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Abstract

Multi-shot person re-identification (MsP-RID) utilizes
multiple images from the same person to facilitate identi-
fication. Considering the fact that motion information may
not be discriminative nor reliable enough for MsP-RID, this
paper is focused on handling the large variations in the
visual appearances through learning discriminative visual
metrics for identification. Existing metric learning-based
methods usually exploit pair-wise or triple-wise similar-
ity constraints, that generally demands intensive optimiza-
tion in metric learning, or leads to degraded performances
by using sub-optimal solutions. In addition, as the train-
ing data are significantly imbalanced, the learning can be
largely dominated by the negative pairs and thus produces
unstable and non-discriminative results. In this paper, we
propose a novel type of similarity constraint. It assigns
the sample points to a set of reference points to produce
a linear number of reference constraints. Several optimal
transport-based schemes for reference constraint genera-
tion are proposed and studied. Based on those constraints,
by utilizing a typical regressive metric learning model, the
closed-form solution of the learned metric can be easily
obtained. Extensive experiments and comparative studies
on several public MsP-RID benchmarks have validated the
effectiveness of our method and its significant superiority
over the state-of-the-art MsP-RID methods in terms of both
identification accuracy and running speed.

1. Introduction
Person re-identification (P-RID) is a critical yet very

challenging task in video surveillance [29]. It generally
evaluates the similarity between a probe image of an un-
known person against a set of gallery candidates with
known identities. The gallery images are usually taken from
different camera-views at different times. Research efforts
have been devoted to single-shot person re-identification
(SsP-RID) [16, 18, 17, 36, 39, 32] in recent years. How-
ever, besides viewpoint changes, the quality of the only

Figure 1. (a) The background occlusion completely conceals the
motion information on the legs; (b) & (c) Even for the same per-
son, the walking behavior can be very different; (d) & (e) For dif-
ferent persons, they may share very similar walking patterns.

given probe image can be severely degraded by various un-
predictable conditions such as illumination changes, par-
tial occlusion, low-resolution, etc. Thus SsP-RID still re-
mains a very challenging problem. In fact, practical scenar-
ios in video surveillance can provide continuous video or
multiple images for the same person, which has motivated
the research of multi-shot person re-identification (MsP-
RID) [10, 27, 31, 35, 22] that utilizes multiple images for
the same person from the same camera-view, expecting to
improve the performance.

One common approach in MsP-RID [31, 10, 35, 27] is
to treat the multiple images as a sequence of consecutive
frames which prefers to utilize the temporal information or
motion to extract more sophisticated features for identifica-
tion. In practice, the motion information may not be dis-
criminative nor reliable enough for MsP-RID. Firstly, the
dynamic background and temporal misalignment of the im-
age sequences impede the reliable motion pattern estima-
tion [19] (Fig. 1(a)). Secondly, motion patterns may not be
discriminative enough for identification since different per-
sons may walk in the same walking pattern [31] (Fig. 1(d)
and (e)). Because MsP-RID is a non-contextual long-term
identification problem, the same person may exhibit dif-
ferent walking behaviors at different times. As shown in
Fig. 1(b) and (c), a person is walking with luggage cap-



Figure 2. The proposed reference constraint correlates the origi-
nal indiscriminative same class data to the common discriminative
reference points (note: there can be multiple reference points to
handle the multiple-mode distribution of same class data).

tured by one camera. At a different time, the same person
is viewed by another camera but without the luggage. Such
large intra-class variation in motion and dynamics across
different camera-views along a long time duration is very
difficult to handle. As a result, the performance of this
approach is still far from satisfactory even additional mo-
tion/dynamics features are utilized.

Another approach [13, 15] treats the multiple images as
separate samples, paying more attention to the variations in
their visual appearances. Efforts have been made to design
specific appearance features [17, 33, 19], but there is still
room for performance improvement. Recent methods have
been focused on learning discriminative visual metrics to fa-
cilitate identification. Many such methods [17, 40, 31, 18]
learn a global Mahalanobis-like distance metric that reduces
the intra-class variation and enlarges the inter-class varia-
tion. In practice, there are several difficulties to be over-
come. Firstly, these methods use pair-wise [18] or triple-
wise [40] data similarity and dissimilarity constraints. The
scale order of such constraints is quadratic O(n2) or cu-
bic O(n3) to the number of data points n. As a result,
these constraints can be enormous, and it is computation-
ally demanding to obtain optimal solutions that satisfy all
these constraints. When adopting computationally-feasible
but sub-optimal solutions, their performances suffer signif-
icantly. In addition, although having more samples sounds
appealing, not all of them are actually necessary or helpful
for learning. The computational complexity induced by the
redundant samples will largely slow down the optimization
process in learning, and a small portion of “adverse” in-
puts will significantly jeopardize the learning quality [26].
Moreover, in practice, the positive and negative samples are
significantly imbalanced. As the learning can be largely
dominated by the negative pairs [18], it leads to unstable
and non-discriminative learning results.

To overcome these difficulties, in this paper, we propose
a novel type of similarity constraints which assigns given
sample points to a set of pre-determined points with explicit
meanings, as shown in Fig. 2. We call the pre-determined

points references, and the constraints between the original
samples and the references reference constraints. Such ref-
erence points are automatically generated based on different
criteria. Several optimal transport-based schemes for deter-
mining the reference points and assignments are proposed
and studied. The proposed reference constraints can be
readily used for a regressive metric learning model [6, 25]
to learn a discriminative metric with a closed-form solution.

Our contributions are three-fold. (1) In contrast to the
existing methods that use a O(n2) or O(n3) number of
constraints, our method only uses a linear O(n) num-
ber of reference constraints, which is much easier to deal
with. (2) The proposed reference constraints can be read-
ily used for a general regression-based string-to-string map-
ping framework [6] for metric learning, the closed-form so-
lution and its general non-linear version can be easily ob-
tained. (3) Compared with the state-of-the-art MsP-RID
methods based on appearance features, our method signifi-
cantly outperforms them by a large margin in terms of both
identification accuracy and running speed. Besides, even no
temporal information is used, our model still achieves com-
parable even better performance against the ones using both
appearance and temporal features. Extensive experiments
have demonstrated the superiority of our method on sev-
eral multi-image benchmarks including the CAVIAR [4],
the P-RID 2011 [12], the iLIDS-VID [31] and the Market-
1501 [39] datasets.

2. Easy Identification from Reference Con-
straints

2.1. Problem Setup

In this work, we aim to learn a discriminative positive
semi-definite (PSD) Mahalanobis metric M = LLT by
utilizing the proposed reference constraints. Given a la-
beled dataset S = {(xi, li)}ni=1, we construct a new learn-
ing set Sr = {(xi, ri)}ni=1, where xi is the data point,
li ∈ L = {1, 2, 3, ..., c} is its label and ri is the associ-
ated reference point to xi determined by its label li (de-
tails see Sec. 2.2). For the sake of convenience, let’s denote
X = (x1, x2, ..., xn)

T and R = (r1, r2, ..., rn)
T . It’s worth

mentioning that the reference point set R can be drawn from
another distribution D′ so that R ⊆ Rd′ . If d′ � d, the
learned Mahalanobis metric M automatically perform the
dimension reduction on the original samples.

2.2. Automatic Reference Constraint Generation

In this section, we will show how to automatically gener-
ate the reference constraints under a general optimal trans-
port (OT) framework [30]. The motivation of regressing the
original given data X to a reference set R is the poor dis-
criminative power of X can be enhanced by the “good qual-
ity” reference set R, then the coupling between X and R can



Figure 3. (a) is the result of an unsupervised OT method [8]; (b) is
a semi-supervised OT method [7]; (c) is our proposed supervised
OT method with cross-bin cost function Eqn. 2. Different col-
ors (Red, Blue, Purple) represent different classes, and different
shapes ( , N) mean different distributions.

be modeled as an optimal transport procedure [7, 24, 8]:

argmin
T

〈T ,C〉F + G(T ) (1)

where T is the optimal transformation, C is the cost ma-
trix between X and R. The first transport cost term is the
Frobenius dot product between T and C, and G(T ) is a reg-
ularization term to constrain T . In the following, three dif-
ferent schemes are proposed to automatically determine R
and find optimal T based on different C and G(T ).

2.2.1 R from Camera Viewpoint Alignment

The major challenge for P-RID is rendered by the large ap-
pearance variation due to the camera viewpoint changes.
Identifying the same person across a significant viewpoint
change is difficult because of the visually spatial misalign-
ment [26]. An intuitive idea to generate R is to directly
re-align the data from different camera viewpoints.

The alignment can be achieved via a supervised opti-
mal transport learning. Traditionally, OT methods are un-
supervised since no class label information is used. Hence
the correlations between two distributions are completely
unconstrained (Fig. 3(a)) which will be problematic in the
P-RID problem, where the identity label is given for each
sample. In [7], a novel semi-supervised OT method is pro-
posed to utilize the label of source data while the labeling
for target distribution is unknown. Under this condition,
although one target sample is not assigned to the source
samples from different classes, the mis-matching between
different classes still exists (Fig. 3(b)). In contrast to these
methods, we propose a novel cross-bin cost function CA to
fulfill the fully supervised learning requirement of P-RID:

CA(i, j) = ‖xAi −xBj ‖2I(lAi = lBj )+∞· I(lAi 6= lBj ) (2)

where I(·) is a binary indicator, xAi is the ith sample with
class label lAi from camera spaceA, so as the xBj . Therefore

we formulate the alignment between two camera viewpoint
spaces via an optimal transport TA as Eqn. 3:

argmin
TA

〈TA,CA〉F +
1

λ

∑
i,j

TA(i, j) log TA(i, j)

+ η
∑
j

∑
c

‖TA(lAi = c, j)‖pq
(3)

where the λ and η are the regularization parameters. The
second regularization aims to compute the entropy of the
transport TA. The third sparsity regularization is to group
the samples from the same class together that TA(lAi = c, j)
corresponds to the jth column of TA where the label is c.
The desired optimal transport TA is a matrix with the same
size as CA ∈ R|A|×|B|.

By utilizing the proposed CA, the transport cost term
will be optimal only if the transports are restricted within
the same class samples. The mis-matching occurred in the
existing methods ( [7, 24, 8]) as illustrated in Fig. 3(a) and
(b) can be avoided, and thus a clean transport flow can be
achieved (Fig. 3(c)). The objective Eqn. 3 can be efficiently
solved via the alternation between the Sinkhorn-Knopp
algorithm[8] and the Majoration-Minimization strategy[7].
The parameters of lq-norm in the third term are p = 1

2 and
q = 1. Once the optimal transport TA is learned, the corre-
sponded reference constraint set is R = XTA

2.2.2 R from Class-based Discriminative Space

An efficient and straightforward idea is to explicitly deter-
mine the R in a class-based discriminative space (CDS).
Let ui ∈ R|L| be a unit vector (1 ≤ i ≤ |L|) in a |L|-
dimensional feature space, R = {ui}|L|i=1 contains all such
ui. The optimal transport from X to R can be modeled as
optimizing:

argmin
TC

〈TC ,CC〉F (4)

with CC(xi, uj) = 0 · I(#li = j) +∞ · I(#li 6= j) that
#li is the label index. Obviously, a naive optimal solution
to TC is

TC (xi, li) = u#li (5)

that all the samples in X from the same class #li will be
transported into one single point u#li in R to guarantee a
zero within-class distance, and large distances between the
collapsed points can be explicitly guaranteed to avoid mix-
ing classes after transformation. If the class number |L| is
much smaller than the dimensionality d of X, TC is equiv-
alent to learn a lower-dimensional embedding where the
samples drawn from different classes become much more
discriminative.

Optimality of R from CDS: The similar idea of our
CDS is shared by many existing works like the well-known



Figure 4. Moderate positive mining for a local unimodal data distribution.

Figure 5. The comparison of three related algorithms: MLCC [11],
DNSL [36] and our CDS method.

metric learning algorithm MLCC [11] and a recently state-
of-the-art P-RID algorithm DNSL [36]. As illustrated by
Fig. 5, all the three approaches will collapse the same class
samples into one single point in the projected space, so as
to enforce the within-class distance to be zero. However,
three methods have completely different strategies to handle
the between-class distance. Let’s take the Fisher discrimi-

nant criterion J (L) =
LTSbL
LTSwL

into consideration. The

larger the J (L) is, the more discriminative the learned pro-
jection L is. All of MLCC, DNSL and CDS will give us
zero within-class scatter LTSwL = 0, but MLCC simply
omits the between-class scatter part, DNSL only requires
LTSbL > 0. Our CDS will strictly require LTSbL = c to a
constant margin.

2.2.3 R from Local Moderate Positive Mining

Another approach to obtain good quality R is from the in-
trinsic distribution of X directly which is inspired by the
SMOTE algorithm for imbalanced learning [2]. We pro-
pose to mine a set of “moderate” representations from X
which are conceptually not too close to the hard negatives
around the classification boundary, but also convey enough
discriminative information.

A moderate positive mining (MPM) algorithm is pro-
posed to mine the references R in a local manner. Denote
by Xc = {xci} for a subset containing all the samples from
class c, and by Xc̄ = {xc̄i} for a subset including different

class samples. For each xci in Xc, its corresponded “hard-
est” negatives {xc̄i,h}

|Xc|
i=1 are obtained from Xc̄. The pair

(xc, xc̄h) = maxi d(x
c
i , x

c̄
i,h) with the largest distance to its

“hardest” negative is retrieved. Then another sample xc̄e that
is farthest away from xc is retrieved from the obtained hard-
est negative set {xc̄i,h}

|Xc|
i=1 which is the “easiest-hardest”

negative for xc. Finally, the reference points for all Xc is
the synthetic point:

rc =
1

2
(1 +

dc2h
dc2e

)xc +
1

2
(1− dc2h

dc2e
)xc̄e (6)

where the weighting parameter dc2e = d(xc, xc̄e) and
dc2h = d(xc, xc̄h)

1. Various conditions of dc2h and dc2e are
shown in Fig. 4 which indicates our MPM algorithm can al-
ways mine the moderate representations no matter how the
local data distribution is. Finally, by solving a similar Eqn. 4
with CM (xi, r

j) = ‖xi−rj‖22·I(#li = j)+∞·I(#li 6= j),
the optimal transport to associate X to R is:

TM (xi, li) = r#li (7)

Since real-world data generally exhibit multiple-mode
distribution due to various complicated conditions, in or-
der to eliminate the influence of the high-density modes,
firstly we adopt Mean-shift clustering [5] to Xc to divide
Xc into several sub-class clusters, thus each cluster bears a
unimodal distribution. Then the proposed MPM algorithm
is further performed to these unimodal clusters. Therefore
even for the same class data Xc, they may be assigned dif-
ferent moderate points as references.

2.3. Metric Learning from R via Regression

Once the reference set R is determined, we aim to learn
a positive semi-definite (PSD) Mahalanobis metric M =
LLT by solving the following regularized regression prob-
lem [6, 25]:

L∗ = min
L

1

n
‖XL− R‖2F + λ‖L‖2F (8)

where the λ is a weighting parameter to balance the two
terms. The closed-form solution to objective Eqn. 8 can be
derived.

1It is obvious that dc2h ≤ dc2e is alway true.



Theorem 1 The optimal solution of objective Eqn. 8 has a
closed form, as shown in the following two equivalent solu-
tions:

L = (XTX + λnI)−1XTR (9)

L = XT (XXT + λnI)−1R (10)

Proof 1 Compute the derivative of Eqn. 8:

∂f(L,X,R)
∂L

= 2

(
1

n
XTX + λI

)
L− 2

n
XTR (11)

By setting this derivative to zero we can obtain:

L = (XTX + λnI)−1XTR (12)

Theorem 2 The optimal solutions Eqn. 9 and Eqn. 10 of
objective Eqn. 8 are exactly equivalent.

Proof 2 For Eqn. 9, we perform Taylor expansion to the
(XTX + λnI)−1XT part:

(XTX + λnI)−1XT =
1

λn
(I +

1

λn
XTX)−1XT

=
1

λn

∞∑
1

(−1)n( 1

λn
)n(XTX)nXT

=
XT

λn

∞∑
1

(−1)n( 1

λn
)n(XXT )n−1XXT

=
XT

λn

∞∑
1

(−1)n( 1

λn
)n(XXT )n

=
XT

λn
(I +

1

λn
XXT )−1

= XT (XXT + λnI)−1

(13)

Therefore Eqn. 13 proves that Eqn. 9 and Eqn. 10 are ex-
actly the same solution for the proposed objective Eqn. 8.

From Eqn. 9, we obtain the Mahalanobis metric M:

M = LLT

= (XTX + λnI)−1XTRRTX(XTX + λnI)−1
(14)

As we can see from Eqn. 14, the bottleneck to compute
the metric kernel M is the inversion of a d×dmatrix, where
d is the data dimension. In the case of a large d, appropriate
dimension reduction techniques are needed before learning.

2.3.1 Non-Linear Extension by Kernelization

The linear model in Sec. 2.3 may not be powerful enough
to handle complicated metrics, but we can extend it to a
nonlinear form via kernelization.

Assume a kernel function is K(x, x′) = φ(x)Tφ(x′)
where the φ(x) is a nonlinear projection function. For the

learning set X, we are able to compute the kernel distance
matrix KX ∈ Rn×n, where the element kij is equal to
K(xi, xj) = φ(xi)

Tφ(xj). Rewrite KX = φ(X)Tφ(X),
where φ(X) = (φ(x1), φ(x2), ..., φ(xn))

T . So the ker-
nelized version of L is defined as LK = φ(X)T (KX +
λnI)−1R, which can be easily obtained by kernelizing
Eqn. 10. Therefore the kernelized Mahalanobis metric MK

is written as:

MK = φ(X)T (KX + λnI)−1RRT (KX + λnI)−1φ(X)
(15)

The squared Mahalanobis distance between x and x′ can
be easily computed by:

d2
MK

(x, x′) =

φ(x)TMKφ(x) + φ(x′)TMKφ(x
′)− 2φ(x)TMKφ(x

′)

that each term can be written as:

φ(x)TMKφ(x) =

KX(x)
T (KX + λnI)−1RRT (KX + λnI)−1KX(x)

where KX(x) = (K(x, x1),K(x, x2), ...,K(x, xn))
T . For

the kernelized version MK , we need to compute the inver-
sion of a n× n matrix where n is the number of samples.

2.3.2 Generalization Ability Analysis

For our objective Eqn. 8, the empirical error risk is
E (L,Sr) = 1

n‖XL − R‖2F , which is to measure how close
the projected samples XL are to the reference points R af-
ter learning. We still care about how large the true error risk
E (L,DR) = E(xi,ri)∼DR‖xTL−rT ‖22 is for the whole data
distribution DR. Here, we prove that once a low empirical
error E (L,Sr) can be obtained, with a very high probabil-
ity, a low true error E (L,DR) is bounded [1].

Theorem 3 Assume ‖r‖2 ≤ Br for any r ∈ R, and
‖x‖2 ≤ Bx for any x ∈ X . With probability 1 − δ, for
any matrix L which is the optimal solution of Eqn.8 with

stability β =
8B2

xB
2
r

λn

(
1 +

Bx√
λ

)2

, we have:

‖E(L,DR)−E(L,Sr)‖ ≤

1 +

(
2n+

λn

8B2
x

)√
ln 1

δ

2n

β

(16)

As shown by Theorem. 3, with a convergence rate
O(1/

√
n), the difference between empirical error risk and

true error risk converges to zero. The proof of Theorem. 3
can be found in our supplementary materials. More specifi-
cally, if a zero-empirical error can be obtained during train-
ing E(L,Sr) ≈ 0, the true error risk over the whole un-
known distribution will approach to 0 with convergence rate
O(1/

√
n).



3. Experiments
3.1. Experiment Details

Dataset. To evaluate our proposed method, we con-
duct thorough experiments on four widely-used multi-shot
benchmarks: the CAVIAR [4], the PRID 2011 [12], the
iLIDS-VID [31] and the Market-1501 [39] datasets. The
CAVIAR dataset contains 1220 images of 72 individuals
from two non-overlapped cameras in a shopping mall. For
the 72 individuals, 50 of them appear in both camera views
and the remaining 22 persons only appear in one camera
view. Each identity has 10 to 20 images and the resolutions
vary from 17×39 to 72×144. The PRID 2011 dataset con-
sists of video pairs recorded from two static surveillance
cameras. There are 385 persons recorded in camera view
A, as well as 749 persons in camera view B. Among all the
persons, 200 persons are recorded in both camera views.
The videos in PRID 2011 have 5 to 675 image frames, with
an average of 100 for each. The iLIDS-VID dataset is gen-
erated from images captured in a busy airport arrival hall
so the videos suffer severe occlusions caused by people and
luggages. 600 videos of 300 randomly sampled people are
recorded so that each person has one pair of videos from
two different non-overlapped camera views. The video in
iLIDS-VID is comprised of 23 to 192 image frames, with
an average of 73 for each. The Market-1501 [39] is the lat-
est and biggest benchmark dataset to date which contains
32668 bboxes of 1501 identities. Each person is recorded
by six cameras at most, and two at least.

Feature. In all the experiments, only the image-
level appearance feature descriptor is utilized. The high-
dimensional feature LOMO [17] is adopted as the visual
feature representation. Since it is not practical to directly
use such a high dimensional feature in metric learning, we
employ principal component analysis (PCA) to reduce the
feature dimension to a reasonable scale, 2000 dimensions.

Setting. To conduct fair comparisons, we follow the
same experimental protocols as in [32, 3, 31, 35]. For the 50
persons who are captured by both cameras in CAVIAR, we
randomly select 14 of them for training 2 and the remaining
36 persons are used for testing. As for the PRID 2011, we
only utilize the 200 persons who appear in both cameras.
For iLIDS-VID, the 300 persons are randomly divided into
150 for training and the other 150 for testing, so that there
are p = 36, p = 100 and p = 150 individuals in the test sets
of CAVIAR, PRID 2011 and iLIDS-VID respectively. As
for the Market-1501 dataset, the pre-determined 12936 im-
ages from 750 identities are used for training, and the other
19732 images from disjointed identity set are for testing. In
order to get statistically reliable results, 10 times random-
splitting procedures are repeated to report the average per-

2Training set of CAVIAR also includes the other 22 single-camera-
view persons, so totally 36 persons are used for training)

Method Ave Time Method Ave Time
TC-L 0.03 TC-K 0.17
TM -L 0.37 TM -K 0.54
TA-L 4.86 TA-K 4.14

Table 1. Comparison of training time (seconds) on CAVIAR. -L
meas linear model, and -K means kernelized model.

formance. The multi-shot evaluation is adopted to report
the Cumulated Matching Characteristic (CMC) results. The
weighting parameter λ in Eqn. 8 is chosen as λ = 0.01 for
all the experiments, which empirically produces both small
training errors and stable solutions.

State-of-the-art. For the comparison experiments, we
select three state-of-the-art metric learners: MLAPG [18],
XQDA [17], DNSL [36] whose code is publicly available
and the feature descriptor can be replaced. We compare
our method with the above approaches under the completely
same experimental setting and using the same LOMO fea-
ture. In addition, the results reported in the most recent
papers are also presented for a thorough comparison.

3.2. The Learning Efficiency Analysis

In order to validate the learning efficiency of the used
reference-driven regression scheme, a running cost experi-
ment is firstly conducted on a small-size dataset, CAVIAR.
Different reference generation schemes are tested for both
linear and kernelized learning scenarios. Table. 1 shows the
average training time of 10 random trials on CAVIAR. All
the experiments are conducted on the same desktop PC with
an Intel i7-2600 @3.40GHz CPU and 8G memory.

As we analyzed in Sec. 2, the computational complexity
of learning the metric M is quadratic to the training sample
number n or data dimension d. Table. 2 shows the com-
parison results of training time with other state-of-the-art
learners on the large-size benchmark, Market-1501. All the
experiments are conducted on a remote server with an Intel
i7-5930K @3.50GHz CPU and 32G memory. 3 Compared
with the other metric learners, our models are the most ef-
ficient except the TA-based ones which are a little slower
than the kLFDA. This is because the optimization proce-
dure requires computing the cost matrix C which is pretty
time-consuming for a large number of data. And it is worth
mentioning that the DNSL [36] also has a closed-form so-
lution, but it requires many times of SVD operation for the
kernelized data matrix, which is indeed time-consuming.

3.3. Empirical Training Error Verification

Theorem. 3 proves that with a sufficient number of sam-
ples, a low empirical error E(L,Sr) guarantees a low true
risk E(L,Dr) with high probability. In the experiments, we

3The overall training time of our method includes the reference con-
straint generation, data kernelization and metric learning steps.



Method XQDA MLAPG kLFDA DNSL TC-L TM -L TA-L TC-K TM -K TA-K

Training Time 3233.8 2732.8 995.2 3149.7 1.32 290.08 1194.2 166.29 446.78 1319.2

Table 2. Comparison of training time (seconds) on Market-1501.

Method
1

n
‖XL− R‖2F Method

1

n
‖XL− R‖2F

TC-L 0.189 TC-K 1.1e-04
TM -L 0.261 TM -K 1.4e-04
TA-L 0.256 TA-K 1.3e-04

Table 3. The average empirical training error on CAVIAR.

study how large the empirical training error 1
n‖XL − R‖2F

actually is after learning. Taking the CAVIAR dataset as an
example, we quantitatively verify that a low empirical train-
ing error can be obtained by our proposed algorithm. For
a fair comparison, the training data are firstly normalized
by {x̂i = xi/‖xi‖2}ni=1 to get a constant-1 l2-norm. The
average training error of 10 random trials on the CAVIAR
dataset under different algorithm settings is shown in Ta-
ble. 3. The non-linear model has a much smaller training
error than the linear ones since the non-linearity introduced
by kernelization is able to better fit the high-dimensional
feature space. The visualization result of affinity matrix re-
finement is shown in our supplementary material.

3.4. Extensive Comparisons on Benchmarks

Due to the page limitation, the full CMC curves of com-
parison results are shown in the supplementary material.

Experiments on CAVIAR: Although the CAVIAR is a
multi-shot dataset, most existing methods use it under the
single-shot setting [3, 20, 32]. Due to the success of SsP-
RID on CAVIAR, we would like to also report the state-
of-the-art single-shot results, including SSCDL [20], MFA-
χ2 [32], EPKFM [3], PCCA-χ2

RBF [32], LADF [16] and
LFDA [23]. It can be observed from Table. 5 that the pro-
posed method outperforms the existing state-of-the-art al-
gorithms with a significant improvement in both multi-shot
and single-shot settings. For our models, the kernelized
cases are slightly better than the linear cases except for the
TA. The TM -K model performs the best, with a 37% rel-
ative improvement compared to the best player DNSL on
Rank-1 accuracy. This is because the complex multi-modal
data distribution of CAVIAR can be well captured by the
TM reference constraints.

Experiments on PRID 2011: The recent state-of-the-art
results on PRID 2011 are shown in Table. 4. As we can see,
all of our proposed reference-based methods consistently
outperform the state-of-the-art multi-shot based methods
with a large margin. For the most important Rank-1 evalu-
ation, the proposed TA-K model improves the performance
with an impressive relative 39.0% improvement against the
best player, DNSL. Although no temporal feature is used in

our models, we are still able to achieve comparable, even
better performance against the state-of-the-art video-based
approaches which use both the temporal and appearance
features together for learning.

Experiments on iLIDS-VID: For the iLIDS-VID
dataset, the methods tested on the PRID 2011 benchmark
are also compared here. As shown in Table. 4, our mod-
els achieve a significant improvement on Rank-1 evaluation
against the other multi-shot based approaches, whose best
Rank-1 performance is only 30.66%. Even compared to the
video-based methods, our models still achieve comparable
performances on Rank-1 accuracy. For the Rank-20 accu-
racy rate, the multi-shot based methods, including ours, can
not compete against the video-based methods. Because a
lot of images in the iLIDS-VID dataset suffer severe occlu-
sion from the background, which significantly deteriorates
the appearance features, and thus degrades the identification
rate. Under video-based setting, such bad influence might
have been alleviated by considering the whole sequence as
one probe/gallery.

Experiments on Market-1501: The comparison results
on the Market-1501 benchmark are presented in Table. 6.
The baseline [39] uses the BoW-based features and l2-Norm
distance. Besides, the state-of-the-art results based on the
same LOMO feature are also included here for comparison
(their detailed experimental settings might be slightly differ-
ent). A recently proposed deep embedding-based method,
Hist-Loss [28] is also compared. As can be seen, no matter
under the single-shot or multi-shot scenarios, our methods
outperform the others with a large margin improvement. On
the Rank-1 evaluation, the proposed TC-K model improves
the state-of-the-art from 59.47% to 63.20%.
4. Conclusion

In this paper, we propose a novel solution to the im-
portant yet challenging MsP-RID problem. In contrast to
the existing metric learning-based MsP-RID methods which
rely on the data similarity/dissimilarity constraints pro-
duced by both positive and negative samples, a novel linear-
scaled constraint, called reference constraint, is proposed
which assigns the given samples to the pre-determined
reference points. Three different optimal transport-based
schemes are proposed and studied to automatically gener-
ate the discriminative reference constraints. A regression-
based metric learning model with a closed-form solution
can be adopted to learn a discriminative distance metric
from the proposed reference constraints efficiently and ef-
fectively. Extensive experiments on the widely-used multi-
shot benchmarks have clearly shown that our proposed ap-
proach is superior to the state-of-the-art algorithms.



Scenario Method PRID 2011 iLIDS-VID Reference
R=1 R=5 R=10 R=20 R=1 R=5 R=10 R=20

Multi-Shot

TDL 30.20 59.10 74.00 88.40 9.81 27.52 46.10 62.19 CVPR2016[35]
MLAPG(lomo) 45.60 58.20 63.80 69.80 30.54 45.58 53.02 60.78 ICCV2015[18]
XQDA(lomo) 47.50 60.20 66.20 72.00 30.66 44.48 51.84 59.53 CVPR2015[17]
DNSL(lomo) 51.00 63.40 68.60 74.10 24.44 34.11 39.68 46.85 CVPR2016[36]

DVDL 40.60 69.70 77.80 85.60 25.90 48.20 57.30 68.90 ICCV2015[13]
Salience 25.80 43.60 52.60 62.00 10.20 24.80 35.50 52.90 CVPR2013[37]
KISSME 28.54 59.78 72.13 83.26 10.67 28.33 39.80 57.00 CVPR2012[14]

LFDA 26.40 56.07 69.89 81.12 7.80 23.93 36.47 50.80 CVPR2013[23]
LADF 8.20 20.45 29.89 42.25 4.33 14.00 21.20 32.13 CVPR2013[16]
LDA 27.64 58.09 69.66 82.47 10.27 27.40 39.80 55.27 AP2013[9]

Video-based

SMP 80.90 95.60 98.80 99.40 41.70 66.30 74.10 80.70 ICCV2017[21]
DGM+IDE 56.40 81.30 88.00 96.40 36.20 62.80 73.60 82.70 ICCV2017[34]
CNN+KISS 69.90 90.60 - 98.20 48.80 75.60 - 92.60 ECCV2016[38]

TDL 56.74 80.00 87.64 93.59 56.33 87.60 95.60 98.27 CVPR2016[35]
Co&LBP+DVR 37.60 63.90 75.30 88.30 34.50 56.70 67.50 77.50 ECCV2014[31]

KISSME 34.38 61.68 72.13 81.01 36.53 67.80 78.80 87.07 CVPR2012[14]
LFDA 43.70 72.80 81.69 90.89 32.93 68.47 82.20 92.60 CVPR2013[23]
LADF 47.30 75.50 82.69 91.12 39.00 76.80 89.00 96.80 CVPR2013[16]
LDA 15.84 41.46 55.51 70.67 42.06 79.13 89.40 94.47 AP2013[9]

Linear
TC-L 70.10 79.10 83.30 87.10 44.67 57.33 63.33 68.67 Proposed
TM -L 64.80 77.00 80.20 84.30 38.67 56.67 61.67 70.67 Proposed
TA-L 70.40 80.90 85.60 88.40 42.67 58.67 63.33 72.07 Proposed

Kernel
TC-K 66.90 77.10 80.80 84.60 37.33 47.73 54.53 60.67 Proposed
TM -K 65.10 77.30 78.70 85.30 39.33 56.00 59.33 65.74 Proposed
TA-K 70.90 78.70 82.70 87.30 42.00 52.67 60.03 66.67 Proposed

Table 4. Comparison results on PRID 2011 and iLIDS-VID under the multi-shot and video-based matching settings.

Method R=1 R=5 R=10 R=20
MLAPG(lomo)[18] 50.00 71.85 84.25 93.11
XQDA(lomo)[17] 51.18 75.59 90.33 96.86
DNSL(lomo)[36] 53.54 77.17 86.61 94.69

SSCDL-S[20] 49.10 80.20 93.50 97.90
MLAPG(lomo)-S[18] 40.60 71.70 83.30 95.70
XQDA(lomo)-S[17] 42.20 69.90 82.50 95.50
DNSL(lomo)-S[36] 47.60 75.66 87.37 96.20

MFA-χ2-S[32] 40.20 70.20 83.90 95.10
EPKFM-S[3] 40.10 65.60 78.00 90.50

PCCA-χ2
RBF -S[32] 33.20 65.90 81.90 95.20

LFDA-S[23] 32.00 56.30 70.70 87.40
LADF-S[16] 30.30 62.80 78.00 92.60
TC-L 65.25 86.49 91.89 96.33
TM -L 70.90 88.73 93.24 98.36
TA-L 68.73 87.84 94.21 97.88
TC-K 66.80 88.61 94.02 97.30
TM -K 73.36 88.32 93.03 97.95
TA-K 61.02 84.36 92.47 96.72

Table 5. Comparison results on CAVIAR under the multi-shot
matching setting. ’-S’ means the single-shot result.

Method Sing-Q Multi-Q Reference
R=1 R=1

Baseline 35.84 44.36 ICCV15[39]
MLAPG(lomo) 38.80 61.33 ICCV15[18]
XQDA(lomo) 44.80 55.82 CVPR15[17]
DNSL(lomo) 51.73 57.70 CVPR16[36]

KISSME(lomo) 40.50 N/A ICCV15[39]
MFA-χ2(lomo) 45.67 N/A ECCV14[32]
kLFDA(lomo) 51.37 52.67 ECCV14[32]

Hist-Loss 59.47 N/A NIPS16[28]
TC-L 57.73 68.27 Proposed
TM -L 54.67 64.53 Proposed
TA-L 51.07 72.40 Proposed
TC-K 63.20 73.87 Proposed
TM -K 60.93 70.40 Proposed
TA-K 56.03 68.93 Proposed

Table 6. Comparison results on Market-1501.

Acknowledgements
This work was supported in part by National Science

Foundation grant IIS-1217302, IIS-1619078, the Army Re-
search Ofice ARO W911NF-16-1-0138 and the National
Natural Science Foundation of China grant No.61603373.



References
[1] O. Bousquet and A. Elisseeff. Stability and generalization.

JMLR, 2002. 5
[2] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P.

Kegelmeyer. Smote: synthetic minority over-sampling tech-
nique. JAIR, 2002. 4

[3] D. Chen, Z. Yuan, G. Hua, N. Zheng, and J. Wang. Similar-
ity learning on an explicit polynomial kernel feature map for
person re-identification. In CVPR, 2015. 6, 7, 8

[4] D. S. Cheng, M. Cristani, M. Stoppa, L. Bazzani, and
V. Murino. Custom pictorial structures for re-identification.
In BMVC, 2011. 2, 6

[5] D. Comaniciu and P. Meer. Mean shift: A robust approach
toward feature space analysis. IEEE TPAMI, 2002. 4

[6] C. Cortes, M. Mohri, and J. Weston. A general regression
framework for learning string-to-string mappings. Predicting
Structured Data, 2007. 2, 4

[7] N. Courty, R. Flamary, and D. Tuia. Domain adaptation with
regularized optimal transport. In ECML PKDD, 2014. 3

[8] M. Cuturi. Sinkhorn distances: Lightspeed computation of
optimal transport. In NIPS, 2013. 3

[9] K. Fukunaga. Introduction to statistical pattern recognition.
2013. 8

[10] N. Gheissari, T. B. Sebastian, and R. Hartley. Person reiden-
tification using spatio temporal appearance. In CVPR, 2006.
1

[11] A. Globerson and S. Roweis. Metric learning by collapsing
classes. In NIPS, 2005. 4

[12] M. Hirzer, C. Beleznai, P. M. Roth, and H. Bischof. Person
re-identification by descriptive and discriminative classifica-
tion. In SCIA, 2011. 2, 6

[13] S. Karanam, Y. Li, and R. J. Radke. Person re-identification
with discriminatively trained viewpoint invariant dictionar-
ies. In ICCV, 2015. 2, 8

[14] M. Koestinger, M. Hirzer, P. Wohlhart, P. M. Roth, and
H. Bischof. Large scale metric learning from equivalence
constraints. In CVPR, 2012. 8

[15] X. Li, W.-S. Zheng, X. Wang, T. Xiang, and S. Gong. Multi-
scale learning for low-resolution person re-identification. In
ICCV, 2015. 2

[16] Z. Li, S. Chang, F. Liang, T. Huang, L. Cao, and J. Smith.
Learning locally-adaptive decision functions for person ver-
ification. In CVPR, 2013. 1, 7, 8

[17] S. Liao, Y. Hu, X. Zhu, and S. Z. Li. Person re-identification
by local maximal occurrence representation and metric
learning. In CVPR, 2015. 1, 2, 6, 8

[18] S. Liao and S. Z. Li. Efficient psd constrained asymmetric
metric learning for person re-identification. In ICCV, 2015.
1, 2, 6, 8

[19] K. Liu, B. Ma, W. Zhang, and R. Huang. A spatio-
temporal appearance representation for viceo-based pedes-
trian re-identification. In ICCV, 2015. 1, 2

[20] X. Liu, M. Song, D. Tao, X. Zhou, C. Chen, and J. Bu.
Semi-supervised coupled dictionary learning for person re-
identification. In CVPR, 2014. 7, 8

[21] Z. Liu, D. Wang, and H. Lu. Stepwise metric promotion for
unsupervised video person re-identification. In ICCV, 2017.
8

[22] N. McLaughlin, J. Martinez del Rincon, and P. Miller. Re-
current convolutional network for video-based person re-
identification. In CVPR, 2016. 1

[23] S. Pedagadi, J. Orwell, S. Velastin, and B. Boghossian. Local
fisher discriminant analysis for pedestrian re-identification.
In CVPR, 2013. 7, 8

[24] M. Perrot, N. Courty, R. Flamary, and A. Habrard. Mapping
estimation for discrete optimal transport. In NIPS, 2016. 3

[25] M. Perrot and A. Habrard. Regressive virtual metric learning.
In NIPS, 2015. 2, 4

[26] H. Shi, Y. Yang, X. Zhu, S. Liao, Z. Lei, W. Zheng, and S. Z.
Li. Embedding deep metric for person re-identification: A
study against large variations. In ECCV, 2016. 2, 3

[27] D. Simonnet, M. Lewandowski, S. A. Velastin, J. Orwell,
and E. Turkbeyler. Re-identification of pedestrians in crowds
using dynamic time warping. In ECCV, 2012. 1

[28] E. Ustinova and V. Lempitsky. Learning deep embeddings
with histogram loss. In NIPS, 2016. 7, 8

[29] R. Vezzani, D. Baltieri, and R. Cucchiara. People reidentifi-
cation in surveillance and forensics: A survey. ACM CSUR,
2013. 1

[30] C. Villani. Optimal transport: old and new. 2008. 2
[31] T. Wang, S. Gong, X. Zhu, and S. Wang. Person re-

identification by video ranking. In ECCV. 2014. 1, 2, 6,
8

[32] F. Xiong, M. Gou, O. Camps, and M. Sznaier. Person re-
identification using kernel-based metric learning methods. In
ECCV. 2014. 1, 6, 7, 8

[33] Y. Yang, J. Yang, J. Yan, S. Liao, D. Yi, and S. Z. Li. Salient
color names for person re-identification. In ECCV. 2014. 2

[34] M. Ye, A. J. Ma, L. Zheng, J. Li, and P. C. Yuen. Dynamic la-
bel graph matching for unsupervised video re-identification.
ICCV, 2017. 8

[35] J. You, A. Wu, X. Li, and W.-S. Zheng. Top-push video-
based person re-identification. In CVPR, 2016. 1, 6, 8

[36] L. Zhang, T. Xiang, and S. Gong. Learning a discriminative
null space for person re-identification. In CVPR, 2016. 1, 4,
6, 8

[37] R. Zhao, W. Ouyang, and X. Wang. Unsupervised salience
learning for person re-identification. In CVPR, 2013. 8

[38] L. Zheng, Z. Bie, Y. Sun, J. Wang, C. Su, S. Wang, and
Q. Tian. Mars: A video benchmark for large-scale person
re-identification. In ECCV, 2016. 8

[39] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian.
Scalable person re-identification: A benchmark. In ICCV,
2015. 1, 2, 6, 7, 8

[40] W.-S. Zheng, S. Gong, and T. Xiang. Person re-identification
by probabilistic relative distance comparison. In CVPR,
2011. 2


