
A Two-Step Disentanglement Method

Naama Hadad
Tel Aviv University

Lior Wolf
Facebook AI Research and Tel Aviv University

Moni Shahar
Tel Aviv University

Abstract

We address the problem of disentanglement of factors
that generate a given data into those that are correlated
with the labeling and those that are not. Our solution
is simpler than previous solutions and employs adversar-
ial training. First, the part of the data that is correlated
with the labels is extracted by training a classifier. Then,
the other part is extracted such that it enables the recon-
struction of the original data but does not contain label
information. The utility of the new method is demonstrated
on visual datasets as well as on financial data. Our code
is available at https://github.com/naamahadad/
A-Two-Step-Disentanglement-Method.

1. Introduction

The problem of identifying complementary factors and
separating them from each other is ubiquitous. In face recog-
nition and in object recognition, one would like to separate
illumination and pose from identity or label. In handwrit-
ing recognition, we would like to separate the factors that
define the content of the text written from those that define
its style. The separation between what is spoken and who
is the speaker in automatic speech recognition and multi-
speaker speech synthesis is similar in nature. In each of
these domains, specialized solutions have emerged, often-
times emphasizing recognition and eliminating the other
factors and sometimes employing compound labels from
orthogonal domains. However, the task of separating the
factors that generated the observations, which is called dis-
entanglement, is also being studied as an abstract pattern
recognition problem.

In this work, we present a new algorithm for disentangle-
ment of factors, where the separation is based on whether the
factors are relevant to a given classification problem. Follow-
ing the terminology used in [14], we call the factors that are
relevant for the classification task specified factors, and those
which are not unspecified factors. In order to perform disen-
tanglement, we present a new adversarial technique. First,
a classifier S is trained to predict the specified factors. The
activations of S are then used to capture the specified compo-

nent of the samples. A second network Z is then trained to
recover the complimentary component. A first loss on Z en-
sures that the original sample can be reconstructed from the
output of both networks together (S and Z). A second loss
on Z, which is based on an adversarial network, ensures that
Z does not encode the specified factors. The algorithm has
the advantage that is makes very weak assumptions about
the distribution of the specified and the unspecified factors.

We focus our experiments on the image-based bench-
marks used in previous work. In addition to image data,
we also evaluate our model on financial data. A simplified
model for stock price changes is that the price change can
be decomposed into two factors, market movement and id-
iosyncratic movement. A common assumption is that the
market return is a Geometric Brownian motion and cannot
be predicted. However, since different stocks have different
correlations with the market, one can neutralize the market
factor from her portfolio. In real-life trading, the correlations
are non-stationary and there are other effects such as trading
costs that should be taken into account. Despite all that,
the disentanglement of driving factors is relevant both for
prediction purposes as well as for data generation.

1.1. Related work

Disentanglement was studied in many contexts and has a
vast literature. Early attempts to separate text from graphics
using basic computer vision tools were made in [5]. In [18]
voice data was analyzed. It was assumed that the data was
generated by two sources and separation was done using
a bilinear model. Manifold learning methods was used by
ElGammal and Lee in order to separate the body configu-
ration from the appearance [4]. In recent years, few papers
tackled this problem using neural networks. What-where
encoders [8] combine the reconstruction criteria with the dis-
crimination in order to separate the factors that are relevant
for the labels. In [10] variational auto encoders were used
to separate the digit from the style. However their approach
can not generalized to unseen identities. This restriction
was relaxed in [14], where they trained a conditional genera-
tive model by using an adversarial network to remove label
information from the unspecified part of the encoding.

Concurrently with our work, the Fader Networks [11]

1

https://github.com/naamahadad/A-Two-Step-Disentanglement-Method
https://github.com/naamahadad/A-Two-Step-Disentanglement-Method


employ an architecture that is closely related to the second
step of our two-step architecture. While in our model a
classifier is trained to capture the specified factors, in the
architecture of [11], the labels are used directly. The main
advantage of our architecture in comparison to the one step
alternative, is its support of novel labels at test time, i.e., it
is not limited to the set of labels seen during training. This
quality of our architecture is crucial for the Norb and Sprites
datasets we present later, where we use the disentanglement
for new identities at test time. In the modeling of the financial
data this quality also comes into effect. For this data, the
specified factors (the labels) denote the market regime during
train years, whereas during test years there may be different
market regimes.
Generative Adversarial Networks GAN [7] is a method to
train a generator network G that synthesizes samples from
a target distribution given noisy inputs. In this approach, a
second network called the discriminator D is jointly trained
to distinguish between generated samples and data samples.
This “competition” between the generator and the discrimina-
tor, induces a zero-sum game whose equilibrium is reached
when the discriminator can no longer distinguish between
the generated samples and the empirical ones. Since this
approach was published, many variations on this idea has
appeared, see for example [15, 3, 2].

2. Method
The Problem of Disentanglement We are given a set of
labeled inputs X with the matching labels Y . Our goal is to
represent the data using two disjoint parts of a code, S, and
Z. We require S to contain all the information relevant for
the class ids Y , and Z to contain only the unspecified factors
of the data. For the example of handwriting recognition, if
Y is the text written in the image samples X , then S will
contain the information about the textual content Y , whereas
Z will only contain information about the style of writing.

The Model For the encoding, we chose S and Z to be
vectors of real numbers rather than a one-hot vector. This
idea, presented in [14], enables the network to generalize to
identities that did not appear in the training set.

We define a new network architecture for the disentangle-
ment of the factors. It is simpler and more straightforward
than the one presented in [14]. The network contains two
deterministic encoders to map X to its specified and un-
specified components S = EncS(X) and Z = EncZ(X)
accordingly. To train the S encoder EncS , we first use a sub-
network for the classification task and train the S-classifier
concurrently with EncS . This sub-network accepts X as its
input, encodes it to a vector S, and then runs the S-classifier
on S to obtain the labels Y , see Fig. 1(a). The result of
this network is an encoding of the data that contains the
information needed in order to predict the class identity.

(a)

(b)
Figure 1. Network architecture: (a) We train the S encoder and its
classification network on a pure classification task. (b) Once S is
given, we freeze its weights and train the Enc-Dec network and the
adversarial classifier alternatively

In a second step EncS is kept fixed. To train the Z-
encoder to ignore the specified factors and contain data only
on the unspecified factors, we use a new variation of adver-
sarial networks. The configuration of the network is given
in Fig 1(b), and it is composed out of two network branches.
The adversarial classifier (see the bottom part of the figure) is
being trained to minimize the classification loss given Z, Y
as input, namely, it is trained to classify Z to Y . The Enc-
Dec network (the rest of the network) is trained to minimize
the sum of two terms: (i) the reconstruction error (given S
and Z), and (ii) minus the adversarial network loss.

More formally, let θZ be the parameters of EncZ(X)
and let θX be the parameters of the reconstruction network
with output X̃ = Dec(S,Z). Let θA be the parameters
of the adversarial network. We define Ladv({(Z, Y )}, θA)
to be the classification loss of the adversarial network and
Lrec({S,Z,X}, θX) to be the reconstruction loss of X̃ .
When optimizing θA, Ladv is minimized. When optimizing
the two other networks, θZ and θX , the objective is to simul-
taneously minimize Lrec and maximize Ladv. Hence, our
objective is:

min
θZ ,θX ,θA

{Lrec − λ ∗ Ladv}, λ > 0 (1)

Note that while GANs are typically used in order to im-
prove the quality of generated output such as images, here
we use an adversarial configuration to encourage the encod-
ing to "forget" information about the labels, which, in turn,
leads to the disentanglement.

Training the S encoder together with the Z encoder and



the subsequent decoder, could lead the network to converge
to a degenerated solution, where all information is encoded
in S, whereas Z holds no information on any factor. By train-
ing the S network in the first stage with a limited capacity,
and then fixing the values of its parameters, this scenario is
avoided. Since S has a limited capacity it ignores most of the
information on the unspecified factors, which is irrelevant
for its goal.

Training details We employ MSE for the Lrec loss, and
use categorical cross-entropy loss for both the S classifier’s
loss and Ladv. The λ for each dataset was chosen indepen-
dently using few iterations on validation data.

For the training of the S-network and the Enc-Dec net-
work, we apply the Adam optimization method [9] with a
learning rate of 0.001 and beta of 0.9. For the adversarial
classifier, we used SGD with a learning rate of 0.001.

While training the Z-network, we have noticed that the
adversarial part requires more steps to stabilize, since it
should solve a complicated classification task on a changing
input. Therefore, we run, at each iteration, one mini-batch to
train the Enc-Dec network, followed by three mini-batches
to train the adversarial network.

2.1. Comparison to [14] on Toy Data

To illustrate the advantages of our approach in compar-
ison to the more involved method of [14], we generated
images of a gray rectangle in ten possible locations on a
white or black background. We refer to the background
color as the unspecified factor Z, whereas the location of
the rectangle is the specified factor S. We denote the ten
possible values of S by {s0, . . . , s9}. All possible twenty
images were drawn with equal probability.

We also generated similar images, where the unspecified
factor consists of two binary variables - the first controls
the upper half background color and the second controls the
lower half background color. Where similar to the first case
all forty images were drawn with equal probability.

We refer to the sets as Synth1 and Synth2. For the en-
coding, we chose both S and Z to be vectors of size 4. We
run our network and the network in [14] to obtain S,Z for
Synth1 and Synth2. We then used a neural network classifier
with three dense layers of size 8 on S to find the label. The
obtained accuracy was 100% for both networks.

We then examined the Z vectors that were obtained from
both methods of disentanglement on Synth1 and Synth2. First
we verified using a classifier that the background color can
be inferred from Z perfectly, whereas inferring the location
of the rectangle from Z leads to accuracy that is close to
random. Next we turned to examining the distribution of
Z for Synth1 and Synth2, these distributions are presented
in Fig. 2,3 respectively. The figures show the values of the
components Z0, . . . , Z3 for all of the data points. Each color

Synth1

PCA component: 1 2 3 4

Our model 1.000
[14] 0.252 0.251 0.25 0.247

Synth2
PCA component: 1 2 3 4

Our model 0.610 0.390
[14] 0.263 0.249 0.248 0.240

Table 1. The ratio of the variance of the Z-encoding projected on its
PCA components. Note that the autoencoder split the information
between all the components, whereas our encoding expressed the
information using the minimum number of dimensions.

represents a different value of the latent variable Z. Note
that since the method in [14] defines Z to be a random vector
drawn from a normal distribution specified by µ, σ, we show
a sample of the drawn Z vectors.

For the binary case (Synth1, Fig. 2) our encoding shows
two narrow peaks well separated in Z3, whereas all other
components have one peak (the coordinate that contains the
information is completely arbitrary since all coordinates are
treated the same way). In the VAE encoder, the information
was separated only for Z0, but even the best classifier (which
is LDA in this case) will have some error, since the peaks
were not disjoint. This simple experiment also demonstrates
that our results are simpler to understand.

The gap in the explicitness of the results as encoded in
Z is more apparent on Synth2. In Fig. 3, we see that our
encoding of Z is well separated on Z0 and Z1 while in the
other method, one cannot tell the number of values without
further analysis or prior knowledge about Z. Moreover,
applying standard PCA on the sampled Z vector of the auto
encoder, gave four components with similar variance, as
shown in Tab. 1.

3. Experiments
We evaluate our method on the visual disentanglement

benchmarks used in previous work, as well as on simulated
and real financial data. The detailed network architecture
used for each of the experiments is described in Tab. 2.

3.1. Image Benchmarks

We followed a previous work [14] and tested our model
on four visual datasets - MNIST [12], NORB [13], Sprites
dataset [16] and the Extended-YaleB dataset [6].

For measures of performance on the visual datasets, we
also followed the ones suggested in [14]. Note that all these
measures are subjective.

• Swapping - In swapping, we generate an image using S
from one image, I1, and Z from a different image, I2. In



(a)

(b)
Figure 2. Synth1 data: The dimension of the unspecified factors is
1. (a) histogram of different Z components of our model (b) same
histogram for the encoding of [14]

a good disentanglement, the resultant image preserves the
S-qualities of I1 and the Z-qualities of I2.

• Interpolation - Interpolation of two source images is a
sequence of images generated by linearly interpolating
the S and Z components of the two different sources. The
measure is again done by visually judging the resultant
images. i.e., we expect to see "more" of the look of the
second image, the bigger its weight gets. Interpolation is
done in both the S space and the Z space.

• Retrieval - In order to assess the lack of correlation be-
tween the S and the Z components, we perform a query
based on either the S part or the Z part, where in each
case we retrieve its nearest neighbors in the corresponding
space.

(a)

(b)
Figure 3. Synth2 data: The dimesnion of the unspecified factors
is 2. (a) An histogram of the components of Z of our model. (b)
Same histogram for the encoding from the model of [14]

Image Datasets Stocks return

Encoders
S,Z

For MNIST and Sprites
three 5x5 convolotional, for
NORB and Extended YaleB three 3x3
convolutional layers.
All convolutional layers with stride 2
and a dense S/Z dimension layer.
all with ReLU non-linearities

4 dense layers of sizes
100,66,66,50 with ReLU
non-linearities

S classifier

For MNIST and Sprites dense layers
x 256 hidden units,
for NORB,Extended YaleB
x 16 hidden units
Batch Normalization, ReLU
and a softmax for the output

2 dense layers x
50 hidden units,
Batch Normalization,
ReLU and a softmax output

Decoder
Mirroring network to the encoders:
dense layer and three convolutional
network with upsampling

4 dense layers of sizes
70,66,66,100 with
ReLU non-linearities

Adversarial
Classifier

3 dense layers x 256 hidden units,
Batch Normalization,ReLU
and a softmax for the output

3 dense layers x 50
hidden units,
Batch Normalization, ReLU
and a softmax for the output

S, Z #dims Mnist: 16,16, Sprites: 32,128,
NORB and Extended YaleB: 32,256 20,50

Table 2. Networks architectures



• Classification Score - In addition to the qualitative mea-
sures above, we try to quantify the amount of information
on the class that each part of the code (S and Z) contains
on the class. Since measuring this directly is a difficult
task, we approximate it by running a classification algo-
rithm. A good disentanglement is such that when running
the classifier on the S part it gives high accuracy, whereas
when running it on the Z part it gives nearly random
results.

MNIST - For the MNIST data, the S part is the digit and
the Z part is the style. In Fig. 4, we present the results for
swapping and interpolation. The rows of the table in the left
hand side of the figure shows the style (Z) and the columns
the digit. To the best of our judgment, the style looks well
separated from the content.

Sprites dataset - This dataset contains color images of
sprites [16]. Each sprite character is defined by body type,
gender, hair type, armor type, arm type and greaves type.
Overall there are 672 different characters, from which we
use 572 characters for the training set and 100 characters
for the test set. For each character, there are five animations
each from four viewpoints, each animation has between 6
and 13 frames. We use character’s identity as the specified
component. The results from swapping and interpolation
are shown in Figure 5. Our model learned to separate the
character from its position and weapon and generalizes the
separation to unseen characters.

Examining the retrieval results in Fig. 6, it is possible to
see that for the Z part (sub-figure (b)), the characters in any
row is random but its pose is kept. In the S part (sub-figure
(a)), the character is perfectly kept, whereas the pose is not.
In [14], it seems that Z holds some information on S because
the hair style and color rarely changes between characters.

Small NORB dataset [13] - The NORB dataset contains
images of 50 toys belonging to five generic categories: four-
legged animals, human figures, airplanes, trucks, and cars.
The objects were imaged by two cameras under six different
illumination conditions, nine elevations and 18 azimuths.
The training set is composed of five instances of each cate-
gory and the test set of the remaining five instances. We use
the instance identity as the specified component and have 25
different labels for the training set.

For this dataset the swapping results were not perfect. We
succeeded in separating different azimuths and background
from the instance. However, for some of the categories, the
reconstruction contained mistakes. This is probably due to
the high variability between the instances in the train and
the test. The numerical results support this hypothesis, since
there are big difference between the train and the test errors.
The results look good for the interpolation, see Figure 7. A
similar degradation of results was also observed in [14]

Extended-YaleB [6] - The extended-YaleB Face dataset
contains 16095 images of 28 human subjects under nine

(a)

(b)
Figure 4. (a) Swapping the specified and unspecified components
of MNIST images. The images are generated using Z from the
left column and S from the top row in the decoder. The diagonal
digits show reconstructions. (b) Interpolation results. the images
in the top-left and bottom-right corners are from the test set. The
other digits are generated by interpolation of S and Z gradually. Z
interpolate along the rows and S through the columns.

poses and 64 illumination conditions. The training set con-
tains 500 images per subject, while the test contains roughly
75 images per subject. We use subject identity as the speci-
fied component.

Results for swapping and interpolation for images from
the test set shown in Figure 8. For swapping, one can see
that illumination conditions are transferred almost perfectly,
whereas the position is not perfectly transferred (see for
example line 6, column 5). We again suspect that this is
mainly because some of the positions were missing in the



(a)

(b)
Figure 5. (a) Swapping the specified and unspecified components
of Sprites. The images are generated using Z from the left column
and S from the top row in the decoder. (b) Interpolation results. the
images in the top-left and bottom-right corners are from the test set.
The other images are generated by gradual interpolation of S and
Z. Z interpolates along the rows and S through the columns.

training set, and with more data we expect the results to
improve. For the interpolation, some of the mixed identities
do not resemble either sources.

Quantitative results The numerical results for all datasets
are shown in Tab. 3.1. One can see that the unspecified com-
ponent is almost agnostic to the identity, while the classifier
on the specified component achieves high accuracy. For com-
parison with [14], we added to the table the results that were
reported in their paper. For most cases our model achieves
higher accuracy for S. This is expected, since we train the
S-encoder for classification. As for the unspecified com-

(a)

(b)
Figure 6. Sprites retrieval results (a) Querying on the specified
component S. (b) Querying on the unspecified component Z. The
components of the sprites on the left column are used as the query.

ponent Z, our performance on the train and the test set are
similar, except for the NORB dataset where our error rate is
slightly worse. For this dataset, the error rate of S in the test
set is much larger than that of the train set, and in [14] they
explain this result by overfitting. Note that for this dataset,
there are only five training instances per category, which
makes generalization difficult.

3.2. Financial data

We applied our method on the daily returns of stocks
listed in NASDAQ, NYSE and AMEX, from the Center
for Research in Security Prices (CRSP) database. For all
datasets, the results were measured on the test set. Specif-
ically, we used daily returns of stocks from the Nasdaq,
NYSE and AMEX exchanges. The training set consists of



(a)

(b)
Figure 7. (a) Swapping the specified and unspecified components
of the NORB test set images. (b) Interpolation results. These are
the same arrangements as in Figure 5.

the years 1976-2009 and the test set 2010-2016. Each year
is divided into four quarters of approximately 63 trading
days. As an input to the network, we used for each stock
the returns of the first 50 days of each quarter, as well as the
market returns for the same 50 days. In order to improve
generalization, we added εi a random noise N(0, 0.0016).

The goal of the disentanglement is to separate market
behavior from specific stock’s movements. In order to do
so, we labeled each quarter in the training set differently, so
as to have 136 such labels. Next, we let S encode the label
information and Z encode the rest of the information.

For evaluation, we employed two metrics, (i) checking
the stock specific information from Z and (ii) evaluating a
trading strategy based on the predictions that came from Z.

For a sanity check, we start by showing that S contains
market information. We did a PCA on the S-part of the

(a)

(b)
Figure 8. (a) Swapping the specified and unspecified components
of Yale test set images. (b) Interpolation results. These are the same
arrangements as in Figure 4. In this case, the results are visibly
inferior to the examples presented in [14]

encoding and examined the first component. This component
was correlated with the average return of the market during
the tested period. The correlation coefficient between the
market return on the test period and the first component of
the PCA is 0.55.

We then defined two stock specific measures based on
the Capital Asset Pricing Podel (CAPM) [17], which is one
of the fundamental quantitative models in finance theory: β,
which is the systematic risk of a given asset, and ρ, which
is the correlation coefficient with the market during the last
year. We constructed a discrete version of these measures
with four levels each. The classifier we used is logistic re-
gression, since it dominates the econometrics literature. The



Mnist Sprites

Z S Z S

Our (train) 87.0% 0.1% 66.0% 0.0%
Our (test) 87.0% 0.8% 58.0% 0.0%
[14] (train) - - 58.6% 5.5%
[14] (test) - - 59.8% 5.2%
Random-chance – 90.0% – – * –

NORB Extended-YaleB

Z S Z S

Our (train) 78.9% 1.1% 95.7% 0.00%
Our (test) 79.2% 15.2% 96.3% 0.00%
[14] (train) 79.8% 2.6% 96.4% 0.05%
[14] (test) 79.9% 13.5% 96.4% 0.08%
Random-chance – 80.0% – – 96.4% –

Table 3. Classification error rate based on S or Z for our model and
as reported in [14]. *While [14] reports 60.7% chance, we observe
56% in the test set, and 67% in the train set.

beta rho beta [14] rho [14]

Z 35% 31% 31% 30%
S 26% 26% 28% 28%
Raw 26% 26%
Rand 25% 25% 25% 25%

Table 4. Logistic regression accuracy for β, ρ

NY AM NQ All [14]

Z-1 31% 37% 30% 31% 30%
S-1 26% 24% 24% 25% 27%
X-1 28% 24% 24% — 25% —
Rnd-1 —————- 25% —————-

Z-5 40% 49% 36% 39% 34%
S-5 26% 27% 25% 26% 30%
X-5 25% 29% 25% — 26% —
Rnd-5 —————- 25% —————-

Table 5. Logistic regression accuracy for next day/week volatility.
The rightmost column is the results of the model presented in
(Mathieu et al. 2016), other columns are the results of our model.

predictive accuracy on the test set for each of the six models
(2 measures times 3 inputs) is given in Table 4. From this
table, we clearly see that we failed to reveal stock properties
from X and S, but managed to do it from Z.

A very important measure that is used in options trading is
the volatility. Using a model on Z, we predicted the next day
and next 5-days volatility. The results are given in Table 5.
The accuracy of the different models changes between the
stock groups, but the performance is significantly better for
the model based on Z.

The volatility is an important component in options pric-

Mean SD Traded days %

Z (Ours) 3.1% 0.026 89.3%
Z [14] 2.9% 0.039 78.6%
S (Ours) 2.4% 0.031 82.1%
S [14] 2.4% 0.028 83.2%
X 2.6% 0.030 78.6%

Table 6. Options portfolio returns. The mean, std and percent of
trading days with positive returns.

ing models, such as Black-Scholes model [1]. We developed
the following theoretical options trading strategy: (1) We
estimated the volatility of a stock based on its volatility in
the last fifty trading days. (2) We run a classification model
for the stock based on either X or Z. (3) For the ten stocks
whose predicted volatility minus measured volatility is the
highest, we bought a put and a call option. Similarly for the
ten stocks whose predicted volatility minus measured volatil-
ity is the lowest, we sold one put option and one call option.
The strike price of the options is 5% higher than the current
price. The time to expire is 60 days for the high predicted
volatility options and 5 days for the low volatility ones. (4)
We cleared position on the next day, i.e., sold options in the
case where we bought options yesterday and vice-versa.

Note that this strategy is market neutral and relies only
on the volatility. We are aware of the fact that we ignored
trading cost, liquidity and other technicalities that make
this strategy unrealistic. However, we used it as a way to
compare the classifier that used X to the one that used Z
as an input. The results are summarized in Table 6. As one
can see, using Z is better. The results from [14] for financial
data are presented next to ours in tables 4, 5 and 6. It can be
seen that our accuracy and portfolio performance based on
Z are better and we also achieved better separation from S,
since it is almost agnostic to specific stock properties.

4. Conclusions
This paper presents an adversarial architecture for solving

the problem of disentanglement. Given labeled data, our
algorithm encodes it as two separate parts, one that contains
the label information and the other that is agnostic to it.
We tested the network on visual and financial data, and
found that it performed well compared to a leading literature
method. Our architecture does not assume a distribution on
the unspecified factors and the resultant encoding seemed
both more interpretable and more suitable as a representation
for learning various unspecified qualities.

Acknowledgements
This project has received funding from the European Re-

search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant ERC CoG
725974).



References
[1] F. Black and M. Scholes. The pricing of options and corporate

liabilities. Journal of Political Economy, 81(3):637–54, 1973.
8

[2] D. Y. H. R. S. J. S. I. Chen, Xi and P. Abbeel. Infogan: Inter-
pretable representation learning by information maximizing
generative adversarial nets. In Advances in neural information
processing systems, pages 2172–2180, 2016. 2

[3] E. L. Denton, S. Chintala, R. Fergus, et al. Deep generative
image models using a laplacian pyramid of adversarial net-
works. In Advances in neural information processing systems,
pages 1486–1494, 2015. 2

[4] A. Elgammal and C.-S. Lee. Separating style and content
on a nonlinear manifold. In Computer Vision and Pattern
Recognition, 2004. CVPR 2004. Proceedings of the 2004
IEEE Computer Society Conference on, volume 1, pages I–I.
IEEE, 2004. 1

[5] L. A. Fletcher and R. Kasturi. A robust algorithm for text
string separation from mixed text/graphics images. IEEE
transactions on pattern analysis and machine intelligence,
10(6):910–918, 1988. 1

[6] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman.
From few to many: Illumination cone models for face recog-
nition under variable lighting and pose. IEEE transactions
on pattern analysis and machine intelligence, 23(6):643–660,
2001. 3, 5

[7] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio. Generative
adversarial nets. In NIPS, pages 2672–2680. 2014. 2

[8] F. J. Huang, Y.-L. Boureau, Y. LeCun, et al. Unsupervised
learning of invariant feature hierarchies with applications to
object recognition. In Computer Vision and Pattern Recogni-
tion, 2007. CVPR’07. IEEE Conference on, pages 1–8. IEEE,
2007. 1

[9] D. Kingma and J. Ba. Adam: A method for stochastic op-
timization. In The International Conference on Learning
Representations (ICLR), 2016. 3

[10] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling.
Semi-supervised learning with deep generative models. In
Advances in Neural Information Processing Systems, pages
3581–3589, 2014. 1

[11] G. Lample, N. Zeghidour, N. Usunier, A. Bordes, L. Denoyer,
and M. Ranzato. Fader networks: Manipulating images by
sliding attributes. CoRR, abs/1706.00409, 2017. 1, 2

[12] Y. LeCun and C. Cortes. MNIST handwritten digit database.
2010. 3

[13] Y. LeCun, F. J. Huang, and L. Bottou. Learning methods
for generic object recognition with invariance to pose and
lighting. In Computer Vision and Pattern Recognition, 2004.
CVPR 2004. Proceedings of the 2004 IEEE Computer Society
Conference on, volume 2, pages II–104. IEEE, 2004. 3, 5

[14] M. F. Mathieu, J. J. Zhao, J. Zhao, A. Ramesh, P. Sprech-
mann, and Y. LeCun. Disentangling factors of variation in
deep representation using adversarial training. In D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems 29,

pages 5040–5048. Curran Associates, Inc., 2016. 1, 2, 3, 4, 5,
6, 7, 8

[15] A. Radford, L. Metz, and S. Chintala. Unsupervised represen-
tation learning with deep convolutional generative adversarial
networks. arXiv preprint arXiv:1511.06434, 2015. 2

[16] S. E. Reed, Y. Zhang, Y. Zhang, and H. Lee. Deep visual
analogy-making. In Advances in Neural Information Process-
ing Systems, pages 1252–1260, 2015. 3, 5

[17] O. W. Sharpe and M. Miller. Capm. Equilibrium, 1964. 7
[18] J. B. Tenenbaum and W. T. Freeman. Separating style and

content. Advances in neural information processing systems,
pages 662–668, 1997. 1


