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Abstract

Random data augmentation is a critical technique to
avoid overfitting in training deep models. Yet, data augmen-
tation and network training are often two isolated processes
in most settings, yielding to a suboptimal training. Why not
jointly optimize the two? We propose adversarial data aug-
mentation to address this limitation. The key idea is to design
a generator (e.g. an augmentation network) that competes
against a discriminator (e.g. a target network) by generating
hard examples online. The generator explores weaknesses
of the discriminator, while the discriminator learns from
hard augmentations to achieve better performance. A re-
ward/penalty strategy is also proposed for efficient joint
training. We investigate human pose estimation and carry
out comprehensive ablation studies to validate our method.
The results prove that our method can effectively improve
state-of-the-art models without additional data effort.

1. Introduction
Deep Neural Networks (DNNs) have led to significant im-

provements in many computer vision tasks [20, 10, 18, 9]. In
most settings, a two-phase paradigm is usually organized to
train deep models as shown in Figure 1: data collection and
network training. Yet, this paradigm may not be efficient.
First, data collection happens ahead of network training,
impelling large-scale data collection to cover possible varia-
tions [20]. Second, natural images usually follow long-tail
distributions [46, 33]. Effective examples may still be rare
even a great number of images have been collected.

A common solution for this problem is to perform ran-
dom data augmentation [21, 37]. Prior to being fed into the
network, training images are heuristically disturbed by pre-
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Figure 1: Data preparation and network training are usually
isolated. We propose to bridge the two by generating adver-
sarial augmentations online. The generations are conditioned
to both training images and the status of the target network.

defined transformations (e.g. scaling, rotating, occluding) to
increase variations. This strategy is simple but the dilemma
is still there: data agumentation and network training are
isolated, leading to following limitations.

First, static distributions are usually used to sample aug-
mented examples. They can hardly match the network status
as the training continues. Intensive data efforts are still
needed for large-scale collection and annotation [42, 26].
Second, the same augmentation strategy is usually applied to
the entire training set without considering any individual dif-
ference. This may produce many ineffective augmentations
that are either too hard or too easy to help the network train-
ing [32, 39]. Third, the long-tail issue is hardly addressed
since random augmentations are usually sampled from Gaus-
sian distributions. There is a small chance to sample rare but
effective examples.
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A natural question then arises: can data augmentation
be conditional to the training status of deep models, so we
can make less data effort to obtain more training effect? In
other words, can the two be jointly optimized in a unified
framework where the convergence of the both is guaranteed?

In this work, we answer the above question by propos-
ing a new approach that leverages adversarial learning for
joint optimization. Specifically, we investigate human pose
estimation, aiming to improve the network training with
bounded datasets. Note that our approach can be easily gen-
eralized to other vision tasks, such as face alignment [25]
and instance segmentation [23, 13].

Given an off-the-shelf human pose estimation network,
our goal is to obtain more training effect from a bounded
dataset. Specifically, we propose an augmentation network
that acts as a generator. It aims to create adversarial exam-
ples that intend to fail the pose network. The pose network,
on the other hand, is modeled as a discriminator. It evaluates
the quality of generations, and more importantly, tries to
learn from the hard examples. The key idea is adversarial ex-
amples are created online, conditioned to both input images
and the current status of the pose network (see Figure 1 for
an illustration). In other words, the augmentation network
explores weaknesses of the pose network which, at the same
time, learns from hard augmentations for better performance.

Jointly optimizing two networks is not a trivial task. Our
experiments indicate that a straightforward design, such
as generating adversarial pixels [12, 30] or deformations
[39, 18] directly, would yield problematic convergence be-
haviors (e.g. diverging and model collapse). Instead, we
design the augmentation network to generate a set of distri-
butions, from which adversarial augmentations (i.e. scaling,
rotating, occluding) are sampled to create new data points.
In addition, a novel reward and penalty policy is proposed to
address the missing supervision issue during joint training.
Moreover, instead of a raw image, the augmentation network
is designed to take the byproduct, i.e. intermediate hierarchi-
cal features, of the pose network as the input. It can further
improve the joint training by leveraging spatial constraints.
To summarize, our key contributions are:

• To the best of our knowledge, we are the first to inves-
tigate the joint optimization of data augmentation and
network training in human pose estimation.

• We propose an augmentation network to play a min-
imax game against the target network, by generating
adversarial augmentations online.

• We take advantage of the wildly used U-net design and
propose a reward and penalty mechanism for efficient
joint training of the two networks.

• Strong performance on public benchmarks, e.g. MPII
and LSP, and intensive ablation studies, validate our
method substantially in various aspects.

2. Related Work

We provide a brief overview of works that are most rel-
evant to ours in three categories:adversarial learning, hard
example mining and human pose estimation.

Adversarial learning. Generative Adversarial Networks
(GANs) [12, 45, 47] includes two networks: generator and
discriminator which compete against each other to improve
performances. Recent applications of GANs in the human
pose estimation include [6] and [7]. They both treat the pose
estimation network as the generator and use a discrimina-
tor to provide supervisions. However, in our framework,
the pose estimation network is a discriminator. The key
difference is that we generate adversarial hard examples to
improve estimation performances while they add adversarial
losses to do that. A-Fast-RCNN [39] uses GANs to generate
deformed object region proposals for the object detector.

Hard example mining. The hard example mining usu-
ally alternates between optimizing models and updating train-
ing data. Once a model is optimized on the current training
set, it is used to collect more hard data for further training
[38]. It was used in training SVM models for object detec-
tion [38, 41]. Recently, Shrivastava et al. [32] adapted it
into the neural network based object detector. While hard
example mining focuses on selecting hard examples from the
training set, our method actively generates hard examples to
improve network training.

Human pose estimation. With recent advances in Deep
Neural Networks (DNNs), image based human pose estima-
tion has achieved significant progress in the past few years
[4, 35, 15, 28, 22, 11, 17, 40, 3, 24]. DeepPose [37] is one of
the first attempts of using DNNs for human pose estimation.
Tompson et al. [36] used multiple branches of convolutional
networks to fuse the features from an image pyramid, and
used Markov Random Field for post-processing. Chen et
al. [5] also tried to combine the neural networks with the
graphical inference.

Recently, sequential human pose prediction becomes pop-
ular. Especially, Convolutional Pose Machine [40] brings
obvious improvements by cascading multiple networks and
adding intermediate supervisions. Better performance is
achieved by the stacked hourglasses [24], which also does
multi-stage pose estimation. More recent state-of-the-art
mostly built on the stacked hourglasses. Each hourglass is
able to make inference at multiple scales with the bottom-up
and top-down processing. Chu et al. [8] added some layers
into the stacked hourglasses for the attention modeling. Yang
et al. [43] also enhanced its performance using the pyramid
residual modules in it. In this paper, instead of designing
a new network architecture for pose estimation, we intro-
duce an adversarial dynamic data augmentation framework,
that can be applied on existing state-of-the-art methods and
achieve better performance.
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Figure 2: Left: Overview of our approach. We propose an augmentation network to help the training of the target network.
The former creates hard augmentations; the latter learns from generations and produces reward/penalty for model update.
Right: Illustration of the augmentation network. Instead of raw images, it takes hierarchical features of an U-net as inputs.

3. Adversarial Data Augmentation

Given a target network, e.g. a pre-designed human pose
estimator [36], our goal is to improve its training without
looking for more data. As we mentioned, the wildly used
random data augmentations are suboptimal. They are usually
“blindly” sampled from static distributions without consid-
ering the training status of the target network. This may
produce many ineffective samples that are either too hard or
too easy for the target network to learn from.

Instead, we propose to leverage adversarial learning to
jointly optimize data augmentation and network training.
The key idea is to learn an agent G(·|θG) that generates
“hard” augmentations that may increase the target network
loss. The target network D(·|θD), on the other hand, tries to
learn from the adversarial augmentations and, at the same
time, evaluates the quality of the generations. Please refer to
Figure 2 for an overview of our approach.

Generation path. The augmentation network is designed
as a generator. It outputs a set of distributions of augmenta-
tion operations. Mathematically, the augmentation network
G outputs adversarial augmentation τa(·) that may increase
D’s loss, compared with random augmentation τr(·), by
maximizing the expectation:

max
θG

E
x∼Ω

E
τr∼Γ

τa∼G(x,θD)

L[D(τa(x),y)]− L[D(τr(x),y)],

(1)
where Ω is the training image set and Γ is the random aug-
mentation space. L(·, ·) is a predefined loss function and y is
the image annotation. We highlight G(x, θD) to specify that
the generation of G is conditioned to both the input image x
and the current status of the target network D.

Discrimination path. The target network is designed
as a discriminator. It plays two roles: 1) D evaluates the
generation quality as indicated in Equation (1); 2) D tries to
learn from adversarial generations for better performance by

minimizing the expectation:

min
θD

E
x∼Ω

E
τa∼G(x,θD)

L[D(τa(x),y)], (2)

where adversarial augmentation τa can better reflect the
weakness of D than random augmentation τr, resulting in
more effective network training.

Joint training. The joint training of G and D is not a
trivial task. Augmentation operations are usually not differ-
entiable [39], which stops gradients to flow from D to G in
backpropagation. To solve this issue, we propose a reward
and penalty policy to efficiently create online ground truth
of G. So G can be always updated to follow D’s training
status. The details will be explained soon in Section 4.3.

It is crucial thatG generates distributions instead of direct
operations [39] or adversarial pixels [30]. Our experiments
indicate that, by sampling from distributions, the generation
is more robust to outliners which may produce upside-down
augmentations. Thus, there is less chance that D would get
trapped in local optimums yielding training crashes. Besides,
the reward and penalty can be directly applied on distribu-
tions to efficiently update G online.

Comparison with prior methods. There is a sharp dif-
ference between our method and recent adversarial human
pose estimation [6, 7]. They usually follow a common design
that connects a target network (generator) with an additional
network (discriminator) to get auxiliary adversarial loss. In
contrast, we propose to learn adversarial network (genera-
tor) to improve the target network (discriminator), by jointly
optimizing data augmentation and network training.

Our method is also different from others that perform
online hard example mining [38, 32]. We can create novel
samples that might not exist in the dataset, whereas the latter
is usually bound by the dataset. An exception is [39] which
uses GANs to generate deformations for object detection.
However, applying adversarial augmentation for human pose
estimation is still an open question without investigation.
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Figure 3: Adversarial scaling and rotating. Our generator
predicts distributions of mixed Gaussian, from which scaling
and rotating are then sampled to augment the training image.

4. Adversarial Human Pose Estimation
Our task is to improve the training of a pre-designed pose

network. We take the wildly used U-net design [24, 31] as an
example. As illustrated in Figure 2 (right), the augmentation
network follows an encoder architecture. It takes the bridged
features of the U-net as inputs instead of raw images for
efficient training. A set of distributions are then generated to
sample three typical augmentations: scaling, rotating, and
hierarchical occluding. Furthermore, a reward and penalty
strategy is designed for joint training.

4.1. Adversarial Scaling and Rotating
The augmentation network generates hard training sam-

ples by scaling and rotating images. The pose network then
learns from hard augmentations for better testing perfor-
mance. In our experiments, we find that a direct genera-
tion would collapse the training. It is very easy to generate
upside-down augmentations, which is the hardest in most
cases. Instead, we divide the augmentation ranges into m
and n bins (e.g. m = 7 for scaling and n = 9 for rotating).
Each bin is corresponding to a small bounded Gaussian. The
augmentation network will first predict distributions over
scaling and rotating bins. Then, bounded Gaussians are acti-
vated by sampling from distributions. Please refer to Figure
3 for an illustration of the sampling process.

ASR pre-training. It is important to pre-train the aug-
mentation network to obtain a sense of augmentation distri-
butions before the joint training. For every training image,
we can sample totally m× n augmentations, each of which
is drawn from a pair of Gaussian. The augmentation is then
fed forward into the target network to calculate the loss
which represents how “difficult” the augmentation is. We
accumulate m× n losses into the corresponding scaling and
rotation bins. By normalizing the sum of bins to 1, we gen-
erate two vectors of probabilities: P s ∈ Rm and P r ∈ Rn,
which approximate the ground truth of scaling and rotation
distributions, respectively.

Given the ground-truth distributions P s and P r, we pro-

64 x 64
32 x 32

16 x 16
8 x 84 x 4

Pose Network

Scaling Up

Figure 4: Adversarial Hierarchical Occluding. The occlusion
mask is generated at the lowest resolution and then scaled up
to apply on hierarchical bridge features of the pose network.

pose a KL-divergence loss to pre-train the augmentation
network for scaling and rotating:

LSR =

m∑
i=1

P si log
P si
P̃ si

+

n∑
i=1

P ri log
P ri
P̃ ri

, (3)

where P̃ s ∈ Rm and P̃ r ∈ Rn are the predicted distributions
following the above generation procedure. m and n are the
numbers of scale and rotation bins.

Discussions. Predicting distributions instead of direct
augmentations has two advantages. First, it introduces un-
certainties to avoid upside-down augmentations during the
pre-training. Second, it helps to address the issue of miss-
ing ground truth during the joint training, which will be
explained in Section 4.3. In our design, the scaling and rotat-
ing are directly applied on training images instead of deep
features [39]. The reason is we want to preserve the location
correspondence between image pixels and landmark coordi-
nates. Otherwise, we might hurt the localization accuracy
once the intermediate feature maps are disturbed.

4.2. Adversarial Hierarchical Occluding

In addition to scaling and rotating, the augmentation net-
work also generates occluding to make the pose estimation
task “harder”. Human body has a strong structure where
joint locations are highly dependent to each other. By oc-
cluding parts of the image, the pose network is encouraged
to learn better references among visible and invisible joints.

Different from scaling and rotating, we find that it more
effective to occlude deep features instead of image pixels. It
does not have the location correspondence issue since joint
positions are unchanged after the occluding. Specifically, the
augmentation network generates a mask indicating which
part of features to be occluded so that the pose network has
more estimation errors. We only generate the mask at the
lowest resolution of 4 × 4. The mask is then scaled up to
64× 64 to apply on bridge features of the U-net. Figure 4
explains the proposed hierarchical occluding.
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Algorithm 1: Training scheme of a mini batch
Input: Mini-batch X, augmentation net G, pose net D.
Output: G, D.

1 Randomly and equally divide X into X1, X2 and X3;
2 Train D using X1;
3 Train D, G using X2 with ASR following Alg. 2;
4 Train D, G using X3 with AHO following Alg. 2;

AHO pre-training. Similar to scaling and rotating, the
augmentation network predicts an occluding distribution
instead of an instance occluding mask. The first task is to
create the ground truth of the occluding distribution. The
idea is to assign values into a grid of w×h (e.g. w = h = 4).
The value indicates the importance of the features at the
corresponding cell. To achieve this, we vote a joint to one of
the w × h cells according to its coordinates. By counting all
joints from all images and normalizing the sum of cells to
1, we generate a heat map P o ∈ Rw×h, which approximates
the ground truth of the occluding distribution.

Given the ground-truth distribution P o, we propose a
KL-divergence loss to pre-train the AHO task:

LAHO =

h∑
i=1

w∑
j=1

P oi,j log
P oi,j

P̃ oi,j
, (4)

where P̃ o ∈ Rw×h is the heat map predicted by the augmen-
tation network. To generate the occluding mask, we sample
one or two cells according to P̃ o, which are labeled as 0
while the rests are labeled as 1.

Discussions. Intuitively, there are three ways to apply
hierarchical occluding: (1) a single mask scales up from the
lowest to the highest resolutions, (2) a single mask scales
down from the highest to the lowest resolutions, and (3)
independent masks are generated at different resolutions.
We exclusively use the first design in our approach. Since it
would occlude more than needed due to the large receptive
field in the second case, and the occluded information may
be compensated at other resolutions in the third case.

4.3. Joint Training of Two Networks
Once ASR and AHO are pre-trained, we can jointly opti-

mize the augmentation network and the target network. As
we mentioned in Sec. 3, this is a nontrivial task since the
augmentation ground truth is missing. A naive approach
could be repeating the pre-training process as described in
Section 4.1 and Section 4.2 online. However, it would be
extremely time-consuming since there are a large number of
augmentation combinations.

Reward and penalty. Instead, we propose a reward and
penalty policy to address this issue. The key idea is, the
prediction of augmentation network should be updated ac-
cording to the current status of the target network, while its
quality should be evaluated by comparing with a reference.

Algorithm 2: Training scheme of one image.
Input: Image x, augmentation net G, pose net D.
Output: G, D.

1 Forward D to get bridge features f ;
2 Forward G with f to get a distribution P ;
3 Sample an adversarial augmentation x̃ from P ;
4 Forward D with x̃ to compute loss L̃;
5 Random augment x to get x̂;
6 Forward D with x̂ to compute loss L̂;
7 Compare L̃ with L̂ to update G using (3) and (4);
8 Update D;

To this end, we sample a pair of augmentations for each
image: 1) an adversarial augmentation τa and 2) a random
augmentation τr, as indicated in Equation (1). If the ad-
versarial augmentation is harder than the random one, we
reward the augmentation network by increasing the proba-
bility of the sampled bin (ASR) or cell (AHO). Otherwise,
we penalize it by decreasing the probability accordingly.

Mathematically, let P̃ ∈ Rk denotes the predicted distri-
bution of the augmentation network. P ∈ Rk denotes the
ground truth we are looking for. k is the number of bins
(ASR) or cells (AHO) and i is the sampled one.

If the adversarial augmentation τa leads to higher pose
network loss (more “difficult”) comparing with the reference
(a random augmentation τr), we update P by rewarding:

Pi = P̃i + αP̃i; Pj = P̃j −
αP̃i
k − 1

,∀j 6= i. (5)

Similarly, if τa leads to lower pose network loss (less “diffi-
cult”) comparing with τr, we update P by penalizing:

Pi = P̃i − βP̃i; Pj = P̃j −
βP̃i
k − 1

,∀j 6= i, (6)

where 0 < α, β ≤ 1 are hyperparameters that controls the
amount of reward and penalty. The augmentation network
keeps updating online, regardless of being rewarded or pe-
nalized, generating adversarial augmentations that intend to
improve the pose network.

Discussions. The pose network can learns from the or-
dinary random augmentation to maintain its regular per-
formance. More importantly, it can also learns from the
adversarial augmentations to get better performance. If ASR
and AHO are applied on the same image, the adversary may
become too hard for the pose network to learn. Thus, we
alternately use them on different images. Here we equally
split every mini batch into three shares: one is used for the
regular training and the other two are used for ASR and
AHO, respectively. Please check Algorithm 1 for the details.
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Figure 5: Changes of network states during training: augmentation network (Top), adversarial HG (Middle), and ordinary HG
(Bottom). The first two rows show similar shapes which become flatter at last. The last row maintains one shape all the time.

5. Experiments

In this section, we first show the visualization of network
training states to verify the motivation of doing adversarial
dynamic augmentation. Then we quantitatively evaluate the
effectiveness of different components in our method and
further compare with state-of-the-art approaches.

5.1. Experiment Settings

In our experiments, we choose the popular hourglass [24]
as our target network. Our augmentation network takes the
top-down part of a hourglass and only uses one cell module
in each resolution block. To evaluate the generalization ca-
pability of the proposed adversarial augmentation, we tested
two types of modules: Residual module [14] and Dense
block [16]. The dense block is recent approach, that all lay-
ers inside a dense block have direct connections. This makes
the gradients flow smoother. It is worth mentioning that
we are the first to employ dense blocks inside the hourglass
architecture.

Network design. We test both residual hourglass and
dense hourglass in our component evaluation experiments.
For residual hourglass, each residual module has a bottleneck
structure of BN-ReLU-Conv(1x1)-BN-ReLU-Conv(3x3)-
BN-ReLU-Conv(1x1). The input/output dimension of each
bottleneck is 256. The two 1 × 1 convolutions are used to
halve and double the feature dimensions.

For dense hourglass, each module is a bottleneck struc-
ture of BN-ReLU-Conv(1x1)-BN-ReLU-Conv(3x3), with
neck size 4, growth rate 32, and input dimension 128. The
dimension increases by 32 after each dense layer. At the end
of each dense block, we use BN-ReLU-Conv(1x1) to reduce
the dimension to 128. When comparing with state-of-the-art
methods, we use the standard 8 stacked residual hourglasses
[24] as our baseline.

Datasets. We evaluate the proposed adversarial human
pose estimation on two benchmark datasets: MPII Human

Pose [1] and Leeds Sports Pose (LSP) [19]. MPII is col-
lected from YouTube videos with a broad range of human
activities. It has 25K images and 40K annotated persons,
which are split into a training set of 29K and a test set of 11K.
Following [36], 3K samples are chosen from the training set
as validation set. Each person has 16 labeled joints.

The LSP dataset contains images from many sport scenes.
Its extended version has 11K training samples and 1K testing
samples. Each person in LSP has 14 labeled joints. Since
there are usually multiple people in one image, we crop
around each person and resize it to 256x256. Traditionally,
random scaling (0.75-1.25), rotating (-/+30°) and flipping
are used to augment the data.

Training. All the networks are implemented in PyTorch,
and RMSProp [34] is used to optimize the networks. The
adversarial training is divided into three stages. We first train
hourglass for a few epochs with a learning rate 2.5× 10−4.
Then we freeze the hourglass model and use it train the
AHO and ASR networks with learning rate 2.5 × 10−4.
Once they are pre-trained, we lower the learning rates of
AHO and ASR networks to 5 × 10−5 and jointly train the
three networks. The learning rate of hourglass is decayed
to 5 × 10−5 after the validation accuracy plateaus. In all
experiments, the Percentage of Correct Keypoints (PCK)
[44] is used to measure the accuracy.

5.2. Visualization of Training States

In this experiment, we use one residual hourglass and
each resolution block has 3 residual modules. Generally, it
is difficult to directly visualize the internal state of a neural
network. However, in our case, we are interested in knowing
how the hourglass handles human images with three vari-
ations: rotating, scaling and occluding. Since our method
treats these three variations in a similar way, we take rotating
as an example. More specifically, we visualize the losses of
hourglass on images with different rotations.
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Table 1: Comparison of the baseline and our methods on the MPII validation set, using PCKh@0.5 metric.

.

Residual hourglass (size: 38M) Dense hourglass (size: 18M)
Head Sho. Elb. Wri. Hip Knee Ank. Mean Head Sho. Elb. Wri. Hip Knee Ank. Mean

Baseline 97.2 94.8 87.8 83.4 87.8 81.3 76.5 87.0 97.1 94.6 87.9 83.0 87.5 81.2 76.6 86.8
+ASR 97.3 95.2 88.2 84.2 88.2 81.8 77.3 87.5 97.2 95.0 88.3 83.5 87.7 81.8 77.4 87.3
+AHO 97.3 95.0 88.2 83.6 88.0 82.2 77.6 87.4 97.1 94.8 88.2 83.6 87.6 81.7 77.5 87.2
+ASR+AHO 97.3 95.1 88.7 84.7 88.4 82.5 78.1 87.8 97.2 95.2 88.8 84.1 88.1 82.0 77.9 87.6
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Figure 6: Comparison of one hourglass with and without our adversarial augmentation on MPII validation set. Our method
shows consistent improvements over a range of normalized distances, on both residual modules (left) and dense blocks (right).

Ordinary hourglass state. When the hourglass is trained
by ordinary rotating augmentation, as indicated in the last
row in Figure 5, the shape of its losses over different rotations
look like an inverted Gaussian through the training process.
This is because ordinary rotated examples are sampled from
a zero-centered Gaussian distribution.

Adversarial hourglass state. At first, its loss shape is
also like an inverted Gaussian since it is pre-trained by the
ordinary rotating augmentation. However, the shape be-
comes smoother as the training continues. At last, all the
loss decreases and the shape becomes flatter, which means
that it could better handle examples with different rotations.
This benefits from the rotated hard examples dynamically
generated from our augmentation network.

Adversarial augmentation state. The state of our aug-
mentation network could be reflected by its predicted rota-
tion distributions. By comparing the first two rows in Figure
5, we find that shapes of predicted distributions are similar
to the shapes of losses from the adversarial hourglass. This
means that the augmentation network could track the state
of hourglass and further generate beneficial examples.

5.3. Component Evaluation

We first verify the effectiveness of our ASR and AHO
in both residual hourglass and dense hourglass. In residual
hourglass, we use 3 residual bottlenecks in each block. While
in dense hourglass, we use 6 densely connected bottlenecks
in one dense block. However, the size of dense hourlgass
model is still below half of the residual hourlgass. In Table 1,
we compare variants of our approach on PCKh@0.5. Figure
6 shows the improvement of our approach compared with
baseline, on PCKh threshold from 0.1 to 0.5.

ASR only. Table 1 shows that ASR itself improves the
accuracy of all the keypoints on both residual and dense
hourglass, with average improvement of 0.5% and 0.5%
respectively. This indicates that the generated scaled and ro-
tated examples are beneficial for training the pose networks.

AHO only. Table 1 shows that AHO itself also improves
accuracy on both residual and dense hourglass, with average
improvement of 0.4% and 0.4% respectively. This demon-
strates that hourglass model training also benefits from the
occluded examples generated by the AHO.

ASR and AHO. Applying both ASR and AHO further
improves the accuracy by 0.4%, compared with applying
only one of them. This shows that ASR and AHO are com-
plementary to each one. Figure 6 shows that ASR and AHO
significantly boost the accuracy of the most challenging
keypoints, e.g. ankle, knee and wrist, on a wide range of
normalized distances.

Dense hourglass vs Residual hourglass. Table 1 also
shows that residual hourglass and dense hourglass have
equivalent accuracy, while the former one is twice bigger
(38M vs 18M). This shows a big advantage of the dense
blocks, which gives equivalent performance with much fewer
parameters. The gradients in the dense hourglass propagate
more effectively through the direct connections. Thus, it
could learn better with much fewer parameters.

5.4. Comparing with State-of-the-art Methods

Quantitative comparison. To compare with other ap-
proaches on the human pose estimation, we train our model
on top of the 8 stacked hourglasses in [24]. The bridge fea-
tures from the first hourglass are used as input of both ASR
and AHO networks. The same hierarchical dropout masks
are applied to all the hourglasses. Table 2 gives the compari-
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Figure 7: Qualitative comparison between stacked HGs (top, totally 8 modules are stacked) and our method (bottom). Clear
improvements can be spotted on challenging joints (e.g. ankle, elbow, wrist), as well as left-right confusion.

son on MPII dataset on PCKh@0.5. Our approach outper-
forms the baseline [24] by 0.6% and achieves state-of-the-art
performance. Table 3 shows the PCKh@0.2 comparison on
LSP dataset. Our method achieves state-of-the-art accuracy
94.5%, improving the baseline by 1.5%.

Qualitative Comparison. Figure 7 gives some qualita-
tive comparisons produced by the 8 stacked hourlgasses [24]
trained with the ordinary and adversarial augmentations. The
figures show where the adversarial augmentation improves
the baseline. The pose network becomes more robust to
occlusions after adding the adversarial augmentation. Inter-
estingly, the adversarial hourglass could handle the left-right
confusions more effectively.

Table 2: PCKh@0.5 on the MPII test set. Our adversarial
data augmentation improves baseline stacked HGs(8) [24].

Method Head Sho. Elb. Wri. Hip Knee Ank. Mean
Pishchulin et al.[27] 74.3 49.0 40.8 34.1 36.5 34.4 35.2 44.1
Tompson et al.[36] 95.8 90.3 80.5 74.3 77.6 69.7 62.8 79.6
Carreira et al.[4] 95.7 91.7 81.7 72.4 82.8 73.2 66.4 81.3
Tompson et al.[35] 96.1 91.9 83.9 77.8 80.9 72.3 64.8 82.0
Hu et al.[15] 95.0 91.6 83.0 76.6 81.9 74.5 69.5 82.4
Pishchulin et al.[28] 94.1 90.2 83.4 77.3 82.6 75.7 68.6 82.4
Lifshitz et al.[22] 97.8 93.3 85.7 80.4 85.3 76.6 70.2 85.0
Gkioxary et al.[11] 96.2 93.1 86.7 82.1 85.2 81.4 74.1 86.1
Rafi et al.[29] 97.2 93.9 86.4 81.3 86.8 80.6 73.4 86.3
Belagiannis et al.[2] 97.7 95.0 88.2 83.0 87.9 82.6 78.4 88.1
Insafutdinov et al.[17] 96.8 95.2 89.3 84.4 88.4 83.4 78.0 88.5
Wei et al.[40] 97.8 95.0 88.7 84.0 88.4 82.8 79.4 88.5
Bulat et al.[3] 97.9 95.1 89.9 85.3 89.4 85.7 81.7 89.7
Chu et al.[8] 98.5 96.3 91.9 88.1 90.6 88.0 85.0 91.5
Stacked HGs(8) [24] 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9
Ours: +ASR+AHO 98.1 96.6 92.5 88.4 90.7 87.7 83.5 91.5

6. Conclusion
In the paper, we have proposed the adversarial data aug-

mentation modeled as a reversed generative adversarial learn-

Table 3: PCK@0.2 on the LSP dataset. Clear improvements
are observed over the baseline stacked HGs(8) [24].

Method Head Sho. Elb. Wri. Hip Knee Ank. Mean
Belagiannis et al.[2] 95.2 89.0 81.5 77.0 83.7 87.0 82.8 85.2
Lifshitz et al.[22] 96.8 89.0 82.7 79.1 90.9 86.0 82.5 86.7
Pishchulin et al.[28] 97.0 91.0 83.8 78.1 91.0 86.7 82.0 87.1
Insafutdinov et al.[17] 97.4 92.7 87.5 84.4 91.5 89.9 87.2 90.1
Wei et al.[40] 97.8 92.5 87.0 83.9 91.5 90.8 89.9 90.5
Bulat et al.[3] 97.2 92.1 88.1 85.2 92.2 91.4 88.7 90.7
Chu et al.[8] 98.1 93.7 89.3 86.9 93.4 94.0 92.5 92.6
Stacked HGs(8) [24] 98.2 94.0 91.2 87.2 93.5 94.5 92.6 93.0
Ours: ASR+AHO 98.6 95.3 92.8 90.0 94.8 95.3 94.5 94.5

ing problem. An effective training scheme with the reward
penalty policy is given to jointly optimize the target network
and the augmentation network. We apply the adversarial
data augmentation to human pose estimation and design the
adversarial scaling and rotation as well as the adversarial
hierarchical occluding to boost existing pose estimators. Ex-
periments on the benchmarks show clear improvements over
the baselines and state-of-the-art performances.
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