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Abstract

Weakly supervised object detection has attracted exten-
sive research efforts in recent years. Without the need of
annotating bounding boxes, the existing methods usually
follow a two/multi-stage pipeline with an online compul-
sive stage to extract object proposals, which is an order of
magnitude slower than fast fully supervised object detec-
tors such as SSD [31] and YOLO [34]. In this paper, we
speedup online weakly supervised object detectors by or-
ders of magnitude by proposing a novel generative adver-
sarial learning paradigm. In the proposed paradigm, the
generator is a one-stage object detector to generate bound-
ing boxes from images. To guide the learning of object-level
generator, a surrogator is introduced to mine high-quality
bounding boxes for training. We further adapt a structural
similarity loss in combination with an adversarial loss into
the training objective, which solves the challenge that the
bounding boxes produced by the surrogator may not well
capture their ground truth. Our one-stage detector outper-
forms all existing schemes in terms of detection accuracy,
running at 118 frames per second, which is up to 438×
faster than the state-of-the-art weakly supervised detectors
[8, 30, 15, 27, 45]. The code will be available publicly soon.

1. Introduction
Weakly supervised object detection (WSD) has attracted

extensive attention in the recent years [8, 28, 45, 10, 49, 27].
A significant advantage of WSD lies in removing the ne-
cessity of labor-intensive annotation of object bounding
boxes. Instead, it exploits image-level annotations that are
widely available from the Internet. To take advantage of
such image-level weak supervision, most previous methods
[49, 8, 45] use a Multiple Instance Learning (MIL) pipeline.
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Figure 1: Comparison between the classic weakly super-
vised detectors and our method. The typical frameworks
employ a Multiple-Instance Learning paradigm, and are
two/multi-stage detectors during training and testing. Our
method adopts a Generative Adversarial Learning paradigm
to train a generator G, a discriminator D and a surrogator
F with only image-level supervision. During online infer-
ence, the generator G makes a one-stage detection without
proposals object directly from images, which is very fast.

In this pipeline, object proposals in an image are treated
as instances to form a bag, whose labels are assigned from
the corresponding image-level annotations. The objective
is then to estimate the probability of the instances contain-
ing a given object. The above pipeline has two key draw-
backs: Firstly, instances are considered independent when
obtaining foreground proposals. The correlation among in-
stances is typically ignored and the optimization might con-
verge to an undesirable local minimum [2]. Secondly, the
existing methods follow a two/multi-stage process in detec-
tion, making the corresponding inference inefficient. Partic-
ularly, it requires to first extract object proposals [46, 55, 3],
and thus cannot be applied to real-time applications. In ad-
dition, the image is typically augmented with five scales and
horizontal flips [8, 28] in both training and testing, which
further increases the online computation complexity signif-
icantly, sometimes to an order of magnitude.



In order to overcome the above limitations, in this paper,
we train fast object detector for online WSD. Our goal is to
achieve comparable speed to the state-of-the-art fast fully
supervised detectors such as YOLO [35] or SSD [31], with
comparable (or even better) detection accuracy. In particu-
lar, we utilize one-stage process in online detection, which
discards the necessity of object proposals. We achieve this
goal by proposing a novel Generative Adversarial Learning
(GAL) paradigm, termed Generative Adversarial Learning
Towards Fast Weakly Supervised Detection (GAL-fWSD),
which regards the inference of WSD as a generative pro-
cess, supervised by a discriminator. In particular, a dis-
criminator D learns to distinguish the “real” distribution of
bounding boxes from the “fake” distribution, while a gener-
ator G learns to fool D by detecting high-quality bounding
boxes from images. Two specific designs are introduced:

First, since WSD does not have annotations of the
ground-truth bounding boxes, we introduce a surrogator
module F to mine promising bounding boxes from train-
ing data with only image-level annotations. It addresses the
difficulty of modeling individual instances with only global
labels. This pivotal module aggregates responses of individ-
ual object proposals to estimate a probabilistic distribution,
which is then used to refine the proposals to train G.

Second, to address the drawback of low efficiency, the
learned generator G is directly leveraged as a one-stage
detector. To the best of our knowledge, this is the first
attempt to learn genuine one-stage object detectors in a
weakly supervised setting. As known in object detectors
like SSD [31] and YOLO [35], one-stage detection is faster
and simpler, but requires object-level annotations for train-
ing, which is traditionally infeasible in WSD.

The proposed GAL-fWSD framework is shown in Fig. 1.
It works by iteratively learning a surrogator F to mine the
object proposals of foreground categories, as well as learn-
ing a one-stage detector G to emulate F . The above pro-
cedure is supervised by a discriminator D. Besides the ad-
versarial loss, we further introduce a structural similarity
loss to encourage G to not only fool the discriminator D
but also replicate the output of surrogator F , as inspired by
GAN based image-to-image translation [24, 29, 53]. Mean-
while, the F module also augments its proposals with those
generated by G to provide high-quality estimation of the
distribution for ground-truth bounding boxes. At the test
time, we only use the learned detector G for inference.

The contributions of this work are three folds:

• We propose a framework to adopt Generative Adver-
sarial Learning to train fast detectors with only image-
level annotation. To the best of our knowledge, this is
the first attempt to formulate WSD using GAL instead
of the traditional MIL paradigm.

• We propose to introduce a one-stage detector in WSD,

instead of the traditional two/multi-stage detector. We
achieve significant runtime speedup while maintaining
comparable or better detection accuracy.

• To overcome the unavailability of ground-truth bound-
ing boxes in training, we further propose to combine
a structural similarity loss with an adversarial loss to
train the generator network.

We present detailed evaluations on PASCAL VOC 2007,
2010 and 2012 [16], with comparison to several state-of-
the-art methods [8, 28, 45, 30, 27, 15]. Experiment re-
sults demonstrate that our method processes an image of
300× 300 size with astounding 118 frames per second (i.e.,
up to 438× faster than the state-of-the-art WSD in the lit-
erature), while still surpassing the detection accuracy of
above methods. Using a larger 512×512 input, our method
achieves even better accuracy, while can still perform real-
time detection.

2. Related Work
Weakly Supervised Detection. Weakly supervised ob-

ject detection has been widely studied in the past decade,
which typically uses a two/multi-stage pipeline, i.e., object
proposal generation, feature extraction and proposal classi-
fication. Cinbis et al. [10] presented a multi-fold multiple
instance learning approach, which avoids the performance
degeneration in object localization. Wang et al. [47] uti-
lized a probabilistic Latent Semantic Analysis (pLSA) to
learn latent categories. The category containing target ob-
ject class is selected by evaluating the discrimination score
of each latent category. Bilen et al. [7] proposed to couple
a smooth discriminative learning procedure with a convex
clustering algorithm, which searches for a small set of ex-
emplars to describe training data. Wang et al. [49] relaxed
the highly combinatorial MIL optimization problem into a
convex program and optimized it using stochastic gradient
descent. Bazzani et al. [5] masked out regions of an image
provided as input to a deep neural network, then embedded
the drop of recognition score caused by masking out into an
agglomerative clustering, which was used to merge regions
for object localization.

In recent years, many WSD methods [8, 28, 45] have
been proposed to learn end-to-end models with object pro-
posals extracted from images. Bilen et al. [8] proposed
a two-stream end-to-end CNN architecture. Kantorov et
al. [28] further proposed to add a contrast-based contex-
tual stream to form a three-stream CNN architecture. Tang
et al. [45] integrated the basic multiple instance detection
and multi-stage instance classification into a single network.
Two-stage fully supervised detectors are also well investi-
gated in weakly supervised setting [30, 27, 15]. Li et al.
[30] presented a progressive domain adaptation approach



Figure 2: The proposed framework contains three modules during training. First, the generator G generates object bounding
boxes in the given images. Second, the surrogator F estimates the distributions of bounding boxes from the given images and
the corresponding image-level annotations. Third, the discriminator D distinguishes whether the images and distributions of
bounding boxes are “real” (which is based on surrogator F ) or “fake” (which comes fromG). During inference, the generator
G is used to detect objects one-stage from the input image.

with both classification adaptation and detection adaptation.
Jie et al. [27] also learned a multi-label classification at the
first step, followed by online supportive sample harvesting
(augmented with a relative CNN score improvement metric)
to detect object proposals to learn Fast RCNN [17]. Diba
et al. [15] utilized a three-stage cascade model that incor-
porates localization, multiple instance learning and weakly
supervised object segmentation to mine foreground propos-
als.

All above WSD methods require object proposals [46,
55, 3] to be generated in online inference. Despite such
two-stage setting, some approaches [52, 54, 20, 50] pro-
posed to localize objects without using explicit proposals.
In those methods, response (or activation) map for each cat-
egory was computed and then converted to a binary map,
base on which bounding boxes are extracted. However, it
is hard to estimate to what extend the objects are occluded
mutually. Further more, those methods are still multi-stage
detectors, as they require extra steps to extract bounding
boxes. To our knowledge, no previous work has explored
adapting one-stage detectors for WSD, since such one-stage
detection like SSD [31] and YOLO [35] all require high-
quality ground-truth object annotation for offline training.

Fast Object Detection. To speedup online inference,
a natural choice is to decrease the proposal-wise subnet-
work and increase the shared convolutional subnetwork.
For example, R-CNN [18] had no shared convolutional
layer, which made it very slow. In contrast, Faster R-CNN
[36] shared most of the convolutional layer, which largely
speedups from R-CNN. R-FCN [12] further removed all
proposal-wise layers, which made it faster, but still required
a time-consuming proposal feature pooling layer. Although
SSD [31] had more than 8, 000 default boxes, it has neither

proposal-wise layers nor proposal pooling layers, which
makes it fastest among the above detectors. Institutionally,
the network architecture also impacts the inference time.
For example, Kantorov et al. [28] used Alex-Net [1] as
backbone to reduce the network processing time. However,
such a small network may hurt the accuracy.

Generative Adversarial Network. GAN was originally
proposed by Goodfellow et al. [19] for synthesizing high-
quality images. Recent efforts [9, 51, 33, 4, 21] are made to
improve the stability of GAN in training. GAN has achieved
impressive results in image generation [33], representation
learning [37], style transfer [53] and image super-resolution
[29]. However, there are very limited works that com-
bine object detection and generative adversarial learning to-
gether. Wang et al. [48] utilized adversarial training to mine
hard positive examples with different occlusions and defor-
mations to train detectors. Contradictory from the above
works, we adopt the generative adversarial learning to gen-
erate high-quality bounding boxes, which innovatively ap-
proximating the estimated distribution of bounding boxes
for WSD.

3. The Proposed Method

3.1. Generative Adversarial Learning for Fast WSD

Typical fast one-stage object detectors are learned to fit
the ground-truth bounding boxes of object instances. When
turning to WSD, the annotation of object bounding boxes is
not unavailable, and what we have is only the image-level
annotation. For fast WSD, one usual solution is to train
the object detector to fit the estimated bounding boxes to
approximate the ground-truth ones. Nevertheless, conven-
tional classification/regression losses [18, 17, 31, 34] are de-



Figure 3: The network architecture of surrogator F .

fined on the ground-truth bounding boxes, and cannot cap-
ture the distribution pb of the estimated bounding boxes.

Inspired by the recent work that used GAN to estimate
generative models [19], we introduce an adversarial loss on
the distribution of bounding boxes (described by location,
size, and category), which enables the learning of detectors
from only image-level annotations. As illustrate in Fig. 2,
our key innovation lies in a novel Generative Adversarial
Learning paradigm toward Fast Weakly Supervised Detec-
tion (GAL-fWSD). In the training stage, GAL-fWSD alter-
nates between: (i) a discriminator D is introduced to dis-
tinguish the generated bounding boxes from the estimated
ones, and (ii) the generator is updated to generate more
high-quality bounding boxes to imitate the distribution pb.
Moreover, as explained in the following subsection, a struc-
tural similarity loss is further incorporated with adversarial
loss to guide the learning of generator.

Another critical issue in GAL-fWSD is the estimation
of bounding boxes based on image-level annotation. Here
we present a surrogator F to estimate accurate proposals.
In particular, the generator G is very fast without the need
of object proposal, and it is our final detector to perform
fast online detection, while the surrogator F is developed
based on the slow but accurate proposals, both of which are
mutually reinforced in the following Generative Adversarial
Learning framework.

3.2. Model Architecture

GeneratorG. Give an image x,G outputs object bound-
ing boxes Gl(x) with the associated probability Gc(x) and
implicitly defines a probability distribution pg . We utilize
a one-stage proposal-free detector introduced in [31] as G.
The reason of not using the more popular two-stage detec-
tors is these detectors usually have an explicit object pro-
posal stage, which either produces determined bounding
boxes independent of object categories [46, 55, 3], or re-
quires a complicated network structure [36]. The former ap-
proach restricts G from having sufficient diversity to model
the distribution of bounding box pb. And the latter approach
closely couples proposal extractors with detectors, which
makes the architecture complicated. On the contrary, one-
stage detectors have the potential to be faster and simpler.

We briefly describe G below. In one-stage detectors,
multiple feature maps at the top of network are used for
prediction. Different feature map has different receptive

fields, which allows to detect different scale of objects in
the images. Each cell on feature map is associated to a set
of default bounding boxes with different scales and aspect
ratios implicitly. The detectors predict per-category scores
of default bounding boxes, which indicate the presence of a
category instance in each of those boxes. Then, regression
is done to fit the bounding boxes tighter around the instance.
Predictors in high-level feature maps are responsible for de-
tecting large objects and vice versa, as illustrate in Fig. 2.
More details can be found in [31].

Discriminator D. The discriminator D is designed to
provide high-quality guidance to supervise G. Intuitively,
it is a deep convolutional network whose inputs are an im-
ages x and bounding boxes {bi}. In detail, VGG16 [41] is
applied to obtain feature map φ(x) from its last convolution
layer. Then the original fully-connected layers are adapted
to take the feature map φ(x), normalized coordinates and
probability of bounding boxes {bi} as inputs and output one
entry, followed by a sigmoid layer to compute the probabil-
ity that bounding boxes {bi} are high-quality for image x.
This network is optimized to distinguish pb and pg using
stochastic gradient descent with backpropagation.

Surrogator F . We use object-aware spatial information
to refine the proposals, which is a variation of the method
proposed in [8] by using object-aware spatial information
to rectify proposals. As show in Fig. 3, F is a three-stream
deep network. The proposal feature from the SPP layer [22]
is forked into two streams, i.e., classification stream and de-
tection stream. Suppose we have C categories and R object
proposals {p1 . . . pR}, the two streams produce two score
matrices xc, xd ∈ RR×C by two fully-connected layers,
respectively. Both score matrices are normalized by soft-
max functions over categories and proposals, respectively:

[σ(xc)]ij = e
xc
ij∑C

k=1 ex
c
ik

and [σ(xd)]ij = e
xd
ij∑R

r=1 e
xd
rj

. Then,

the element-wise product of the output of the two streams
is again a score matrix: xs = σ(xc) · σ(xd). To acquire
image-level classification scores, a sum pooling is further
applied: yk =

∑R
r=1 x

s
rk. Note xs is calculated based on

local information of each individual proposal. Therefore,
the relationship between different proposals from the same
image is abnegated and the learning process may converge
to an undesirable local minimum. To handle this, a response
mapMk for category k is obtained by back-propagating the
image-level classification score yk to pixels. As the image-
level classification score is the sum of individual proposal
scores, it is equivalent to back-propagating the score of each
proposal to image pixels, which forms response maps that
reveal the shape of objects.

To generate the output of the third stream, a rectifier is
further defined based on the contrast between responses of
a proposal and its contextual region: xrrk = ρrk − ρcrk,
where the first term ρrk estimates the response of each pro-



posal: ρrk =
1√
|pr|

∑
i,j∈pr

1[Mk
ij ≥ γ · maxMk], and

the second term ρcrk estimates the contextual response of
each proposal as ρrk.

The final score of each proposal is obtained by taking the
element-wise product on the output of the three streams:
xg = σ(xc) · σ(xd) · xr. Thus, the estimation xs of the
original proposal score is rectified by the output of the third
stream xr, leading to xg .

3.3. The Model Objective

We combine the adversarial objective function LGAN
with a structural similarity function LSTR:

L = LGAN + λLSTR, (1)

where λ is the weight associated with second loss term.
Adversarial Loss. The objective function of generative

adversarial learning is formulated as:

min
G

max
D
LGAN =

∑
x,b∼pdata(x,b)

[
log
(
D(x, b)

)]
+

∑
x∼pdata(x)

[
log
(
1−D

(
x,G(x)

))]
,

(2)
where pdata(x, b) denotes the bivariate distribution of images
and the corresponding object bounding boxes. In particular,
we consider a discriminator D (to distinguish which distri-
bution the bounding boxes come from), and a generator G
(to provide bounding boxes to fool the discriminator D).
The distribution of object bounding boxes pdata(x, b) is es-
timated by the surrogator F from the distribution of object
proposals p. Such distribution can be obtained by running
the existing algorithms such as [46, 55, 3]. We further have
b = F (x, p) in Eq. 2. It’s worth noting that, although a
bounding box b and an object proposal pmay have the same
coordinate, b is associated with a probabilistic distribution
among multiple categories while p is only related with a
category-less object proposal. To this end, we separate the
objective function LGAN to optimize the D and G, respec-
tively:

D∗ = argmax
D

∑
x,p∼pdata(x,p)

[
log
(
D
(
x, F (x, p)

))]
+

∑
x∼pdata(x)

[
log
(
1−D

(
x,G(x)

))]
,

(3)
G∗ = argmin

G

∑
x∼pdata(x)

[
log
(
1−D

(
x,G(x)

))]
. (4)

For each object category, the surrogator F aims to translate
a distribution from pp to pb. If pb approximates the ground-
truth distribution well, the discriminator is able to provide
high-quality supervision to improve G.

The above formulation encourages the detector, i.e., gen-
erator G, to match the distribution of object bounding
boxes. It differs from previous works that forced the detec-
tors to fit just one discriminative bounding box per instance.
In contrast, the generator G implicitly defines a probabil-
ity distribution pg . Then, G and D will reach a joint opti-
mal [19] when the generative model perfectly replicates the
bounding boxes distribution pb, i.e., pb = pg 1 .

Structural Similarity Loss. We further introduce a
structural similarity loss, which forces G to model not only
pb of the entire data, but also the bounding box patterns of
individual images. We first match each bounding box gen-
erated by G to the bounding boxes from F with the best
Jaccard overlap. For k-th category, W k

ij = {1, 0} is de-
fined as the indicator for matching the i-th bounding boxes
from G to the j-th from F . If the category of highest con-
fidence score of bounding boxes from F is the background,
the matched bounding boxes from G are treated as nega-
tive samples, and vice versa. The corresponding similarity
function LSTR is defined as:∑

x,p∼pdata(x,p)

[
Lconf

(
F c(x, p), Gc(x)

)
+

αLloc
(
F c(x, p), F l(x, p), Gl(x)

)]
,

(5)

where F c(x, p) and F l(x, p) are the probability and co-
ordinates of F (x, p), respectively, which are similar for
Gc(x, z), Gl(x) and G(x). The first term of Eq. 5 mea-
sures the probability similarity of bounding boxes between
G(x) and F (x, p), which is specified as:

Lconf(T, S) =−
∑
i=1

∑
j∈Pos

∑
k=1

TikW
k
i,j log(Sjk)

−
∑
i=1

∑
j∈Neg

∑
k=1

(1− Ti0) log(Sj0),
(6)

where Tik and Ti0 denote the estimated probabilities of the
i-th bounding box for category k and the background, re-
spectively, which are similar for Sjk and Sj0.

The second term in Eq. 5 is localization similarity loss:

Lloc(T,U, V ) =
∑
i=1

∑
j∈Pos

∑
k=1

TikW
k
ijsmoothL1(Ui − Vj),

(7)
where Ui = {Ux

i , U
y
i , U

w
i , U

h
i } denotes the coordinates

of the i-th bounding box, similar to Vj . The function
smoothL1(Z) is similar to the regression loss as in [17]:

smoothL1(Z) =
∑

m∈{x,y,w,h}

{
0.5(Zm)2 if |Zm| < 1
|Zm| − 0.5 otherwise .

(8)
1 Note that a distortion operation is applied to images, which increases

the diversity of bounding boxes from the generator G. As simulated to
human annotators, we expect the generator to be able to produce notably
different object bounding boxes given an image.



The weighting term α is set to 1 as in [31].
Then the full objective function can be reformulated as:

L = LGAN + λLSTR

=
∑

x,p∼pdata(x,p)

[
log
(
D
(
x, F (x, p)

))
+

λ
{
Lconf

(
F c(x, p), Gc(x)

)
+

αLloc
(
F c(x, p), F l(x, p), Gl(x)

)}]
+∑

x∼pdata(x)

[
log
(
1−D

(
x,G(x)

))]
.

(9)
Feedback Mechanism. The surrogator F is not fixed

during training, which is instead updated iteratively with D
and G. At each step, we first update D, then G, similar to
the vanilla GAN [19]. To update F , we first merge the orig-
inal objectness proposals with the bounding boxes gener-
ated byG, then F is updated with the augmented proposals.
Therefore, all function F (x, p) in Eq. 9 are reformulated as
F (x, {p,Gl(x)}). Although the bounding boxes generated
byG are category-specific, we treat them as object proposal
for simplicity.

During training, G feedbacks high-quality bounding
boxes to improve the performance of F , which in turn pro-
vides high-quality estimation of distribution pb to improve
G through LGAN and LSTR (implicitly or explicitly). With
such feedback, G is capable to learn unknown distribution
of bounding boxes, which is estimated by F from an al-
terable set of object proposals. If G generates high-quality
bounding boxes, Gl(x) may dominate the distribution of
F (x, {p,G(x)}), i.e., average of F c(x,G(x)) is higher than
that of F c(x, p). From this perspective, the G also fools F ,
as G provides higher-quality bounding boxes than the orig-
inal proposals.

4. Experiment
4.1. Experimental Setup

Datasets. We conduct experiments on PASCAL VOC
2007, 2010 and 2012 [16], which are commonly used in
object detection. PASCAL VOC 2007 consists of 2, 501
training images, 2, 510 validation images, and 4, 092 test
images over 20 categories. PASCAL VOC 2010 consists of
4, 998 training images, 5, 105 validation images, and 9, 637
test images over 20 categories. PASCAL VOC 2012 con-
sists of 5, 717 training images, 5, 823 validation images, and
10, 991 test images over 20 categories. We use both train
and validation splits as our training sets, and the test split as
our test set. As we focus on weakly supervised detection,
only image-level labels are used in training.

Evaluation Protocols. First, we evaluate the mean aver-
age precision (mAP) on the test set following the standard

PASCAL VOC protocol [16]. Second, because PASCAL
VOC actually has object-level annotation, we compute Cor-
Loc [14] on the training set. CorLoc is a metric to evaluate
object localization. It computes the percentage of images
in which a method correctly localizes an object of the tar-
get category. Following [16], a bounding box is considered
correct if it has at least 0.5 intersection-over-union with any
ground truth bounding boxes of the target category.

Implementation Details. We use VGG16 [41] pre-
trained on ImageNet [13] as the backbone for all modules,
i.e., D, G and F . Pre-training on ImageNet classification
data [13] does not require bounding box annotations. We
set the parameter λ = 10−3. To obtain a good initialization
for G, we first train F with the original objectness propos-
als from [3] with a learning rate of 10−3. Then we itera-
tively update the above models. At each step, we train D
for 1, 000 iterations using stochastic gradient descent with
a learning rate of 10−3, momentum of 0.9, weight decay of
0.005, minibatch size of 128, while a minibatch size of 32
is used to train G. To train F , we keep the same setting as
D for 40 iterations, which is about a epoch of VOC 2007
training set. We set the rest hyper-parameters of G and F
following respective papers [31, 8]. To trade-off speed and
accuracy, we use two difference input sizes: 300× 300 and
512 × 512 for G. Our implementation is done using Caffe
[25]

4.2. Comparison to State-of-the-Arts

Tab. 1 shows our results on PASCAL VOC 2007 test split
in termed of mAP. The low-resolution version, i.e., GAL-
fWSD300, is already more accurate than the state-of-the-
art methods. Note that 300 × 300 is the lowest resolution
of input in Tab. 1. When we train GAL-fWSD on a larger
512 × 512 input size, it further surpasses the state-of-the-
arts [8] and [15] by 12.7% and 4.7% mAP, respectively.
We want to point out that most methods in Tab. 1 used a
multi-scale setting during training and testing, and their in-
put resolution of the max scale is far larger than ours. Our
performance can be further improved by using the context
information [28], size estimation [39] and the ensemble of
multiple networks [44]. GAL-fWSD shows large improve-
ment for categories with deformable parts, for example,
bird, dog, cat, and person. All alternative methods did not
perform well in the person category, whose mAPs are all
≤ 20.3%. Our GAL-fWSD300 achieves 81.3% improve-
ment compared to [11] for person category. However, our
modes are not good at detecting horse. By using the detec-
tion analysis tool [23], we find that most false positives are
due to poor localization.

Tab. 2 shows our results on the PASCAL VOC 2007
training set in termed of CorLoc. Our two models con-
sistently boost the performance by 11.4% and 9.4%, re-
spectively, compared to [15]. It indicates that our model



Table 1: Detection comparisons to the state-of-the-art methods on PASCAL VOC 2007 test set in terms of AP(%).

Method aero bike bird boat btl bus car cat chair cow table dog horse mbike pers plant sheep sofa train tv Av.

Song et al.’14 [43] 27.6 41.9 19.7 9.1 10.4 35.8 39.1 33.6 0.6 20.9 10.0 27.7 29.4 39.2 9.1 19.3 20.5 17.1 35.6 7.1 22.7
Wang et al.’14 [47] 48.9 42.3 26.1 11.3 11.9 41.3 40.9 34.7 10.8 34.7 18.8 34.4 35.4 52.7 19.1 17.4 35.9 33.3 34.8 46.5 31.6
Cinbis et al.’15 [11] 39.3 43.0 28.8 20.4 8.0 45.5 47.9 22.1 8.4 33.5 23.6 29.2 38.5 47.9 20.3 20.0 35.8 30.8 41.0 20.1 30.2
Bilen et al.’16 [8] 39.4 50.1 31.5 16.3 12.6 64.5 42.8 42.6 10.1 35.7 24.9 38.2 34.4 55.6 9.4 14.7 30.2 40.7 54.7 46.9 34.8
Bency et al.’16 [6] - - - - - - - - - - - - - - - - - - - - 25.7
Li et al.’16 [30] 54.5 47.4 41.3 20.8 17.7 51.9 63.5 46.1 21.8 57.1 22.1 34.4 50.5 61.8 16.2 29.9 40.7 15.9 55.3 40.2 39.5
Kantorov et al.’16 [28] 57.1 52.0 31.5 7.6 11.5 55.0 53.1 34.1 1.7 33.1 49.2 42.0 47.3 56.6 15.3 12.8 24.8 48.9 44.4 47.8 36.3
Jie et al.’17 [27] 52.2 47.1 35.0 26.7 15.4 61.3 66.0 54.3 3.0 53.6 24.7 43.6 48.4 65.8 6.6 18.8 51.9 43.6 53.6 62.4 41.7
Tang et al.’17 [45] 58.0 62.4 31.1 19.4 13.0 65.1 62.2 28.4 24.8 44.7 30.6 25.3 37.8 65.5 15.7 24.1 41.7 46.9 64.3 62.6 41.2
Shi et al.’17 [38] – – – – – – – – – – – – – – – – – – – – 33.8
Diba et al.’17 [15] 49.5 60.6 38.6 29.2 16.2 70.8 56.9 42.5 10.9 44.1 29.9 42.2 47.9 64.1 13.8 23.5 45.9 54.1 60.8 54.5 42.8

GAL-fWSD300 52.0 60.5 44.6 26.1 20.6 63.1 66.2 65.3 15.0 50.1 52.8 56.7 21.3 63.4 36.8 22.7 47.9 51.7 68.9 54.1 47.0
GAL-fWSD512 58.4 63.8 45.8 24.0 22.7 67.7 65.7 58.9 15.0 58.1 47.0 53.7 23.8 64.3 36.2 22.3 46.7 50.3 70.8 55.1 47.5

Table 2: Localization comparisons to the state-of-the-art methods on PASCAL VOC 2007 training set in terms of CorLoc(%).

Method aero bike bird boat btl bus car cat chair cow table dog horse mbike pers plant sheep sofa train tv Av.

Siva et al.’12 [42] 45.8 21.8 30.9 20.4 5.3 37.6 40.8 51.6 7.0 29.8 27.5 41.3 41.8 47.3 24.1 12.2 28.1 32.8 48.7 9.4 30.2
Shi et al.’13 [40] 67.3 54.4 34.3 17.8 1.3 46.6 60.7 68.9 2.5 32.4 16.2 58.9 51.5 64.6 18.2 3.1 20.9 34.7 63.4 5.9 36.2
Wang et al.’14 [47] 80.1 63.9 51.5 14.9 21.0 55.7 74.2 43.5 26.2 53.4 16.3 56.7 58.3 69.5 14.1 38.3 58.8 47.2 49.1 60.9 48.5
Cinbis et al.’15 [11] 65.3 55.0 52.4 48.3 18.2 66.4 77.8 35.6 26.5 67.0 46.9 48.4 70.5 69.1 35.2 35.2 69.6 43.4 64.6 43.7 52.0
Wang et al.’15 [49] 37.7 58.8 39.0 4.7 4.0 48.4 70.0 63.7 9.0 54.2 33.3 37.4 61.6 57.6 30.1 31.7 32.4 52.8 49.0 27.8 40.2
Bilen et al.’16 [8] 65.1 58.8 58.5 33.1 39.8 68.3 60.2 59.6 34.8 64.5 30.5 43.0 56.8 82.4 25.5 41.6 61.5 55.9 65.9 63.7 53.5
Li et al.’16 [30] 78.2 67.1 61.8 38.1 36.1 61.8 78.8 55.2 28.5 68.8 18.5 49.2 64.1 73.5 21.4 47.4 64.6 22.3 60.9 52.3 52.4
Kantorov et al.’16 [28] 83.3 68.6 54.7 23.4 18.3 73.6 74.1 54.1 8.6 65.1 47.1 59.5 67.0 83.5 35.3 39.9 67.0 49.7 63.5 65.2 55.1
Jie et al.’17 [27] 72.7 55.3 53.0 27.8 35.2 68.6 81.9 60.7 11.6 71.6 29.7 54.3 64.3 88.2 22.2 53.7 72.2 52.6 68.9 75.5 56.1
Zhu et al.’17 [54] 85.3 64.2 67.0 42.0 16.4 71.0 64.7 88.7 20.7 63.8 58.0 84.1 84.7 80.0 60.0 29.4 56.3 68.1 77.4 30.5 60.6
Tang et al.’17 [45] 81.7 80.4 48.7 49.5 32.8 81.7 85.4 40.1 40.6 79.5 35.7 33.7 60.5 88.8 21.8 57.9 76.3 59.9 75.3 81.4 60.6
Shi et al.’17 [38] – – – – – – – – – – – – – – – – – – – – 59.5
Diba et al.’17 [15] 83.9 72.8 64.5 44.1 40.1 65.7 82.5 58.9 33.7 72.5 25.6 53.7 67.4 77.4 26.8 49.1 68.1 27.9 64.5 55.7 56.7

GAL-fWSD300 76.5 76.1 64.2 48.1 52.5 80.7 86.1 73.9 30.8 78.7 62.0 71.5 46.7 86.1 60.7 47.8 82.3 74.7 83.1 79.3 68.1
GAL-fWSD512 78.6 81.9 63.6 40.3 48.8 80.7 85.3 76.3 30.3 78.0 54.5 65.3 48.4 86.5 56.3 46.9 76.0 68.1 83.9 73.1 66.1

Table 3: Ablation study of GAL-fWSD300 on Pascal VOC.
(a) Effects of various components.

LGAN LSTR #Feedback mAP

3 39.2
3 3 44.3
3 3 128 45.8
3 3 256 46.5
3 3 512 47.0
3 3 1024 47.1

(b) Feedback proposals vs. original pro-
posals.

#Proposals 512 1536
+Feedback +512 +512
+Original +512 +512
Total 1024 2048

mAP 43.8 46.5 44.3 47.0

Table 4: Detection and localization comparisons
to the state-of-the-art methods on PASCAL VOC
2010 and 2012 in terms of mAP (%) and CorLoc
(%). †http://host.robots.ox.ac.uk:8080/anonymous/2TGWVW.html
§http://host.robots.ox.ac.uk:8080/anonymous/5XCKR0.html

Method 2010 2012
mAP (%) CorLoc (%) mAP (%) CorLoc (%)

Oquab et al.’15 [32] – – 11.7 –
Cinbis et al.’15 [11] 27.4 55.2 – –
Li et al.’16 [30] 30.7 – 29.1 –
Kantorov et al.’16 [28] – – 35.3 54.8
Bency et al.’16 [6] – – 26.5 –
Tang et al.’17 [45] – – 37.9 62.1
Jiang et al.’17 [26] 36.0 – 33.6 –
Diba et al.’17 [15] 39.5 – 37.9 –

GAL-fWSD300 45.1† 68.3 43.1§ 67.2

achieves the best localizing performance (6 out of 20 cate-
gories in GAL-fWSD300), which verifies the effectiveness
of our scheme from another perspective.

We further conduct experiments on PASCAL VOC 2010
and 2012. Tab. 4 shows our result on the PASCAL VOC
2010 and 2012 on both metrics. Compared to other meth-
ods, our method consistently achieves the state-of-the-art
performance using a single model. We further highlight

Table 5: Efficiency comparisons to the state-of-the-art
methods on PASCAL VOC 2007 test set in terms of
speed(FPS).

Method Backbone # Scales Flips? Time(ms) FPSProposal Network NMS Total

Bilen et al.’16 [8] VGG16 5 3 250 3451 19 3720 0.27
Li et al.’16 [30] VGG16 1 7 250 217 6 473 2.11
Kantorov et al.’16 [28] VGG-F 5 3 1510 1140 14 2664 0.38
Tang et al.’17 [45] VGG16 5 3 1510 2052 4 3566 0.28
Jie et al.’17 [27] VGG16 1 7 250 321 6 577 1.73

GAL-fWSD300 VGG16 1 7 0 8.28 0.2 8.48 118
GAL-fWSD512 VGG16 1 7 0 19.73 0.2 19.93 50

that, even using low-resolution input size (300 × 300), our
method still significantly outperforms all methods that use
multi-scale input for both training and testing.

4.3. Online Inference Efficiency

We compare our method to several state-of-the-art meth-
ods [8, 30, 28, 45, 27] in term of inference time. For fair
comparison, we re-implement the methods in [8, 28, 27]
with Caffe [25] framework. Thus, the time costs of all meth-
ods in Tab. 5 are comparable. We reproduce all methods in
Tab. 5 on our server and keep all the other settings exactly
the same. We measure the speed using a GTX 1080Ti GPU
and cuDNN v6 with Intel i7-6900K@3.20GHz.

Tab. 5 shows the comparison between GAL-fWSD and
other the state-of-the-art methods. Our fastest model (GAL-
fWSD300) quantitatively performs at 118 frame per second
and is 55× and 438× speedup comparing to [30] and [8], re-
spectively. According to the profiling, there are three main
reasons that make detectors inefficient: First, the multi-



Figure 4: Speed and accuracy comparison between differ-
ent WSD methods on PASCAL VOC 2007 detection task.
The mAPs are from the respective paper, although our re-
production results may have slight difference.

Figure 5: The performance of SSD300 with various an-
notations. The red line shows the performance of GAL-
fWSD300.
scale setting in inference significantly pulls down the speed
[8, 28, 45]. Second, the proposal extraction used at least
250 milliseconds per image, as illustrated in the fifth col-
umn in Tab. 5. Third, the proposal-wise operation in net-
work, e.g. SPP layer, also consumes a lot of time. Fig. 4
further demonstrates that our both methods outperform all
other in terms of speed and accuracy by a large gap.

4.4. Ablation Study

We use GAL-fWSD300 on Pascal VOC 2007 test set
for ablation study. As shown in Tab. 3a, optimizing LGAN
and LSTR jointly improves the performance by 5.1%, which
shows the effectiveness of the structural similarity loss.
With the feedback mechanism, the performance is further
improved by a large margin, which confirms our intuition
that feedback proposals can be used to help surrogator F ,
and in turn boost the performance of generator G. Tab. 3b
also shows that feedback mechanism is more effective than
simply increasing the number of region proposals on im-
proving the performance.

4.5. Robustness to Noisy Annotation

We study the robustness of G by analyzing the perfor-
mance of SSD300 [31] when applying synthetic noise to

the ground-truth annotations. The models are trained on
PASCAL VOC 2007 training and validation split, and tested
on the test split. We introduce two mechanisms to em-
ulate noise. The first replaces the ground-truth bounding
boxes by randomly sampling a region from the images. The
second randomly shifts the ground-truth bounding boxes,
but keeps the centers of bounding boxes inside the image
boundary. As illustrated in the left of Fig. 5, with the in-
creasing proportion of noisy annotations, the performance
of G drops dramatically. It reveals that we need a precise
estimation of the bounding boxes distribution to supervise
the training of G.

We also randomly drop a proportion of training image to
study the robustness ofG as illustrated in the right of Fig. 5,
which indicates the importance of annotations amount, i.e.,
ground-truth bounding boxes. The red line in Fig. 5 in-
dicates the performance of GAL-fWSD300. Our detec-
tion accuracy approximates the fully supervised methods,
whose training data contains about 46% ∼ 50% noisy an-
notations. The performance of SSD300 drops to GAL-
fWSD300 when it has only 10% training images. In other
words, an image with object-level annotations (which are
required by fully supervised detectors) is probably worth 10
images with only image-level annotations in our method.

5. Conclusion

In this paper, we propose an effective framework GAL-
fWSD towards real-time weakly supervised object detec-
tion, which tackles the need of bounding-box-level super-
vision from a novel perspective of Generative Adversarial
Learning. In particular, we design the generator to be ex-
tremely fast by using state-of-the-art one-stage object detec-
tor. In addition, a surrogator module and feedback mecha-
nism are introduced to estimate the distribution of object
bounding boxes. Finally, a novel structural similarity loss
together with adversarial loss is further proposed to opti-
mize the model. Extensive experiments show that GAL-
fWSD significantly speedups the state-of-the-art weakly su-
pervised detectors while achieving the state-of-the-art de-
tection accuracy.
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