Benchmarking 6DOF Outdoor Visual Localization in Changing Conditions
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Abstract

Visual localization enables autonomous vehicles to navi-
gate in their surroundings and augmented reality applica-
tions to link virtual to real worlds. Practical visual local-
ization approaches need to be robust to a wide variety of
viewing condition, including day-night changes, as well as
weather and seasonal variations, while providing highly ac-
curate 6 degree-of-freedom (6DOF) camera pose estimates.
In this paper, we introduce the first benchmark datasets
specifically designed for analyzing the impact of such fac-
tors on visual localization. Using carefully created ground
truth poses for query images taken under a wide variety
of conditions, we evaluate the impact of various factors on
6DOF camera pose estimation accuracy through extensive
experiments with state-of-the-art localization approaches.
Based on our results, we draw conclusions about the diffi-
culty of different conditions, showing that long-term local-
ization is far from solved, and propose promising avenues
for future work, including sequence-based localization ap-
proaches and the need for better local features. Our bench-
mark is available at visuallocalization.net.

1. Introduction

Estimating the 6DOF camera pose of an image with re-
spect to a 3D scene model is key for visual navigation of
autonomous vehicles and augmented/mixed reality devices.
Solutions to this visual localization problem can also be
used to “close loops” in the context of SLAM or to register
images to Structure-from-Motion (SfM) reconstructions.
Work on 3D structure-based visual localization has fo-
cused on increasing efficiency [30, 33, 39, 52, 66], improv-
ing scalability and robustness to ambiguous structures [32,
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Figure 1. Visual localization in changing urban conditions. We
present three new datasets, Aachen Day-Night, RobotCar Sea-
sons (shown) and CMU Seasons for evaluating 6DOF localization
against a prior 3D map (top) using registered query images taken
from a wide variety of conditions (bottom), including day-night
variation, weather, and seasonal changes over long periods of time.

50,65, 73], reducing memory requirements [12,33,50], and
more flexible scene representations [54]. All these methods
utilize local features to establish 2D-3D matches. These
correspondences are in turn used to estimate the camera
pose. This data association stage is critical as pose estima-
tion fails without sufficiently many correct matches. There
is a well-known trade-off between discriminative power and
invariance for local descriptors. Thus, existing localization
approaches will only find enough matches if both the query
images and the images used to construct the 3D scene model
are taken under similar viewing conditions.

Capturing a scene under all viewing conditions is pro-
hibitive. Thus, the assumption that all relevant conditions
are covered is too restrictive in practice. It is more realis-
tic to expect that images of a scene are taken under a sin-
gle or a few conditions. To be practically relevant, e.g., for
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life-long localization for self-driving cars, visual localiza-
tion algorithms need to be robust under varying conditions
(cf. Fig. 1). Yet, no work in the literature actually measures
the impact of varying conditions on 6DOF pose accuracy.

One reason for the lack of work on visual localization
under varying conditions is a lack of suitable benchmark
datasets. The standard approach for obtaining ground truth
6DOF poses for query images is to use STM. An SfM model
containing both the database and query images is built and
the resulting poses of the query images are used as ground
truth [33, 54, 61]. Yet, this approach again relies on lo-
cal feature matches and can only succeed if the query and
database images are sufficiently similar [49]. The bench-
mark datasets constructed this way thus tend to only include
images that are relatively easy to localize in the first place.

In this paper, we construct the first datasets for bench-
marking visual localization under changing conditions. To
overcome the above mentioned problem, we heavily rely
on human work: We manually annotate matches between
images captured under different conditions and verify the
resulting ground truth poses. We create three complimen-
tary benchmark datasets based on existing data [4,41,55].
All consist of a 3D model constructed under one condition
and offer query images taken under different conditions:
The Aachen Day-Night dataset focuses on localizing high-
quality night-time images against a day-time 3D model.
The RobotCar Seasons and CMU Seasons dataset both con-
sider automotive scenarios and depict the same scene under
varying seasonal and weather conditions. One challenge
of the RobotCar Seasons dataset is to localize low-quality
night-time images. The CMU Seasons dataset focuses on
the impact of seasons on vegetation and thus the impact of
scene geometry changes on localization.

This paper makes the following contributions: (i) We
create a new outdoor benchmark complete with ground truth
and metrics for evaluating 6DOF visual localization un-
der changing conditions such as illumination (day/night),
weather (sunny/rain/snow), and seasons (summer/winter).
Our benchmark covers multiple scenarios, such as pedes-
trian and vehicle localization, and localization from single
and multiple images as well as sequences. (ii) We provide
an extensive experimental evaluation of state-of-the-art al-
gorithms from both the computer vision and robotics com-
munities on our datasets. We show that existing algorithms,
including SfM, have severe problems dealing with both day-
night changes and seasonal changes in vegetated environ-
ments. (iii) We show the value of querying with multiple
images, rather than with individual photos, especially under
challenging conditions. (iv) We make our benchmarks pub-
licly available at visuallocalization.net to stimu-
late research on long-term visual localization.

2. Related Work

Localization benchmarks. Tab. 1 compares our bench-
mark datasets with existing datasets for both visual local-
ization and place recognition. Datasets for place recog-
nition [15,43, 63,67, 69] often provide query images cap-
tured under different conditions compared to the database
images. However, they neither provide 3D models nor
6DOF ground truth poses. Thus, they cannot be used to
analyze the impact of changing conditions on pose esti-
mation accuracy. In contrast, datasets for visual localiza-
tion [14,26,28,32,33,54,55,58,61] often provide ground
truth poses. However, they do not exhibit strong changes
between query and database images due to relying on fea-
ture matching for ground truth generation. A notable ex-
ception is the Michigan North Campus Long-Term (NCLT)
dataset [13], providing images captured over long period of
time and ground truth obtained via GPS and LIDAR-based
SLAM. Yet, it does not cover all viewing conditions cap-
tured in our datasets, e.g., it does not contain any images
taken at night or during rain. To the best of our knowl-
edge, ours are the first datasets providing both a wide range
of changing conditions and accurate 6DOF ground truth.
Thus, ours is the first benchmark that measures the impact
of changing conditions on pose estimation accuracy.

Datasets such as KITTI [23], TorontoCity [71], or the
Mailaga Urban dataset [0] also provide street-level image
sequences. Yet, they are less suitable for visual localization
as only few places are visited multiple times.

3D structure-based localization methods [32, 33, 36, 50,
52,65, 73] establish correspondences between 2D features
in a query image and 3D points in a SfM point cloud via de-
scriptor matching. These 2D-3D matches are then used to
estimate the query’s camera pose. Descriptor matching can
be accelerated by prioritization [16,33,52] and efficient
search algorithms [19,39]. In large or complex scenes, de-
scriptor matches become ambiguous due to locally similar
structures found in different parts of the scene [32]. This
results in high outlier ratios of up to 99%, which can be
handled by exploiting co-visibility information [32, 36, 50]
or via geometric outlier filtering [9, 65, 73].

We evaluate Active Search [52] and the City-Scale Lo-
calization approach [65], a deterministic geometric outlier
filter based on a known gravity direction, as representatives
for efficient respectively scalable localization methods.

2D image-based localization methods approximate the
pose of a query image using the pose of the most simi-
lar photo retrieved from an image database. They are of-
ten used for place recognition [I, 15, 38, 51, 64, 67] and
loop-closure detection [18,22,45]. They remain effective
at scale [3,51,54,69] and can be robust to changing condi-
tions [1,15,46,54,64,67]. We evaluate two compact VLAD-
based [27] image-level representations: DenseVLAD [67]
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Image 3D SfM Model # Images Condition Changes 6DOF query
Dataset Setting Capture (# Sub-Models) Database | Query | Weather [ Seasons | Day-Night poses
Alderley Day/Night [43] Suburban Trajectory 14,607 { 16,960 v v
Nordland [63] Outdoors Trajectory 143k '
Pittsburgh [68] Urban Trajectory 254k 24k
SPED [15] Outdoors Static Webcams 1.27M 120k v v v
Tokyo 24/7 [67] Urban Free Viewpoint 75,984 315 v
7 Scenes [58] Indoor Free Viewpoint 26,000 17,000 v
Aachen [55] Historic City Free Viewpoint 1.54M /7.28M (1) 3,047 369
Cambridge [28] Historic City Free Viewpoint 1.89M / 17.68M (5) 6,848 4,081 v (StM)
Dubrovnik [33] Historic City Free Viewpoint 1.89M /9.61M (1) 6,044 800 v (StM)
Landmarks [32] Landmarks Free Viewpoint | 38.19M / 177.82M (1k) | 204,626 | 10,000
Mall [61] Indoor Free Viewpoint 682 2296 v
NCLT [13] Outdoors & Indoors Trajectory about 3.8M v v
Rome [33] Landmarks Free Viewpoint 4.07M / 21.52M (69) 15,179 1000
San Francisco [14,32,54] Urban Free Viewpoint 30M / 149M (1) 610,773 442 v (StM)
Vienna [26] Landmarks Free Viewpoint 1.12M / 4.85M (3) 1,324 266
Aachen Day-Night (ours) Historic City Free Viewpoint 1.65M / 10.55M (1) 4,328 922 v v
RobotCar Seasons (ours) Urban Trajectory 6.77M / 36.15M (49) 20,862 11,934 v v v v
CMU Seasons (ours) Suburban Trajectory 1.61M / 6.50M (17) 7,159 75,335 v v v

Table 1. Comparison with existing benchmarks for place recognition and visual localization. Condition Changes” indicates that the view-
ing conditions of the query images and database images differ. For some datasets, images were captured from similar camera trajectories.
If SfM 3D models are available, we report the number of sparse 3D points and the number of associated features. Only our datasets provide
a diverse set of changing conditions, reference 3D models, and most importantly ground truth 6DOF poses for the query images.

aggregates densely extracted SIFT descriptors [2, 37] while
NetVLAD [1] uses learned features. Both are robust against
day-night changes [1,67] and work well at large-scale [54].
We also evaluate the de-facto standard approach for
loop-closure detection in robotics [20, 34], where robust-
ness to changing conditions is critical for long-term au-
tonomous navigation [15, 35, 43, 46, 64, 67]: FAB-MAP
[18] is an image retrieval approach based on the Bag-of-
Words (BoW) paradigm [60] that explicitly models the co-
occurrence probability of different visual words.

Sequence-based approaches for image retrieval are used
for loop-closure detection in robotics [40,43,47]. Requir-
ing a matched sequence of images in the correct order sig-
nificantly reduces false positive rates compared to single-
image retrieval approaches, producing impressive results in-
cluding direct day-night matches with SeqSLAM [43]. We
evaluate OpenSeqSLAM [63] on our benchmark.

Multiple cameras with known relative poses can be mod-
elled as a generalized camera [48], i.e., a camera with mul-
tiple centers of projections. Approaches for absolute pose
estimation for both multi-camera systems [31] and camera
trajectories [10] from 2D-3D matches exist. Yet, they have
never been applied for localization in changing conditions.
In this paper, we show that using multiple images can sig-
nificantly improve performance in challenging scenarios.

Learning-based localization methods have been proposed
to solve both loop-closure detection [15,42,62,64] and pose
estimation [17,28,57,70]. They learn features with stable
appearance over time [ 15,44, 46], train classifiers for place
recognition [11,24,35,72], and train CNNs to regress 2D-
3D matches [7, 8, 58] or camera poses [17,28,70].

3. Benchmark Datasets for 6DOF Localization

This section describes the creation of our three new
benchmark datasets. Each dataset is constructed from pub-

licly available data, allowing our benchmarks to cover mul-
tiple geographic locations. We add ground truth poses for
all query images and build reference 3D models (cf. Fig. 3)
from images captured under a single condition.

All three datasets present different challenges. The
Aachen Day-Night dataset focuses on localizing night-time
photos against a 3D model built from day-time imagery.
The night-time images, taken with a mobile phone using
software HDR post-processing, are of high quality. The
dataset represents a scenario where images are taken with
hand-held cameras, e.g., an augmented reality application.

Both the RobotCar Seasons and the CMU Seasons
datasets represent automotive scenarios, with images cap-
tured from a car. In contrast to the Aachen Day dataset, both
datasets exhibit less variability in viewpoints but a larger
variance in viewing conditions. The night-time images from
the RobotCar dataset were taken from a driving car with a
consumer camera with auto-exposure. This results in sig-
nificantly less well-lit images exhibiting motion blur, i.e.,
images that are significantly harder to localize (c¢f. Fig. 2).

The RobotCar dataset depicts a mostly urban scene with
rather static scene geometry. In contrast, the CMU dataset
contains a significant amount of vegetation. The changing
appearance and geometry of the vegetation, due to seasonal
changes, is the main challenge of this dataset.

3.1. The Aachen Day-Night Dataset

Our Aachen Day-Night dataset is based on the Aachen lo-
calization dataset from [55]. The original dataset contains
4,479 reference and 369 query images taken in the old inner
city of Aachen, Germany. It provides a 3D SfM model but
does not have ground truth poses for the queries. We aug-
mented the original dataset with day- and night-time queries
captured using standard consumer phone cameras.

To obtain ground truth poses for the day-time queries,
we used COLMAP [56] to create an intermediate 3D model



reference model

query images

#images | #3D points | #features |  condition conditions (# images)
Aachen Day-Night 4,328 1.65M 10.55M day day (824), night (98)
RobotCar Seasons 20,862 6.7TM 36.15M overcast dawn (1,449), dusk (1,182), night (1,314), night+rain (1,320), rain (1,263),
(November) overcast summer / winter (1,389 / 1,170), snow (1,467), sun (1,380)
CMU Seasons 7,159 1.61M 6.50M sun / no foliage sun (22,073), low sun (28,045), overcast (11,383), clouds (14,481),
(April) foliage (33,897), mixed foliage (27,637), no foliage (13,801)
urban (31,250), suburban (13,736), park (30,349)

Table 2. Detailed statistics for the three benchmark datasets proposed in this paper. For each dataset, a reference 3D model was constructed
using images taken under the same reference condition, e.g., “overcast” for the RobotCar Seasons dataset.

Figure 2. Example query images for Aachen Day-Night (top),
RobotCar Seasons (middle) and CMU Seasons datasets (bottom).

from the reference and day-time query images. The scale of
the reconstruction is recovered by aligning it with the geo-
registered original Aachen model. As in [33], we obtain
the reference model for the Aachen Day-Night dataset by
removing the day-time query images. 3D points visible in
only a single remaining camera were removed as well [33].
The resulting 3D model has 4,328 reference images and
1.65M 3D points triangulated from 10.55M features.

Ground truth for night-time queries. We captured 98
night-time query images using a Google Nexus5X phone
with software HDR enabled. Attempts to include them in
the intermediate model resulted in highly inaccurate camera
poses due to a lack of sufficient feature matches. To obtain
ground truth poses for the night-time queries, we thus hand-
labelled 2D-3D matches. We manually selected a day-time
query image taken from a similar viewpoint for each night-
time query. For each selected day-time query, we projected
its visible 3D points from the intermediate model into it.
Given these projections as reference, we manually labelled
10 to 30 corresponding pixel positions in the night-time
query. Using the resulting 2D-3D matches and the known
intrinsics of the camera, we estimate the camera poses using
a 3-point solver [21,29] and non-linear pose refinement.

To estimate the accuracy for these poses, we measure the
mean reprojection error of our hand-labelled 2D-3D corre-

spondences (4.33 pixels for 1600x1200 pixel images) and
the pose uncertainty. For the latter, we compute multiple
poses from a subset of the matches for each image and mea-
sure the difference in these poses to our ground truth poses.
The mean median position and orientation errors are 36cm
and 1°. The absolute pose accuracy that can be achieved by
minimizing a reprojection error depends on the distance of
the camera to the scene. Given that the images were typi-
cally taken 15 or more meters from the scene, we consider
the ground truth poses to be reasonably accurate.

3.2. The RobotCar Seasons Dataset

Our RobotCar Seasons dataset is based on a subset of the
publicly available Oxford RobotCar Dataset [4 1]. The orig-
inal dataset contains over 20M images recorded from an au-
tonomous vehicle platform over 12 months in Oxford, UK.
Out of the 100 available traversals of the 10km route, we se-
lect one reference traversal in overcast conditions and nine
query traversals that cover a wide range of conditions (cf.
Tab. 2). All selected images were taken with the three syn-
chronized global shutter Point Grey Grasshopper2 cameras
mounted to the left, rear, and right of the car. Both the in-
trinsics of the cameras and their relative poses are known.

The reference traversal contains 26,121 images taken
at 8,707 positions, with 1m between successive positions.
Building a single consistent 3D model from this data is very
challenging, both due to sheer size and the lack of visual
overlap between the three cameras. We thus built 49 non-
overlapping local submaps, each covering a 100m trajec-
tory. For each submap, we initialized the database camera
poses using vehicle positions reported by the inertial nav-
igation system (INS) mounted on the RobotCar. We then
iteratively triangulated 3D points, merged tracks, and re-
fined both structure and poses using bundle adjustment. The
scale of the reconstructions was recovered by registering
them against the INS poses. The reference model contains
all submaps and consists of 20,862 reference images and
6.77M 3D points triangulated from 36.15M features.

We obtained query images by selecting reference posi-
tions inside the 49 submaps and gathering all images from
the nine query traversals with INS poses within 10m of one
of the positions. This resulted in 11,934 images in total,
where triplets of images were captured at 3,978 distinct lo-
cations. We also grouped the queries into 460 temporal se-
quences based on the timestamps of the images.
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Figure 3. 3D models of the Aachen Day-Night (left, showing database (red), day-time query (green), and night-time query images (blue)),
RobotCar Seasons (middle), and CMU Seasons (right) datasets. For RobotCar and CMU, the colors encode the individual submaps.

Ground truth poses for the queries. Due to GPS drift, the
INS poses cannot be directly used as ground truth. Again,
there are not enough feature matches between day- and
night-time images for STM. We thus used the LIDAR scan-
ners mounted to the vehicle to build local 3D point clouds
for each of the 49 submaps under each condition. These
models were then aligned to the LIDAR point clouds of
the reference trajectory using ICP [5]. Many alignments
needed to be manually adjusted to account for changes in
scene structure over time (often due to building construction
and road layout changes). The final median RMS errors be-
tween aligned point clouds was under 0.10m in translation
and 0.5° in rotation across all locations. The alignments
provided ground truth poses for the query images.

3.3. The CMU Seasons Dataset

The CMU Seasons Dataset is based on a subset of the CMU
Visual Localization Dataset [4], which contains more than
100K images recorded by the Computer Vision Group at
Carnegie Mellon University over a period of 12 months in
Pittsburgh, PA, USA. The images were collected using a
rig of two cameras mounted at 45 degree forward/left and
forward/right angles on the roof of an SUV. The vehicle tra-
versed an 8.5 km long route through central and suburban
Pittsburgh 16 times with a spacing in time of between 2
weeks up to 2 months. Out of the 16 traversals, we selected
the one from April 4 as the reference, and then 11 query
traversals were selected such that they cover the range of
variations in seasons and weather that the data set contains.

Ground truth poses for the queries. As with the Robot-
Car dataset, the GPS is not accurate enough and the CMU
dataset is also too large to build one 3D model from all the
images. The full sequences were split up into 17 shorter
sequences, each containing about 250 consecutive vehicle
poses. For each short sequence, a 3D model was built
using bundle adjustment of SIFT points tracked over sev-
eral image frames. The resulting submaps of the reference
route were merged with the corresponding submaps from
the other traversals by using global bundle adjustment and
manually annotated image correspondences. Reprojection
errors are within a few pixels for all 3D points and the dis-
tances between estimated camera positions and expected
ones (based on neighbouring cameras) are under 0.10m.

The resulting reference model consists of 1.61M 3D points
triangulated from 6.50M features in 7,159 database images.
We provide 75,335 query images and 187 query sequences.

4. Benchmark Setup

We evaluate state-of-the-art localization approaches on our
new benchmark datasets to measure the impact of chang-
ing conditions on camera pose estimation accuracy and to
understand how hard robust long-term localization is.

Evaluation measures. We measure the pose accuracy of
a method by the deviation between the estimated and the
ground truth pose. The position error is measured as the Eu-
clidean distance ||cest — cot||2 between the estimated ceq and
the ground truth position ¢y The absolute orientation er-
ror ||, measured as an angle in degrees, is computed from
the estimated and ground truth camera rotation matrices Reg
and Ry.. We follow standard practice [25] and compute ||
as 2 cos(|a]) = trace(Rg_thest) —1, i.e., we measure the min-
imum rotation angle required to align both rotations [25].

We measure the percentage of query images localized
within Xm and Y° of their ground truth pose. We de-
fine three pose accuracy intervals by varying the thresh-
olds: High-precision (0.25m, 2°), medium-precision (0.5m,
5°), and coarse-precision (Sm, 10°). These thresholds were
chosen to reflect the high accuracy required for autonomous
driving. We use the intervals (0.5m, 2°), (1m, 5°), (5m, 10°)
for the Aachen night-time queries to account for the higher
uncertainty in our ground truth poses. Still, all regimes are
more accurate than consumer-grade GPS systems.

Evaluated algorithms. As discussed in Sec. 2, we
evaluate a set of state-of-the-art algorithms covering the
most common types of localization approaches: From the
class of 3D structure-based methods, we use Active Search
(AS) [54] and City-Scale Localization (CSL) [65]. From
the class of 2D image retrieval-based approaches, we use
DenseVLAD [067], NetVLAD [1], and FAB-MAP [18].

In order to measure the benefit of using multiple images
for pose estimation, we evaluate two approaches: OpenSe-
gSLAM [63] is based on image retrieval and enforces that
the images in the sequence are matched in correct order.
Knowing the relative poses between the query images, we
can model them as a generalized camera [48]. Given 2D-3D



matches per individual image (estimated via Active Search),
we estimate the pose via a generalized absolute camera
pose solver [31] inside a RANSAC loop. We denote this
approach as Active Search+GC (AS+GC). We mostly use
ground truth query poses to compute the relative poses that
define the generalized cameras'. Thus, AS+GC provides an
upper bound on the number of images that can be localized
when querying with generalized cameras.

The methods discussed above all perform localization
from scratch without any prior knowledge about the pose
of the query. In order to measure how hard our datasets
are, we also implemented two optimistic baselines. Both
assume that a set of relevant database images is known for
each query. Both perform pairwise image matching and use
the known ground truth poses for the reference images to tri-
angulate the scene structure. The feature matches between
the query and reference images and the known intrinsic cal-
ibration are then be used to estimate the query pose. The
first optimistic baseline, LocalSfM, uses upright RootSIFT
features [2, 37]. The second uses upright CNN features
densely extracted on a regular grid. We use the same VGG-
16 network [59] as NetVLAD. The DenseSfM method uses
coarse-to-fine matching with conv4 and conv3 features.

We select the relevant reference images for the two base-
lines as follows: For Aachen, we use the manually selected
day-time image (cf. Sec. 3.1) to select up to 20 reference
images sharing the most 3D points with the selected day-
time photo. For RobotCar and CMU, we use all reference
images within Sm and 135° of the ground truth query pose.

We evaluated PoseNer [28] but were not able to obtain
competitive results. We also attempted to train DSAC [7]
on KITTI but were not able to train it. Both PoseNet and
DSAC were thus excluded from further evaluations.

5. Experimental Evaluation

This section presents the second main contribution of this
paper, a detailed experimental evaluation on the effect of
changing conditions on the pose estimation accuracy of vi-
sual localization techniques. In the following, we focus on
pose accuracy. Please see [53] for experiments concerning
computation time.

5.1. Evaluation on the Aachen Day-Night Dataset

The focus of the Aachen Day-Night dataset is on bench-
marking the pose accuracy obtained by state-of-the-art
methods when localizing night-time queries against a 3D
model constructed from day-time imagery. In order to put
the results obtained for the night-time queries into con-
text, we first evaluate a subset of the methods on the 824
day-time queries. As shown in Tab. 3, the two structure-
based methods are able to estimate accurate camera poses

Note that Active Search+GC only uses the relative poses between the
query images to define the geometry of a generalized camera. It does not
use any information about the absolute poses of the query images.
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Figure 4. Cumulative distribution of position errors for the night-

time queries of the Aachen (left) and RobotCar (right) datasets.

and localize nearly all images within the coarse-precision
regime. We conclude that the Aachen dataset is not partic-
ularly challenging for the day-time query images.

Night-time queries. Tab. 3 also reports the results obtained
for the night-time queries. We observe a significant drop in
pose accuracy for both Active Search and CSL, down from
above 50% in the high-precision regime to less than 50%
in the coarse-precision regime. Given that the night-time
queries were taken from similar viewpoints as the day-time
queries, this drop is solely caused by the day-night change.

CSL localizes more images compared to Active Search
(AS). This is not surprising since CSL also uses matches
that were rejected by AS as too ambiguous. Still, there is a
significant difference to LocalSfM. CSL and AS both match
features against the full 3D model while LocalSfM only
considers a small part of the model for each query. This
shows that global matching sufficiently often fails to find
the correct nearest neighbors, likely caused by significant
differences between day-time and night-time descriptors.

Fig. 4(left) shows the cumulative distribution of position
errors for the night-time queries and provides interesting in-
sights: LocalSfM, despite knowing relevant reference im-
ages for each query, completely fails to localize about 20%
of all queries. This is caused by a lack of correct feature
matches for these queries, either due to failures of the fea-
ture detector or descriptor. DenseSfM skips feature detec-
tion and directly matches densely extracted CNN descrip-
tors (which encode higher-level information compared to
the gradient histograms used by RootSIFT). This enables
DenseSfM to localize more images at a higher accuracy, re-
sulting in the best performance on this dataset. Still, there
is significant room for improvement, even in the coarse-
precision regime (cf. Tab. 3). Also, extracting and matching
dense descriptors is a time-consuming task.

5.2. Evaluation on the RobotCar Seasons Dataset

The focus of the RobotCar Seasons dataset is to measure
the impact of different seasons and illumination conditions
on pose estimation accuracy in an urban environment.

Tab. 4 shows that changing day-time conditions have
only a small impact on pose estimation accuracy for all
methods. The reason is that seasonal changes have little im-



Aachen CMU
day night foliage mixed foliage no foliage urban suburban park
m| .25/.50/5.0 0.5/1.0/5.0 .25/.50/5.0 .25/.50/5.0 .25/.50/5.0 .251.50/5.0 .25/.50/5.0 .25/.50/5.0
deg 2/5/10 2/5/10 2/5/10 2/5/10 2/5/10 2/5/10 2/5/10 2/5/10
Active Search|57.3/ 83.7/ 96.6[19.4/ 30.6/ 43.9[28.8/ 32.5/ 35.9]25.1/ 29.4/ 33.9|52.5/ 59.4/ 66.7|[55.2/ 60.3/ 65.1]20.7/ 25.9/ 29.9[12.7/ 163/ 20.8
CSL 523/ 80.0/ 94.3[24.5/ 33.7/ 49.0[[16.3/ 19.1/ 26.0{15.2/ 18.8/ 28.6|36.5/ 43.2/ 57.5||36.7/ 42.0/ 53.1|8.6/ 11.7/ 21.1| 7.0/ 9.6/ 17.0
DenseVLAD | 0.0/ 0.1/ 228] 0.0/ 2.0/ 143[[13.2/ 31.6/ 82.3]16.2/ 38.1/ 85.4[17.8/ 42.1/ 91.3|[22.2/ 48.7/ 92.819.9/ 26.6/ 85.2[10.3/ 27.0/ 77.0
NetVLAD 0.0/ 02/ 189] 0.0/ 2.0/ 12.2[[104/ 26.1/ 80.1|11.0/ 26.7/ 78.4[11.8/ 29.1/ 82.0|[17.4/ 403/ 93.2|7.7/ 21.0/ 80.5|5.6/ 157/ 65.8
FABMAP 0.0/ 0.0/ 46| 00/ 00/ 00| 1.1/ 2.7/ 165 | 1.0/ 25/ 147 | 3.6/ 7.9/ 30.7 || 27/ 6.4/ 273 | 0.5/ 1.5/ 13.6 | 0.8/ 1.7/ 11.5
LocalSftM 36.7/ 54.1/ 72.4[[55.4/ 57.0/ 59.9]52.4/ 55.1/ 58.6[70.8/ 72.7/ 759]||72.8/ 74.1/ 76.1|55.2/ 5777/ 61.3|41.8/ 44.5/ 48.7
DenseStM 39.8/ 60.2/ 84.7
AS+GC(seq) 86.6/ 93.0/ 99.3|76.3/ 88.5/ 99.8|77.6/ 86.8/ 99.8|86.4/ 93.6/ 99.8/92.0/ 96.0/ 99.7|71.0/ 84.0/ 99.2
Table 3. Evaluation on the Aachen Day-Night dataset and a subset of the conditions of the CMU Seasons dataset.
day conditions night conditions
dawn dusk OC-summer OC-winter rain SNOW sun night night-rain
m| .25/.50/5.0 257.5075.0 257.50/5.0 | 25/.5075.0 257.5075.0 257.5075.0 25750750 [[.257.50/5.0].257.5075.0
deg 2/5/10 2/5/710 2/5/10 2/5/10 2/5/10 2/5/10 2/5/10 2/5/10 2/5/10
ActiveSearch|36.2/68.9/89.444.7/74.6/95.9|24.8/63.9/95.5|33.1/71.5/93.8[51.3/79.8/96.9|36.6/72.2/93.7[25.0/46.5/69.1[[0.5/1.1/ 3.4|1.4/3.0/ 5.2
CSL 47.2/73.3/90.1|56.6/82.7/95.9(34.1/71.1/93.5[39.5/75.9/92.3]59.6/83.1/97.6/53.2/83.6/92.4|28.0/47.0/70.4][0.2/0.9/ 5.3[0.9/4.3/ 9.1
DenseVLAD| 8.7/36.9/92.5[10.2/38.8/94.2] 6.0/29.8/92.0] 4.1/26.9/93.3]10.2/40.6/96.9] 8.6/30.1/90.2] 5.7/16.3/80.2]|0.9/3.4/199]|1.1/5.5/25.5
NetVLAD 6.2/22.8/82.6| 7.4/29.7/92.9| 6.5/29.6/95.2| 2.8/26.2/92.6| 9.0/35.9/96.0| 7.0/25.2/91.8| 5.7/16.5/86.7[/0.2/1.8/15.5{0.5/2.7/16.4
FABMAP 1.2/ 5.6/149] 4.1/183/55.1] 0.9/ 89/39.3| 2.6/13.3/44.1| 8.8/32.1/86.5| 2.0/ 8.2/28.4] 0.0/ 0.0/ 2.4][0.0/0.0/ 0.0[/0.0/0.0/ 0.0

Table 4. Evaluation on the RobotCar Seasons dataset. We report the percentage of queries localized within the three thresholds.

all day all night
m| .257.50/5.0 257.5075.0

deg 2/5/10 2/5/10
ActiveSearch 35.6/67.9/904 | 09/ 2.1/ 43
CSL 453/73.5/90.1| 0.6/ 2.6/ 7.2
ActiveSearch+GC (triplet) 455/77.0/94.7] 2.7/ 6.9/12.1
ActiveSearch+GC (sequence, GT) | 46.7/80.1/97.0| 5.8/21.0/43.1
seqSLAM 1.3/ 6.1/153| 02/ 0.7/ 1.5

Table 5. Using multiple images for pose estimation (Ac-
tiveSeach+GC) on the RobotCar Seasons dataset.

pact on the building facades that are dominant in most query
images. The exceptions are “dawn” and “sun”. For both,
we observed overexposed images caused by direct sunlight
(cf. Fig. 1). Thus, fewer features can be found for Active
Search and CSL and the global image descriptors used by
the image retrieval approaches are affected as well.

On the Aachen Day-Night dataset, we observed that im-
age retrieval-based methods (DenseVLAD and NetVLAD)
consistently performed worse than structure-based methods
(Active Search, CSL, LocalSfM, and DenseSfM). For the
RobotCar dataset, NetVLAD and DenseVLAD essentially
achieve the same coarse-precision performance as Active
Search and CSL. This is caused by the lower variation in
viewpoints as the car follows the same road.

Compared to Aachen, there is an even stronger drop
in pose accuracy between day and night for the RobotCar
dataset. All methods fail to localize a significant num-
ber of queries for both the high- and medium-precision
regimes. Interestingly, DenseVLAD and NetVLAD out-
perform all other methods in the coarse-precision regime
(cf. Fig. 4(right)). This shows that their global descrip-
tors still encode distinctive information even if local fea-
ture matching fails. The better performance of all methods
under “night+rain” compared to "night”” comes from the au-
toexposure of the RobotCar’s cameras. A longer exposure
is used for the “night”, leading to significant motion blur.

Multi-image queries. The RobotCar is equipped with

RobotCar - all night
m 257.5075.0
deg 2/5/10

. full model 09/ 2.1/ 43
ActiveSearch sub-model | 32/ 7.9/12.0
CSL full model 0.6/ 26/ 7.2
sub-model 05/ 2.8/134

. . full model 2.7/ 69/12.1
ActiveSearch+GC (triplet) sub-model 7471537270
. full model 5.8/21.0/43.1
ActiveSearch+GC (sequence, GT) sub-model 133/359/61.8
. full model 1.5/ 747229
ActiveSearch+GC (sequence, VO) sub-model 36/125/422
LocalSftM sub-model 16.1/27.3/44.1

Table 6. Using location priors to query only submodels rather
than the full RobotCar Seasons dataset for night-time queries.

three synchronized cameras and captures sequences of im-
ages for each camera. Rather than querying with only a
single image, we can thus also query with multiple photos.
Tab. 5 shows the results obtained with seqSLAM (which
uses temporal sequences of all images captured by the three
cameras) and Active Search+GC. For the latter, we query
with triplets of images taken at the same time as well as
with temporal sequences of triplets. For the triplets, we use
the known extrinsic calibration between the three cameras
mounted on the car. For the temporal sequences, we use
relative poses obtained from the ground truth (GT) absolute
poses. For readability, we only show the results summarized
for day- and night-conditions.

Tab. 5 shows that Active Search+GC consistently out-
performs single image methods in terms of pose accuracy.
Active Search+GC is able to accumulate correct matches
over multiple images. This enables Active Search+GC to
succeed even if only a few matches are found for each in-
dividual image. Naturally, the largest gain can be observed
when using multiple images in a sequence.

Location priors. In all previous experiments, we consid-
ered the full RobotCar 3D model for localization. How-
ever, it is not uncommon in outdoor settings to have a rough



prior on the location at which the query image was taken.
We simulate such a prior by only considering the sub-model
relevant to a query rather than the full model. While we ob-
serve only a small improvement for day-time queries, local-
izing night-time queries significantly benefits from solving
an easier matching problem (c¢f. Tab. 6). For completeness,
we also report results for LocalSfM, which also considers
only a small part of the model relevant to a query. Active
Search+GC outperforms LocalSfM on this easier matching
task when querying with sequences. This is due to not rely-
ing on one single image to provide enough matches.

One drawback of sequence-based localization is that the
relative poses between the images in a sequence need to be
known quite accurately. Tab. 6 also reports results obtained
when using our own multi-camera visual odometry (VO)
system to compute the relative poses. While performing
worse compared to ground truth relative poses, this more
realistic baseline still outperforms methods using individual
images. The reasons for the performance drop are drift and
collapsing trajectories due to degenerate configurations.

5.3. Evaluation on the CMU Seasons Dataset

Compared to the urban scenes shown in the other datasets,
significant parts of the CMU Seasons dataset show subur-
ban or park regions. Seasonal changes can drastically affect
the appearance of such regions. In the following, we thus
focus on these conditions (see [53] for an evaluation of all
conditions). For each query image, we only consider its rel-
evant sub-model.

Tab. 3 evaluates the impact of changes in foliage and of
different regions on pose accuracy. The reference condi-
tion for the CMU Seasons dataset does not contain foliage.
Thus, other conditions for which foliage is also absent lead
to the most accurate poses. Interestingly, DenseVLAD and
NetVLAD achieve a better performance than Active Search
and CSL for the medium- and coarse-precision regimes un-
der the “Foliage” and "Mixed Foliage” conditions. For the
coarse-precision regime, they even outperform LocalSfM.
This again shows that global image-level descriptors can
capture information lost by local features.

We observe a significant drop in pose accuracy in both
suburban and park regions. This is caused by the dominant
presence of vegetation, leading to many locally similar (and
thus globally confusing) features. LocalSfM still performs
well as it only considers a few reference images that are
known to be a relevant for a query image. Again, we notice
that DenseVLAD and NetVLAD are able to coarsely local-
ize more queries compared to the feature-based methods.

Localizing sequences (Active Search+GC) again dras-
tically helps to improve pose estimation accuracy. Com-
pared to the RobotCar Seasons dataset, where the sequences
are rather short (about 20m maximum), the sequences used
for the CMU Seasons dataset completely cover their cor-
responding sub-models. In practical applications, smaller

sequences are preferable to avoid problems caused by drift
when estimating the relative poses in a sequence. Still, the
results from Tab. 3 show the potential of using multiple
rather than a single image for camera pose estimation.

6. Conclusion & Lessons Learned

In this paper, we have introduced three challenging new
benchmark datasets for visual localization, allowing us, for
the first time, to analyze the impact of changing conditions
on the accuracy of 6DOF camera pose estimation. Our ex-
periments clearly show that the long-term visual localiza-
tion problem is far from solved.

The extensive experiments performed in this paper lead
to multiple interesting conclusions: (i) Structure-based
methods such as Active Search and CSL are robust to
most viewing conditions in urban environments. Yet, per-
formance in the high-precision regime still needs to be
improved significantly. (ii) Localizing night-time images
against a database built from day-time photos is a very
challenging problem, even when a location prior is given.
(iii) Scenes with a significant amount of vegetation are chal-
lenging, even when a location prior is given. (iv) SfM, typ-
ically used to obtain ground truth for localization bench-
marks, does not fully handle problems (ii) and (iii) due
to limitations of existing local features. Dense CNN fea-
ture matching inside SfM improves pose estimation per-
formance at high computational costs, but does not fully
solve the problem. Novel (dense) features, e.g., based
on scene semantics [57], seems to be required to solve
these problems. Our datasets readily provide a benchmark
for such features through the LocalSfM and DenseSfM
pipelines. (v) Image-level descriptors such as DenseVLAD
can succeed in scenarios where local feature matching fails.
They can even provide coarse-level pose estimates in au-
tonomous driving scenarios. Aiming to improve pose ac-
curacy, e.g., by denser view sampling via synthetic im-
ages [67] or image-level approaches for relative pose es-
timation, is an interesting research direction. (vi) There is a
clear benefit in using multiple images for pose estimation.
Yet, there is little existing work on multi-image localization.
Fully exploiting the availability of multiple images (rather
than continuing the focus on single images) is thus another
promising avenue for future research.
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