need to be specialized for smoothing
flow field. It should behave as an averaging filter if the vari-
ation of flow vectors over the patch is smooth. It should also
not over-smooth flow field across flow boundary. We define
a feature-driven CNN distance metric D that estimates lo-
cal flow variation using pyramidal feature F1, flow field ẋs

Figure 4: Folding and packing of f-lcon filters {g}. The (x, y)-
entry of 3D tensor Ḡ(c) is a 3D column with size 1 × 1 × w2.
It corresponds to the unfolded w × w f-lcon filter g(x, y, c) to be
applied at position (x, y) of channel c in vector-valued feature F .

from the cascaded flow inference, and occlusion probabil-
ity map4 O. In summary, D is adaptively constructed by a
CNN unit RD as follows:

D = RD(F1, ẋs, O). (7)

With the introduction of feature-driven distance metric D,
each filter g of f-lcon is constructed as follows:

g(x, y, c) =
exp(−D(x, y, c)2)∑

(xi,yi)∈N(x,y) exp(−D(xi, yi, c)2)
, (8)

where N(x, y) denotes the neighborhood containing ω × ω
pixels centered at position (x, y).

Here, we provide a mechanism to perform f-lcon ef-
ficiently. For a C-channel input F , we use C tensors
Ḡ(1), ..., Ḡ(C) to store f-lcon filter set G. As illustrated
in Figure 4, each f-lcon filter g(x, y, c) is folded into a
1 × 1 × w2 3D column and then packed into the (x, y)-
entry of a M ×N × w2 3D tensor Ḡ(c). Same folding and
packing operations are also applied to each patch in each
channel of F . This results C tensors F̄ (1), ..., F̄ (C) for F .
In this way, Equation (5) can be reformulated to:

Fg(c) = Ḡ(c)� F̄ (c), (9)

where “�” denotes element-wise dot product between the
corresponding columns of the tensors. With the abuse of
notation, Fg(c) means the c-th xy-slice of the regularized
C-channel feature Fg . Equation (9) reduces the dimension
of tensors from M ×N ×w2 (right-hand side in prior to the
dot product) to M ×N (left-hand side).

4. Experiments
Network Details. In LiteFlowNet, NetC generates 6-level
pyramidal features and NetE predicts flow fields for levels
6 to 2. Flow field in level 2 is upsampled to yield flow field
in level 1. We set the maximum searching radius in cost-
volume to 3 pixels (levels 6 to 4) or 6 pixels (levels 3 to 2).

4We use the brightness error ||I2(x+ẋ)−I1(x)||2 between the warped
second image and the first image as the occlusion probability map.

Table 1: AEE on the Chairs testing set. Models are trained on the
Chairs training set.

FlowNetS FlowNetC SPyNet LiteFlowNetX-pre LiteFlowNet-pre

2.71 2.19 2.63 2.25 1.57

Matching is performed at each position in pyramidal fea-
tures, except for levels 3 to 2 that it is performed at a regu-
larly sampled grid (a stride of 2). All convolution layers use
3 × 3 filters, except each last layer in descriptor matching
M , sub-pixel refinement S, and flow regularization R units
uses 5×5 (levels 4 to 3) or 7×7 (level 2) filters. Each convo-
lution layer is followed by a leaky rectified linear unit layer,
except f-lcon and the last layer in M , S and R CNN units.
More details can be found in the supplementary material.

Training Details. We train our network stage-wise by the
following steps: 1) NetC and M6:S6 of NetE is trained
for 300k iterations. 2) R6 together with the trained net-
work in step 1 is trained for 300k iterations. 3) For levels
k ∈ [5, 2], Mk:Sk followed by Rk is added into the trained
network each time. The new network cascade is trained for
200k (level 2: 300k) iterations. Filter weights are initial-
ized from previous level. Learning rates are initially set
to 1e-4, 5e-5, and 4e-5 for levels 6 to 4, 3 and 2 respec-
tively. We reduce it by a factor of 2 starting at 120k, 160k,
200k, and 240k iterations. We use the same L2 training loss,
Adam optimization, data augmentation, and training sched-
ule (Chairs [9] → Things3D [17]) as FlowNet2 [14]. We
denote LiteFlowNet-pre and LiteFlowNet as the networks
trained on Chairs and Chairs→ Things3D, respectively.

4.1. Results

We compare several variants of LiteFlowNet to state-
of-the-art methods on public benchmarks including Fly-
ingChairs (Chairs) [9], Sintel clean and final [8],
KITTI12 [10], KITTI15 [18], and Middlebury [3].

FlyingChairs. We first compare the intermediate results of
different well-performing networks trained on Chairs alone
in Table 1. Average end-point error (AEE) is reported.
LiteFlowNet-pre outperforms the compared networks. No
intermediate result is available for FlowNet2 [14] as each
cascade is trained on the Chairs → Things3D sched-
ule individually. Since FlowNetC, FlowNetS (variants of
FlowNet [9]), and SPyNet [21] have fewer parameters than
FlowNet2 and the later two models do not perform fea-
ture matching, we also construct a small-size counterpart
LiteFlowNetX-pre by removing the matching part and
shrinking the model sizes of NetC and NetE by about 4 and
5 times, respectively. Despite that LiteFlowNetX-pre is 43
and 1.33 times smaller than FlowNetC and SPyNet, respec-
tively, it still outperforms these networks and is on par with
FlowNetC that uses explicit matching.

MPI Sintel. In Table 2, LiteFlowNetX-pre outperforms
FlowNetS (and C) [9] and SPyNet [21] that are trained

Table 3: Number of training parameters and runtime. The model
for which the runtime is in parentheses is measured using Torch,
and hence are not directly comparable to the others using Caffe.
Abbreviation LFlowNet refers to LiteFlowNet.

Shallow Deep Very Deep
Model FlowNetC SPyNet LFlowNetX LFlowNet FlowNet2

layers 26 35 74 99 115
param. (M) 39.16 1.20 0.90 5.37 162.49
Runtime (ms) 32.28 (129.83) 35.83 90.25 122.39

on Chairs on all cases except the Middlebury benchmark.
LiteFlowNet, trained on the Chairs → Things3D sched-
ule, performs better than LiteFlowNet-pre as expected.
LiteFlowNet also outperforms SPyNet, FlowNet2-S (and -
C) [14]. We also fine-tuned LiteFlowNet on a mixture of
Sintel clean and final training data (LiteFlowNet-ft) using
the generalized Charbonnier loss [27]. LiteFlowNet-ft per-
forms better than EpicFlow [22] for Sintel final testing set.
Despite hybrid methods (CNN + post-processing) [11, 2,
34] perform better than FlowNet2, its GPU runtime requires
several seconds that makes it formidable in many applica-
tions. Figure 5 shows some examples of flow fields on Sin-
tel dataset. LiteFlowNet-ft and FlowNet2-ft-sintel perform
the best among the compared methods. As LiteFlowNet has
flow regularization module, sharper flow boundaries and
lesser artifacts can be observed in the generated flow fields.

KITTI. LiteFlowNet consistently performs better than
LiteFlowNet-pre especially on KITTI15 as shown in Ta-
ble 2. It also outperforms SPyNet [21] and FlowNet2-S
(and C) [14]. By fine-tuning on a mixture of KITTI12 and
KITTI15 training data (LiteFlowNet-ft), LiteFlowNet gen-
eralizes well to real-world data. LiteFlowNet-ft is on par
with FlowNet2-ft-kitti. Figure 6 shows some examples of
flow fields on KITTI. As in the case for Sintel, LiteFlowNet-
ft and FlowNet2-ft-kitti performs the best among the com-
pared methods. Even though LiteFlowNet and its variants
perform pyramidal descriptor matching in a limited search-
ing range, it yields reliable large-displacement flow fields
for real-world data due to the feature warping (f-warp) layer
introduced. More analysis will be presented in Section 4.3.

Middlebury. LiteFlowNet has comparable performance
with conventional methods. It outperforms FlowNetS
(and C) [9] and FlowNet2-S (and C) [14] and is on par
with SPyNet [21] and FlowNet2. On the benchmark,
LiteFlowNet-ft refers to the one fine-tuned on Sintel.

4.2. Runtime and Parameters

We measure runtime of a CNN using a machine
equipped with an Intel Xeon E5 2.2GHz and an NVIDIA
GTX 1080. Timings are averaged over 100 runs for Sin-
tel image pairs of size 1024 × 436. As summarized in Ta-
ble 3, LiteFlowNet has about 30 times fewer parameters
than FlowNet2 [14] and is 1.36 times faster in runtime.
LiteFlowNetX, a variant of LiteFlowNet having a smaller

Table 2: AEE of different methods. The values in parentheses are the results of the networks on the data they were trained on, and hence are
not directly comparable to the others. Fl-all: Percentage of outliers averaged over all pixels. Inliers are defined as EPE <3 pixels or <5%.
The best number for each category is highlighted in bold. (Note: 1The values are reported from [14]. 2We re-trained the model using the
code provided by the authors. 3,4,5The values are computed using the trained models provided by the authors. 4Large discrepancy exists as
the authors mistakenly evaluated the results on the disparity dataset. 5 Up-to-date dataset is used. 6Trained on Driving and Monkaa [17])

Method Sintel clean Sintel final KITTI12 KITTI15 Middlebury
train test train test train test train train (Fl-all) test (Fl-all) train test

C
on

ve
nt

io
na

l LDOF1 [7] 4.64 7.56 5.96 9.12 10.94 12.4 18.19 38.11% - 0.44 0.56
DeepFlow1 [31] 2.66 5.38 3.57 7.21 4.48 5.8 10.63 26.52% 29.18% 0.25 0.42

Classic+NLP [27] 4.49 6.73 7.46 8.29 - 7.2 - - - 0.22 0.32
PCA-Layers1 [33] 3.22 5.73 4.52 7.89 5.99 5.2 12.74 27.26% - 0.66 -

EpicFlow1 [22] 2.27 4.12 3.56 6.29 3.09 3.8 9.27 27.18% 27.10% 0.31 0.39
FlowFields1 [1] 1.86 3.75 3.06 5.81 3.33 3.5 8.33 24.43% - 0.27 0.33

H
yb

ri
d Deep DiscreteFlow [11] - 3.86 - 5.73 - 3.4 - - 21.17% - -

Bailer et al. [2] - 3.78 - 5.36 - 3.0 - - 19.44% - -
DC Flow [34] - - - 5.12 - - - - 14.86% - -

H
ea

vy
w

ei
gh

tC
N

N

FlowNetS [9] 4.50 7.42 5.45 8.43 8.26 - - - - 1.09 -
FlowNetS-ft [9] (3.66) 6.96 (4.44) 7.76 7.52 9.1 - - - 0.98 -
FlowNetC [9] 4.31 7.28 5.87 8.81 9.35 - - - - 1.15 -

FlowNetC-ft [9] (3.78) 6.85 (5.28) 8.51 8.79 - - - - 0.93 -
FlowNet2-S3 [14] 3.79 - 4.99 - 7.26 - 14.28 51.06% - 1.04 -

FlowNet2-S re-trained2 3.96 - 5.37 - 7.31 - 14.51 51.38% - 1.13 -
FlowNet2-C3 [14] 3.04 - 4.60 - 5.79 - 11.49 44.09% - 0.98 -

FlowNet2 [14] 2.02 3.96 3.544 6.02 4.015 - 10.085 29.99%5 - 0.35 0.52
FlowNet2-ft-sintel [14] (1.45) 4.16 (2.194) 5.74 3.545 - 9.945 28.02%5 - 0.35 -
FlowNet2-ft-kitti [14] 3.43 - 4.834 - (1.435) 1.8 (2.365) (8.88%5) 11.48% 0.56 -

L
ig

ht
w

ei
gh

tC
N

N SPyNet [21] 4.12 6.69 5.57 8.43 9.12 - - - - 0.33 0.58
SPyNet-ft [21] (3.17) 6.64 (4.32) 8.36 3.366 4.1 - - 35.07% 0.33 0.58

LiteFlowNetX-pre 3.70 - 4.82 - 6.81 - 16.64 36.64% - 0.45 -
LiteFlowNetX 3.58 - 4.79 - 6.38 - 15.81 34.90% - 0.46 -

LiteFlowNet-pre 2.78 - 4.17 - 4.56 - 11.58 32.59% - 0.45 -
LiteFlowNet 2.52 - 4.05 - 4.25 - 10.46 29.30% - 0.39 -

LiteFlowNet-ft (1.64) 4.86 (2.23) 6.09 (1.26) 1.7 (2.16) (8.16%) 10.24% 0.33 0.50

Image overlay Ground truth FlowNetC [9] FlowNet2 [14] LiteFlowNet

First image FlowNetC [9] FlowNet2 [14] FlowNet2-ft-sintel [14] LiteFlowNet-ft

Figure 5: Examples of flow fields from different methods on Sintel training sets for clean (top row), final (middle row) passes, and the
testing set for final pass (last row). Fine details are well preserved and less artifacts can be observed in the flow fields of LiteFlowNet.

model size and without descriptor matching, has about 43
times fewer parameters than FlowNetC [9] and a compa-
rable runtime. LiteFlowNetX also has 1.33 times fewer pa-
rameters than SPyNet [21]. LiteFlowNet and its variants are
currently the most compact CNNs for flow estimation.

4.3. Ablation Study

We investigate the role of each component in
LiteFlowNet-pre trained on Chairs by evaluating the per-
formance of different variants with some of the components

disabled. The AEE results are summarized in Table 4 and
examples of flow fields are illustrated in Figure 7.

Feature Warping. We consider two variants LiteFlowNet-
pre (WM and WMS) and compare them to the counterparts
with warping disabled (M and MS). Flow fields from M and
MS are more vague. Large degradation in AEE is noticed
especially for KITTI12 (33%) and KITTI15 (25%). With
feature warping, pyramidal features that input to flow infer-
ence are closer to each other. This facilitates flow estimation
in subsequent pyramid level by computing residual flow.

Image overlay Ground truth FlowNetC [9] FlowNet2 [14] LiteFlowNet

First Image FlowNetC [9] FlowNet2 [14] FlowNet2-ft-kitti [14] LiteFlowNet-ft

Figure 6: Examples of flow fields from different methods on the training set (top) and the testing set (bottom) of KITTI15.

Figure 7: Examples of flow fields from different variants of LiteFlowNet-pre trained on Chairs with some of the components disabled.
LiteFlowNet-pre is denoted as “All”. W = Feature Warping, M = Descriptor Matching, S = Sub-Pixel Refinement, R = Regularization.

Table 4: AEE of different variants of LiteFlowNet-pre trained on
Chairs dataset with some of the components disabled.

Variants M MS WM WSR WMS ALL

Feature Warping 7 7 3 3 3 3

Descriptor Matching 3 3 3 7 3 3

Sub-pix. Refinement 7 3 7 3 3 3

Regularization 7 7 7 3 7 3

FlyingChairs (train) 3.75 2.70 2.98 1.63 1.82 1.57
Sintel clean (train) 4.70 4.17 3.54 3.19 2.90 2.78
Sintel final (train) 5.69 5.30 4.81 4.63 4.45 4.17
KITTI12 (train) 9.22 8.01 6.17 5.03 4.83 4.56
KITTI15 (train) 18.24 16.19 14.52 13.20 12.32 11.58

Descriptor Matching. We compare the variant WSR with-
out descriptor matching for which the flow inference part
is made as deep as that in the unamended LiteFlowNet-
pre (ALL). No noticeable difference between the flow fields
from WSR and ALL. Since the maximum displacement of
the example flow field is not very large (only 14.7 pixels),
accurate flow field can still be yielded from WSR. For eval-
uation covering a wide range of flow displacement (espe-
cially large-displacement benchmark, KITTI), degradation
in AEE is noticed for WSR. This suggests that descriptor
matching is useful in addressing large-displacement flow.
Sub-Pixel Refinement. The flow field generated from
WMS is more crisp and contains more fine details than
that generated from WM with sub-pixel refinement dis-
abled. Less small-magnitude flow artifacts (represented by
light color on the background) are also observed. Besides,
WMS achieves smaller AEE. Since descriptor matching es-
tablishes pixel-by-pixel correspondence, sub-pixel refine-
ment is necessary to yield detail-preserving flow field.
Regularization. In comparison WMS with regularization

disabled to ALL, undesired artifacts exist in homogeneous
regions (represented by very dim color on the background)
of the flow field generated from WMS. Flow bleeding and
vague flow boundaries are observed. Degradation in AEE is
also noticed. This suggests that the proposed feature-driven
local convolution (f-lcon) plays the vital role to smooth flow
field and maintain crisp flow boundaries as regularization
term in conventional variational methods.

5. Conclusion
We have presented a compact network for accurate flow

estimation. LiteFlowNet outperforms FlowNet [9] and is
on par with the state-of-the-art FlowNet2 [14] on public
benchmarks while being faster in runtime and 30 times
smaller in model size. Pyramidal feature extraction and fea-
ture warping (f-warp) help us to break the de facto rule of
accurate flow network requiring large model size. To ad-
dress large-displacement and detail-preserving flows, Lite-
FlowNet exploits short-range matching to generate pixel-
level flow field and further improves the estimate to sub-
pixel accuracy in the cascaded flow inference. To result
crisp flow boundaries, LiteFlowNet regularizes flow field
through feature-driven local convolution (f-lcon). With its
lightweight, accurate, and fast flow computation, we ex-
pect that LiteFlowNet can be deployed to many applications
such as motion segmentation, action recognition, and more.

Acknowledgement. This work is supported by SenseTime
Group Limited and the General Research Fund sponsored
by the Research Grants Council of the Hong Kong SAR
(CUHK 14241716, 14224316, 14209217).

References
[1] C. Bailer, B. Taetz, and D. Stricker. Flow Fields: Dense

correspondence fields for highly accurate large displacement
optical flow estimation. ICCV, pages 4015–4023, 2015. 3, 7

[2] C. Bailer, K. Varanasi, and D. Stricker. CNN-based patch
matching for optical flow with thresholded hinge embedding
loss. CVPR, pages 3250–3259, 2017. 3, 6, 7

[3] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. J. Black, and
R. Szeliski. A database and evaluation methodology for op-
tical flow. IJCV, 92(1):1–31, 2011. 6

[4] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Gold-
man. PatchMatch: A randomized correspondence algorithm
for structural image editing. SIGGRAGH, pages 83–97,
2009. 2

[5] M. J. Black, Y. Yacoobt, A. D. Jepsont, and D. J. Fleets.
Learning parameterized models of image motion. CVPR,
pages 674–679, 1997. 2, 3

[6] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High ac-
curacy optical flow estimation based on a theory for warping.
ECCV, pages 25–36, 2004. 1, 2, 3

[7] T. Brox and J. Mailk. Large displacement optical flow: De-
scriptor matching in variational motion estimation. PAMI,
33(3):500–513, 2011. 1, 2, 7

[8] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A
naturalistic open source movie for optical flow evaluation.
ECCV, pages 611–625, 2012. 6

[9] P. Fischer, A. Dosovitskiy, E. Ilg, P. Häusser, C. Hazirbas,
V. Golkov, P. van der Smagt, D. Cremers, and T. Brox.
FlowNet: Learning optical flow with convolutional net-
works. ICCV, pages 2758–2766, 2015. 1, 2, 3, 4, 6, 7, 8

[10] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-
tonomous driving? CVPR, pages 3354–3361, 2012. 6

[11] F. Gney and A. Geiger. Deep discrete flow. ACCV, pages
207–224, 2016. 3, 6, 7

[12] B. K. P. Horn and B. G. Schunck. Determining optical flow.
Arifical Intelligence, 17:185–203, 1981. 1, 2

[13] T.-W. Hui and R. Chung. Determining motion directly
from normal flows upon the use of a spherical eye platform.
CVPR, pages 2267–2274, 2013. 1

[14] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and
T. Brox. FlowNet2.0: Evolution of optical flow estimation
with deep networks. CVPR, pages 2462–2470, 2017. 1, 2, 3,
4, 6, 7, 8

[15] M. Jaderberg, K. Simonyan, A. Zisserman, and
K. Kavukcuoglu. Spatial transformer networks. NIPS,
pages 2017–2025, 2015. 3, 4

[16] J. Lu, H. Yang, D. Min, and M. N. Do. PatchMatch Fil-
ter: Efficient edge-aware filtering meets randomized search.
CVPR, pages 1854–1861, 2013. 2

[17] N. Mayer, E. Ilg, P. Husser, P. Fischer, D. Cremers, A. Doso-
vitskiy, and T. Brox. A large dataset to train convolutional
networks for disparity, optical flow, and scene flow estima-
tion. CVPR, pages 4040–4048, 2016. 6, 7

[18] M. Menze and A. Geiger. Object scene flow for autonomous
vehicles. CVPR, pages 3061–3070, 2015. 6

[19] T. Nir, A. M. Bruckstein, and R. Kimmel. Over-
parameterized variational optical flow. IJCV, 76(2):205–216,
2008. 3

[20] N. Papenberg, A. Bruhn, T. Brox, S. Didas, and J. Weick-
ert. Highly accurate optic flow computation with theoreti-
cally justified warping. IJCV, 67(2):141–158, 2006. 1, 3

[21] A. Ranjan and M. J. Black. Optical flow estimation using a
spatial pyramid network. CVPR, pages 4161–4170, 2017. 1,
2, 3, 6, 7

[22] J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid.
EpicFlow: Edge-preserving interpolation of correspon-
dences for optical flow. CVPR, pages 1164–1172, 2015. 1,
2, 6, 7

[23] O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolu-
tional networks for biomedical image segmentation. MIC-
CAI, pages 234–241, 2015. 2

[24] D. Rosenbaum, D. Zoran, and Y. Weiss. Learning the local
statistics of optical flow. NIPS, pages 2373–2381, 2013. 3

[25] S. Roth and M. Black. On the spatial statistics of optical
flow. ICCV, pages 42–49, 2005. 2

[26] S. Roth and M. J. Black. Fields of experts: A framework for
learning image priors. CVPR, pages 860–867, 2005. 2

[27] D. Sun, S. Roth, and M. J. Black. A quantitative analysis of
current practices in optical flow estimation and the principles
behind them. IJCV, 106(2):115–137, 2014. 1, 6, 7

[28] D. Sun, S. Roth, J. Lewis, and M. J. Black. Learning optical
flow. ECCV, pages 83–97, 2008. 2, 3

[29] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. DeepFace:
Closing the gap to human-level performance in face verifica-
tion. CVPR, pages 1701–1708, 2014. 2, 5

[30] D. Tschumperlé and R. Deriche. Vector-valued image reg-
ularization with PDEs: A common framework for different
applications. PAMI, 27(4):506–517, 2005. 5

[31] P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid.
DeepFlow: Large displacement optical flow with deep
matching. ICCV, pages 500–513, 2013. 2, 3, 7

[32] M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers,
and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC,
2009. 2, 5

[33] J. Wulff and M. J. Black. Efficient sparse-to-dense optical
flow estimation using a learned basis and layers. CVPR,
pages 120–130, 2015. 3, 7

[34] J. Xu, R. Ranftl, and V. Koltun. Accurate optical flow via
direct cost volume processings. CVPR, pages 1289–1297,
2017. 6, 7

[35] S. Zagoruyko and N. Komodakis. Learning to compare im-
age patches via convolutional neural networks. CVPR, pages
4353–4361, 2015. 3

[36] H. Zimmer, A. Bruhn, and J. Weickert. Optic flow in har-
mony. IJCV, 93(3):368–388, 2011. 1, 2, 5

[37] S. Zweig and L. Wolf. InterpoNet, A brain inspired neural
network for optical flow dense interpolation. CVPR, pages
4563–4572, 2017. 3

