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Abstract

Online video object segmentation is a challenging task
as it entails to process the image sequence timely and accu-
rately. To segment a target object through the video, numer-
ous CNN-based methods have been developed by heavily
finetuning on the object mask in the first frame, which is
time-consuming for online applications. In this paper, we
propose a fast and accurate video object segmentation al-
gorithm that can immediately start the segmentation pro-
cess once receiving the images. We first utilize a part-
based tracking method to deal with challenging factors such
as large deformation, occlusion, and cluttered background.
Based on the tracked bounding boxes of parts, we con-
struct a region-of-interest segmentation network to generate
part masks. Finally, a similarity-based scoring function is
adopted to refine these object parts by comparing them to
the visual information in the first frame. Our method per-
forms favorably against state-of-the-art algorithms in ac-
curacy on the DAVIS benchmark dataset, while achieving
much faster runtime performance.

1. Introduction

Video object segmentation aims at separating target ob-
jects from the background and other instances on the pixel
level. Segmenting objects in videos is a fundamental task
in computer vision because of its wide applications such as
video surveillance, video editing, and autonomous driving.
However, it is a challenging task due to camera motion, ob-
ject deformation, occlusion between instances and cluttered
background. Particularly for online applications, significant
different issues arise when the methods are required to be
robust and fast without given access to future frames. In
this paper, we focus on solving the problem of online video
object segmentation. Given the object in the first frame, our
goal is to immediately perform online segmentation on this
target object without knowing future frames. For real appli-
cation usages, the difficulties lie in the requirement of effi-
cient runtime performance while maintaining accurate seg-
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Figure 1. Accuracy versus runtime comparisons on the DAVIS
2016 dataset. We evaluate the state-of-the-art methods and demon-
strate that our approach is significantly faster, while maintaining
high accuracy. Note that the runtime includes the pre-processing
steps averaged on all frames for fair comparisons.

mentation. Figure 1 illustrates comparisons of the state-of-
the-art methods in terms of speed and performance, where
we show that the proposed algorithm is fast, accurate and
applicable to online tasks.

Existing video object segmentation algorithms can be
broadly classified into unsupervised and semi-supervised
settings. Unsupervised methods [9, 14, 18, 35] mainly seg-
ment moving objects from the background without any prior
knowledge of the target, e.g., initial object masks. How-
ever, these methods cannot handle multiple object segmen-
tation as they are not capable of identifying a specific in-
stance. In addition, several methods require batch model
processing (i.e., all the frames are available) before seg-
menting the object [21, 41], which cannot be applied to
online applications. On the other hand, semi-supervised
methods [6, 16, 19, 20, 44] are given with an initial ob-
ject mask which provides critical visual cues of the target.
Thus, these methods can handle multi-instance cases and
usually perform better than the unsupervised approaches.
However, many state-of-the-art semi-supervised methods
heavily rely on the segmentation mask in the first frame.
For instance, before making predictions on the test video,
the state-of-the-art methods need to finetune the networks
for each video [4, 6, 19, 44], or the model for each in-
stance [5, 34]. This finetuning step on the video or instance
level is computationally expensive, where it usually takes
more than ten minutes to update a model [4, 6]. In ad-



Figure 2. Proposed framework for online video object segmentation. Our algorithm first generates parts of the target object in the first
frame. These parts are then tracked in the next frame to obtain tracking boxes. With our ROI segmentation network and a similarity-based
scoring function, final segmentation outputs are generated through the entire video.

dition, data preparation (e.g., optical flow generation [42])
and training data augmentation [19] require additional pro-
cessing time. As such, these methods cannot be used for
time-sensitive online applications that require fast and ac-
curate segmentation results of a specific target object (see
Figure 1).

In this paper, we propose a video object segmentation
algorithm that can immediately start to segment a specific
object through the entire video fast and accurately. To this
end, we utilize a part-based tracking method and exploit a
convolutional neural network (CNN) for representations but
does not need the time-consuming finetuning stage on the
target video. The proposed method mainly consists of three
parts: part-based tracking, region-of-interest segmentation,
and similarity-based aggregation.

Part-based Tracking. Naturally, object tracking is an ef-
fective way to localize the target in the next frame. How-
ever, non-rigid objects often have large deformation with
fast movement, thereby making it difficult to accurately lo-
calize the target [2, 8, 30]. To better utilize the tracking
cues, we adopt a part-based tracking scheme to resolve chal-
lenging issues such as occlusions and appearance changes
[27]. We first randomly generate object proposals around
the target in the first frame, and select representative parts
based on the overlapping scores with the initial mask. We
then apply the tracker for each part to provide temporally
consistent region of interests (ROIs) for subsequent frames.

ROI Segmentation. Once each part is localized in the next
frame, we construct a CNN-based ROI SegNet to predict
the segmentation mask that belongs to the target object.
Different from conventional foreground segmentation net-
works [4, 6, 26] that focus on segmenting the entire object,

our ROI SegNet learns to segment partial objects given the
bounding box of part.
Similarity-based Aggregation. With part tracking and
ROI segmentation, the object location and segmentation
mask can be roughly identified. However, there could be
false positives due to incorrect tracking results. To re-
duce noisy segmentation parts, we design a similarity-based
method to aggregate parts by computing the feature distance
between tracked parts and the initial object mask. Figure 2
shows the main steps of the proposed algorithm.

To validate the proposed algorithm, we conduct exten-
sive experiments with comparisons and ablation study on
the DAVIS benchmark datasets [36, 38]. We show that
the proposed method performs favorably against state-of-
the-art approaches in accuracy, while achieving much bet-
ter runtime performance. The contributions of this work
are as the following. First, we propose a fast and accurate
video object segmentation method that is applicable to on-
line tasks. Second, we develop the part-based tracking and
similarity-based aggregation methods that effectively utilize
the information contained in the first frame, without adding
much computational load. Third, we design an ROI SegNet
that takes bounding boxes of parts as the input, and outputs
the segmentation mask for each part.

2. Related Work
Unsupervised Video Object Segmentation. Unsupervised
video object segmentation methods aim to automatically
discover and separate prominent objects from the back-
ground. These methods are based on probabilistic mod-
els [23, 31], motions [18, 17, 35], and object propos-
als [24, 46]. Existing approaches often rely on visual cues
such as superpixels, saliency maps or optical flow to obtain



initial object regions, and need to process the entire video
in batch mode for refining object segmentation. In addi-
tion, generating and processing thousands of candidate re-
gions in each frame is usually time-consuming. Recently,
CNN-based methods [14, 40, 41] exploit learning rich hi-
erarchical features (e.g., ImageNet pre-training) and large
augmented data to achieve the state-of-the-art segmentation
results. However, these unsupervised methods are not able
to segment a specific object due to motion confusions be-
tween different instances and dynamic background.

Semi-supervised Video Object Segmentation. Semi-
supervised methods aim to segment a specific object with
an initial mask. Numerous algorithms have been proposed
based on tracking [10], object proposals [37], graphical
model [32], and optical flow [42]. Similar to the unsu-
pervised approaches, CNN-based methods [4, 6, 20] have
achieved significant improvement for video object segmen-
tation. However, these methods usually heavily rely on fine-
tuning models through the first frame [4, 20], data augmen-
tation [19], online model adaptation [44] and joint training
with optical flow [6]. These steps are computationally ex-
pensive (e.g., it takes more than 10 minutes for finetuning
on the first frame in each video) and are not suitable for
online vision applications.

To alleviate the issue of computational loads, a few meth-
ods are developed by propagating the object mask in the first
frame through the entire video [15, 16]. Without exploiting
much information in the first frame, these approaches suffer
from the error accumulation after propagating a long pe-
riod of time and thus do not perform as well as other meth-
ods. In contrast, the proposed algorithm incorporates part-
based tracking and always keeps eyes on the first frame by
a similarity-based part aggregation strategy.

Object Tracking. Tracking has been widely used to local-
ize objects in videos as an additional cue for performing ob-
ject segmentation [43]. Conventional methods [3, 13] adopt
correlation filter-based trackers to account for appearance
changes. Recently, numerous methods have been devel-
oped based on deep neural networks and classifiers. The
CF2 method [30] learns correlation filters adaptively based
on CNN features, thereby enhancing the ability to handle
challenging factors such as deformation and occlusion. In
addition, the SINT scheme [39] utilizes a Siamese network
to learn feature similarities between proposals and the initial
observation of target object. The SiaFC algorithm [2] de-
velops an end-to-end Siamese tracking network with fully-
convolutional layers, which allows the tracker to compute
similarity scores for all the proposals in one forward pass.
In this work, we adopt the Siamese network for tracking
object parts, where each part is locally representative and
endures less deformation through the video.

3. Proposed Algorithm
In this section, we describe each component of the pro-

posed method. First, we present the part-based tracker,
where the goal is to localize object parts through the en-
tire video. Second, we construct the ROI SegNet, a general
and robust network to predict segmentation results for ob-
ject parts. Third, we introduce our part aggregation method
to generate final segmentation results by computing similar-
ity scores in the feature space.

3.1. Part-based Tracking

Object tracking is a difficult task due to challenging fac-
tors such as object deformation, fast movement, occlusion,
and background noise. To deal with these issues, part-based
methods [27] have been developed to track local regions in-
stead of the entire object with larger appearance changes.
Since our goal is to localize most object regions in the
next frame for further segmentation, utilizing a part-based
method matches our need and can effectively maintain a
high recall rate.

Part Generation. In order to track parts, one critical prob-
lem is how to generate these parts in the first place. Con-
ventional object parts are discovered from a large amount of
intra-class data via discriminability and consistency. How-
ever, this assumption does not hold for online video seg-
mentation, as only one object mask is provided in the first
frame of the target video. To resolve this issue, we propose
a simple yet effective way to generate representative parts
guided by the object mask. First, we randomly generate
part proposals with various sizes and locations around the
object, and remove the ones with low overlapping ratio to
the object mask. We compute the intersection-over-union
(IoU) score between the proposal and the object, and keep
the ones with scores larger than a threshold (i.e., 0.3 in this
work). To ensure that each part contains mostly pixels from
the object, we further measure the score: Sp = bbox∩gtbox

bbox ,
where bbox is the bounding box of a proposal and gtbox
is the known object box in the first frame. Part proposals
with Sp > 0.7 are used as candidates for a non-maximum
suppression (NMS) step. Based on the proposed selection
process, we reduce thousands of proposals to only 50 ∼ 300
representative parts depending on the object size. Note that,
we also transform the bounding box for each part to be tight
within the object mask, reducing background noise for more
effective tracking and segmentation. Some example results
are shown in Figure 3 for generated parts (with high scores)
in the first frame.

Part Tracking. Given a set of parts Pt = {P 1
t , P

2
t , ..., P

i
t }

in frame It, our goal is to output a score map St that mea-
sures the location likelihood of part P i

t appearing in the next
frame It+1:

St = T (P i
t , It+1), (1)



Figure 3. Sample results for part tracking. We show some high-scored parts and their tracking results. Green and yellow boxes are the
results by applying object tracker [2] and by our method via aggregating parts, respectively. It shows that our result (yellow boxes) are
robust to object deformation and occlusion, due to the stability of tracking parts.

Figure 4. Illustration of the proposed ROI SegNet. Given an im-
age and their parts, we resize and align each part as the input to the
network. We use the ResNet-101 architecture containing 5 convo-
lution modules. We up-sample and concatenate feature maps from
the last three modules. An additional convolution layer is utilized
for the binary prediction of parts.

where T is a function to compute similarity scores be-
tween the part P i

t and the image It+1. We use the SiaFC
method [2] as our baseline tracker T to compute the score
map St. Due to its fully-convolutional architecture, we
compute score maps for multiple parts in one forward pass.
Once obtaining the score map, we select the bounding box
with the largest response as the tracking result. Some track-
ing results are shown in Figure 3.

3.2. ROI SegNet

Based on the tracking results of object parts, the next
task is to segment partial object within the bounding box.
Recent instance-level segmentation methods [11, 7] have
demonstrated the state-of-the-art results by training net-
works for certain categories and output their segmentations.
Our part segmentation problem is similar to the instance-

level segmentation task but for the partial object. In addi-
tion, training such a network would require an alignment
step for different parts as they may vary significantly in
size, shape, and appearance for different instances or ob-
ject categories. Hence, we utilize an ROI data layer by
cropping image patches from parts as inputs to the net-
work, in which these patches are aligned through resizing.
Similar to semantic segmentation, our objective is to min-
imize the weighted cross-entropy loss for a binary (fore-
ground/background) task:

L(P ) = −(1− w)
∑

i,j∈fg

logE(yij = 1; θ)

−w
∑

i,j∈bg

logE(yij = 0; θ), (2)

where θ denotes CNN parameters, yij denotes the network
prediction for the input part P at pixel (i, j) and w is the
foreground-background pixel-number ratio used to balance
the weights [45].

Network Architecture. We utilize the ResNet-101 archi-
tecture [12] as the base network for segmentation and trans-
form it to fully-convolutional layers [29]. To enhance fea-
ture representations, we up-sample feature maps from the
last three convolution modules and concatenate them to-
gether. The concatenated features are then followed by a
convolution layer for the binary prediction. Figure 4 shows
the architecture of our ROI SegNet.

Network Training. To train the proposed network, we
first augment images from the training set of the DAVIS



dataset [36] via random scaling and affine transformations
(i.e., flipping, ±10% shifting, ±10% scaling, ±30◦ rota-
tion). Then, parts are extracted for each instance as the
same method as introduced in part-based tracking. We use
the Stochastic Gradient Descent (SGD) optimizer with the
patch size 80 × 80 and the batch size of 100 for training.
The initial learning rate starts from 10−6 and decreases by
half for every 50,000 iterations. We train the network for
200,000 iterations.

3.3. Similarity-based Part Aggregation

After obtaining all the segmentation results from parts,
one simple way to generate the final segmentation is to com-
pute an averaging score map from each part. However, parts
may be tracked off the object or include background noise,
resulting in inaccurate part segments. To avoid adding these
false positives, we develop a scoring function by looking
back to the initial object mask. That is, we seek to know
if the current part is similar to any of the parts in the first
frame. Although objects may appear quite differently from
the first frame, we find that local parts are actually more
robust to such appearance changes.

Specifically, we first compute the similarity score be-
tween each part in Pt at frame t and initial parts P0 in the
feature space. Then we select part Pn

0 with the highest sim-
ilarity for the current part Pm

t by:

n = argmin
i∈N

‖f(Pm
t )− f(P i

0))‖22, (3)

where f is the feature vector representing each part, ex-
tracted from the last layer in our ROI SegNet with an aver-
age pooling on the part mask. Overall, our scoring function
consists of three components:

Sseg(Pt) = Save(Pt) · Ssim(Pt,Pn
0 ) · Scon(Pn

0 ), (4)

where Pn
0 is a set of initial parts selected based on Equa-

tion (3) and · is the element-wise multiplication operation.
The first function Save is the simple averaging score of part
segments in the current frame t:

Save(Pt) =
∑
i∈Pt

Si/|Pt|, (5)

where Pt is the set of parts at frame t and Si is the segmen-
tation score for each part i. Second, Ssim is the similarity
score between current and initial parts in the feature space
based on (3). Since the selected initial part segment may
have poor quality, we add Scon by forwardingPn

0 to the ROI
SegNet and measuring its segmentation overlapping ratio to
the initial mask as the confidence score:

Scon(Pn
0 ) = J(G(Pn

0 ), gt), (6)

where J is the IoU measurement, G is the ROI SegNet and
gt is the object mask in the first frame. With the guidance

Figure 5. Part aggregation results. We compare score maps via
the functions of Save and Sseg . Without computing the similarity
score to the first frame, the result of Save contains noisy segments,
while our aggregation algorithm performs segmentation more pre-
cisely.

Figure 6. IoU-Recall curve for trackers on the DAVIS 2016
dataset. Dashed lines (-agg) denote results by utilizing the pro-
posed part-based tracking.

of the initial object mask and parts without using expensive
model finetuning step, our part aggregation method can ef-
fectively remove false positives. Figure 5 shows some ex-
amples of score maps with different scoring functions.

4. Experimental Results
4.1. Dataset and Evaluation Metrics

We conduct experiments on the DAVIS benchmark
datasets [38, 36] which contain high-quality videos with
dense pixel-level object segmentation annotations. The
DAVIS 2016 dataset consists of 50 sequences (30 for train-
ing and 20 for validation), with 3,455 annotated frames
of real-world moving objects. Each video in the DAVIS
2016 dataset contains a single annotated foreground ob-
ject, so both semi-supervised and unsupervised methods
can be evaluated. The DAVIS 2017 dataset contains 150
videos with 10,459 annotated frames and 376 object in-
stances. It is a challenging dataset as there are multiple
instances in each video, where objects could occlude each
other. In this setting, it is difficult for unsupervised meth-
ods to separate different instances. For performance eval-
uation, we use the mean region similarity (J mean), con-
tour accuracy (F mean) and temporal stability (T mean)
as in the benchmark setting [38, 36]. The source code



Table 1. Ablation study on DAVIS 2016. “+ Sseg” and “+ Sseg

+ Tracker + CRF” denote results for Ours-part and Ours-ref in
Figure 1, respectively.

Method Baseline + [2] + Save + Sseg + Sseg + Sseg
+ Tracker + Tracker

+ CRF

J Mean ↑ 0.707 0.696 0.739 0.779 0.786 0.824

J Recall ↑ 0.840 0.860 0.874 0.924 0.929 0.965

J Decay ↓ -0.005 0.008 0.072 0.067 0.054 0.045

F Mean ↑ 0.695 0.671 0.727 0.760 0.772 0.795

F Recall ↑ 0.786 0.790 0.792 0.849 0.869 0.894

F Decay ↓ -0.004 -0.003 0.089 0.076 0.060 0.055

T Mean ↓ 0.260 0.321 0.240 0.229 0.219 0.263

and models are available at https://github.com/
JingchunCheng/FAVOS. More results and analysis are
presented in the supplementary material.

4.2. Tracker Evaluation

Our part-based tracker focuses on tracking local regions
and cannot directly output the object location in the next
frame. However, we can roughly find the object center
based on the aggregated part segments. Motivated by the
tracking-by-detection algorithms [1], we utilize detection
proposals [28] as candidates of object bounding boxes, and
select the one closest to the object center as the track-
ing result. We then validate this part-based tracker on
the DAVIS 2016 dataset with comparisons to our baseline
SiaFC method [2] and other tracking algorithms including
CF2 [13], ECO [8], and MDNet [33]. Experimental results
are presented in Figure 3 and 6, where we show that our
part-based trackers consistently maintain better IoU-recall
curves for localizing objects.

Although our ultimate goal is for video object segmen-
tation, this evaluation is useful for understanding the chal-
lenges on the DAVIS dataset. One interesting fact is that
if there is a good tracker, it should be able to help the seg-
mentation task. Thus, a high recall rate under a high IoU is
required as once partial object is missing, it is not possible
to recover the corresponding segment. As shown in Figure
6, most trackers achieve around 60% recall rate under a 0.5
IoU while ours is 80%, which enables potential usages of
applying our tracker to improve segmentation results. We
will present our results by integrating this tracker in the ab-
lation study section.

4.3. Ablation Study on Segmentation

We present ablation study in Table 1 on the DAVIS 2016
validation set to evaluate the effectiveness of each compo-
nent in the proposed video object segmentation framework.
We start with the unsupervised version of SFL [6] as our

Figure 7. Sample results of using different components in the pro-
posed method. We show gradual improvement over baseline with
part aggregation, CRF refinement and an object tracker.

baseline due to its balance between speed and accuracy.
To demonstrate the usefulness of using part, we first con-
duct an experiment by combining the baseline result and
the score map from [2] via tracking an entire object. Specif-
ically, we average the foreground probability from [6] and
the segmentation map of [2] through the ROI SegNet. How-
ever, we find that the tracking accuracy is highly unstable,
which usually loses objects and even results in a worse per-
formance than the baseline segmentation (1.1% drop in J
Mean). It shows that combining tracking and segmentation
is not a trivial task, and we use part-based model to achieve
a better combination.

After adopting our part-based tracker and ROI SegNet
to obtain part segments, we compare results with or with-
out part aggregation. The one that utilizes part aggregation
via the function Sseg in Equation (4) performs better (4%
improvement in J Mean) than only computing the score
function Save. It shows that with the consideration of ini-
tial object mask, false part segmentations can be largely re-
duced as they are not similar to any of the object parts in the
first frame. In addition, we take advantage of our tracker
combined with detection proposals as mentioned in Sec-
tion 4.2 and use it to further improve our results, denoted
as “+Tracker” in Table 1. To further improve the boundary
accuracy, we add a refinement step using dense CRF [22].
In Figure 1, we denote the result of using Sseg as Ours-
part, and the one combined with our tracker and CRF with
refinement as Ours-ref.

4.4. Segmentation Results

DAVIS 2016. We evaluate our proposed method on the val-
idation set of DAVIS 2016 [36] with comparisons to state-
of-the-art algorithms, including semi-supervised and unsu-
pervised settings. In Table 2, we show results with different
settings, including the need of initial object mask, future
frames and pre-processing steps. Based on these require-
ments and their runtime speed, we then analyze the capabil-
ity for online applications.

https://github.com/JingchunCheng/FAVOS
https://github.com/JingchunCheng/FAVOS


Table 2. Overall segmentation results on DAVIS 2016. We analyze various settings for different algorithms as well as provide online
applicability based on their runtime speed (with different colors).

Method Initial mask Future frames Pre-processing Online Speed J mean F mean T mean

OnAVOS [44] ! finetuning weak 13s 0.861 0.849 0.190
Lucid [19] ! data, finetuning weak 40s 0.848 0.823 0.158
Ours-ref ! no strong 1.8s 0.824 0.795 0.263
OSVOS [4] ! finetuning weak 10s 0.798 0.806 0.378
MSK [20] ! flow, finetuning weak 12s 0.797 0.754 0.218
Ours-part ! no strong 0.60s 0.779 0.760 0.229
ARP [21] ! data no - 0.762 0.706 0.393
SFL [6] ! finetuning weak 7.9s 0.761 0.760 0.189
LVO [41] ! flow no - 0.759 0.721 0.265
CTN [16] ! flow weak 29.95s 0.735 0.693 0.220
FSEG [14] flow weak 7s 0.707 0.653 0.328
VPN [15] ! no strong 0.63s 0.702 0.655 0.324
LMP [40] flow weak 18s 0.700 0.659 0.572
OFL [42] ! flow weak 60s 0.680 0.634 0.222
BVS [32] ! no strong 0.84s 0.600 0.588 0.347

Figure 8. Example results of comparisons between state-of-the-art methods on DAVIS 2016. Approaches with no, weak, strong online
applicability are marked in yellow, blue and green, respectively.

For unsupervised methods that do not need the initial
mask, they usually need to compute optical flow as the
motion cue (FSEG [14] and LMP [40]) or foresee the en-
tire video (LVO [41] and ARP [21]) to improve the perfor-
mance, which is not applicable to online usages. In addi-
tion, these methods cannot distinguish different instances
and perform segmentation on a specific object.

In the semi-supervised setting, recent methods require
various pre-processing steps before starting to segment the
object in the video, which weaken the ability for online ap-
plications. These pre-processing steps include model fine-
tuning (OnAVOS [44], Lucid [19], OSVOS [4], MSK [20],

SFL [6]), data synthesis (Lucid [19]) and flow computing
(MSK [20], CTN [16], and OFL [42]). For fair compar-
isons in the online setting, these pre-processing steps are
included in the runtime by averaging on all the frames.

The most closest setting to our method is VPN [15]
and BVS [32] that do not have heavy pre-processing steps.
However, these approaches may propagate segmentation er-
rors after tracking for a long period of time. In contrast,
our algorithm always constantly refers to the initial object
mask via parts and can reduce such errors in the long run,
improving more than 12% in J Mean against VPN [15].
Overall, the proposed video object segmentation framework



Table 3. Segmentation results on DAVIS 2017 validation set. We show our baseline results with different modules, including fore-
ground/background regularization (FG), Spatial Propagation Network (SPN) and a refinement procedure.

Finetuning Method Baseline + FG + FG +FG
+ SPN +SPN

+Refine

Ours
J Mean ↑ 0.451 0.462 0.481 0.546

SPN [5] ! 0.442 0.457 0.506 0.540

Ours
F Mean ↑ 0.554 0.571 0.574 0.618

SPN [5] ! 0.453 0.504 0.568 0.611

runs at the fastest speed, and can achieve J Mean in the 3rd
place with further refinement, while still maintaining a fast
runtime speed compared to state-of-the-art methods. Some
qualitative comparisons are presented in Figure 8.

DAVIS 2017. To evaluate how our method deals with mul-
tiple instances in videos, we conduct experiments on the
DAVIS 2017 validation set [38] which consists of 30 chal-
lenging videos and each one has two instances on average.
Existing methods all rely on sophisticated processing steps
[25] to achieve better performance, and hence we compare
our method with SPN [5] that only involves the finetuning
step in Table 3. For the baseline algorithm, we start with
our part-based aggregation method via part-based tracker
and ROI SegNet, while [5] finetunes a CNN-based model
for each instance. The baseline results show that, with-
out the need of the computationally expensive finetuning
process, our method even outperforms the existing method.
One reason is that as the video becomes more complicated,
finetuning-based methods may suffer from confusions be-
tween instances. In contrast, our method employs a part-
based tracker that can effectively capture local cues for fur-
ther segmentation.

Following [5], we then sequentially add different com-
ponents, including foreground/background regularization, a
Spatial Propagation Network and a region-based refinement
step. In addition, we integrate the object tracker proposed
in Section 4.2 to further refine the segmentation. Overall,
without the need of finetuning on each instance, our ap-
proach achieves a similar performance or outperforms the
one that requires finetuning. We also note that finetuning is
expensive not only in speed but also in stored size, as hun-
dreds of objects would result in a huge number of stored
models, which is not practical in real-world applications. In
Figure 9, we present some example results on the DAVIS
2017 dataset.

Runtime Analysis. In the proposed framework, our method
runs at 0.60 seconds on average per instance per frame
without the refinement step, including part-based track-
ing (0.2s), ROI segmentation (0.3s), and part aggregation
(0.1s). With CRF (1s) and tracker (0.2s) refinements, our
method runs at 1.8 seconds per instance per frame with bet-

Figure 9. Example results for multiple instances on DAVIS 2017.

ter performance. We note that for tracking and segmenting
parts, we parallelly use Titan X GPUs to handle hundreds
of parts for faster inference.

5. Concluding Remarks
In this paper, we propose a fast and accurate video ob-

ject segmentation method that is applicable to online appli-
cations. Different from existing algorithms that heavily rely
on pre-processing the object mask in the first frame, our
method exploits the initial mask via a part-based tracker
and an effective part aggregation strategy. The part-based
tracker provides good localization for local regions sur-
rounding the object, ensuring that most portion of the ob-
ject is retained for further segmentation purpose. We then
design an ROI segmentation network to accurately output
partial object segmentations. Finally, a similarity-based
scoring function is developed to aggregate parts and gen-
erate the final result. Our algorithm exploits the strength
of CNN-based frameworks for tracking and segmentation
to achieve fast runtime speed, while closely monitoring the
information contained in the first frame for the state-of-the-
art performance. The proposed algorithm can be applied
to other video analytic tasks that require fast and accurate
online video object segmentation.
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