Unsupervised Deep Generative Adversarial Hashing Network

Kamran Ghasedi Dizaji', Feng Zheng!, Najmeh Sadoughi Nourabadi'!, Yanhua Yang?
Cheng Deng?, Heng Huang!'*
!Electrical and Computer Engineering Department, University of Pittsburgh, PA, USA
2Xidian University, Xi’an, Shanxi, China

kag22l@pitt.edu,

chdeng.xd@gmail.com,

Abstract

Unsupervised deep hash functions have not shown sat-
isfactory improvements against their shallow alternatives,
and usually require supervised pretraining to avoid overfit-
ting. In this paper, we propose a new deep unsupervised
hashing function, called HashGAN, which efficiently ob-
tains binary representation of input images without any su-
pervised pretraining. HashGAN consists of three networks,
a generator, a discriminator and an encoder. By sharing
the parameters of the encoder and discriminator, we bene-
fit from the adversarial loss as a data-dependent regular-
ization in training our deep hash function. Moreover, a
novel hashing loss function is introduced for real images,
which results in minimum entropy, uniform frequency, con-
sistent and independent hash bits. Furthermore, we employ
a collaborative loss in training our model, enforcing simi-
lar random inputs and hash bits for synthesized images. In
our experiments, HashGAN outperforms the previous unsu-
pervised hash functions in image retrieval and achieves the
state-of-the-art performance in image clustering on bench-
mark datasets. We also provide an ablation study, showing
the contribution of each component in our loss function.

1. Introduction

Image similarity search in big datasets has gained
tremendous attentions in different applications such as in-
formation retrieval, data mining and pattern recognition
[47]. With rapid growth of image data, it has become cru-
cial to find compact and discriminative representations of
images in huge datasets in order to have efficient storage
and real-time matching for millions of images. Hashing
functions provide an effective solution for this problem by
attributing a binary code to each image, and consequently

*Corresponding Author. KD, FZ, HH were supported by NSF IIS
1302675, 1IS 1344152, DBI 1356628, 1IS 1619308, 1IS 1633753, NIH
RO1 AG049371.

feng.zheng@pitt.edu, najme.sadoughi@gmail.com,

yanhyang@xidian.edu.cn

heng.huang@pitt.edu

0Oy U A WNREO

Figure 1: Visualization of HashGAN discriminative repre-
sentations for a query set on MNIST using TSNE projection.
The real and synthesized data are indicated by colored and
gray circles respectively. Some of the synthesized images
are randomly shown from different parts of space.

reducing the similarity search between high dimensional
images to calculating the Hamming distance between their
binary codes [14, 50, 33, 30]. Typically, hash functions
are carefully designed to extract distinctive patterns from
images relevant to their semantic categorizes, while being
robust to various image transformations such as rotation,
translation, scale, and lightning [32, 55, 22].

Generally, hash functions can be divided into supervised
[33, 52, 16, 30] and unsupervised methods [18, 50, 46, 19].
The supervised hashing methods, especially deep hash
functions [27, 8, 59, 55], showed remarkable performance
in representing input data with binary codes. Although,
these deep hash functions take advantages of deep learn-
ing models in representing images with discriminative at-
tributes, they require costly human-annotated labels to train
their large set of parameters. Thus, their performance is
dramatically degraded by getting stuck in bad local minima
when there is not enough labeled data for training.

The unsupervised hashing methods address this issue by
providing learning frameworks without requiring any super-
visory signals. The unsupervised hashing methods either
use shallow models with hand-crafted features [3, 39, 29, 2]
as inputs, or employ deep architectures for obtaining both
discriminative features and binary hash codes together.
However, the unsupervised shallow functions may not cap-
ture the non-linear similarities between real-world images
due to their low capacity. They also suffer from hand-
crafted features and dimension reductions techniques (e.g.
principle component analysis (PCA)), which are not robust
to noise and image transformations. On the other hand, the
unsupervised deep hash functions usually have insignificant
improvements against the shallow models, since they can
not exploit the power of deep models due to overfitting and
lack of supervision. Some of the unsupervised deep hash
functions tackle this issue by initializing their parameters
using supervised pretraining with large datasets (e.g. Ima-
geNet dataset [0]) [32, 22].

We propose a new unsupervised deep hashing model,
called HashGAN, which nor suffers from shallow hash
functions and hand-crafted features, neither needs the su-
pervised pretraining to have discriminative binary codes.
Our framework jointly learns a hash function with a gen-
erative adversarial network (GAN). In particular, we tie the
discriminator of the GAN with the hash function, employing
the adversarial loss function as a data-dependent regulariza-
tion term in training our deep hash function. Furthermore,
we introduce a novel loss function for hashing real images,
minimizing the entropy of hash bits for each image, maxi-
mizing the entropy of frequency of hash bits, improving the
consistency of hash codes against different image transfor-
mations, and providing independent hash bits. Moreover,
we provide a collaborative loss function, which enforces the
encoder to have the same binary hash code for a synthe-
sized image by the generator, as the binary input variable
provided to the generator while synthesizing the image. We
show that this collaborative loss function is a helpful auxil-
iary task for obtaining discriminative hash codes.

Figure 1 illustrates a 2D visualization of HashGAN hash
codes for a query set of real and fake images on MNIST
dataset [28]. As shown, HashGAN not only achieves dis-
criminative representations for real data, but also generates
synthesized images conditioned on their binary inputs, rep-
resenting the semantic categories. Experimental results in-
dicate that our proposed model outperforms unsupervised
hash functions with significant margin in information re-
trieval tasks. Moreover, HashGAN achieves superior or
competitive results compared to the state-of-the-art models
in image clustering tasks. We also explore the effect of each
term in our loss function using an ablation study. Therefore,
our experiments confirm the effectiveness of HashGAN in
unsupervised attribute learning across different tasks. Our

contributions are summarized as follows:

e Proposing a novel framework for unsupervised hash-
ing model by coupling a deep hash function and a gen-
erative adversarial network.

e Introducing a new hashing objective for real im-
ages, regularized by the adversarial and collabora-
tive loss functions on synthesized images, resulting in
minimum-entropy, uniform frequency, consistent, and
independent hash bits.

e Achieving state-of-the-art results compared to alterna-
tives on information retrieval and clustering tasks.

2. Related Works
2.1. Hash Functions

Generally, hash functions can be grouped into super-
vised [33, 11, 52, 31, 16] and unsupervised methods [18,

, 46, 19]. The supervised methods require class labels
or pairwise similarity ground truths in their learning pro-
cess, whereas the unsupervised approaches need only in-
put samples. With the growing success of deep learning in
different applications, several studies have been published
about supervised deep hash functions [27, &, 59, 30, 55].
They mostly use pairwise relationships in different variants
of ranking loss functions (e.g. triplet [49], contrastive [17]
objectives) to simultaneously learn discriminative features
and encode hash bits. However, the performance of these
supervised hashing models crucially depends on availabil-
ity of labeled data in the training process.

Among the shallow models, locality sensitivity hashing
(LSH) [13] maps original data into a low dimensional fea-
ture space using random linear projections, and then obtains
binary hash codes. Later in [26, 51], LSH was extended to
kernel-based variants of hash functions. Gong et al. in-
troduced another well-known model, called iterative quan-
tization (ITQ) [14], which uses an alternating optimization
approach for learning efficient projections and performing
binarization. Spectral hashing (SpeH) [50] computes binary
hash codes by implementing spectral graph partitioning us-
ing the similarity information in a feature space. However,
these models suffer from shallow hash functions and inflex-
ible hand-crafted features, which limit their capabilities in
dealing with complex and high dimensional real world data.

In unsupervised deep hashing models, semantic hashing
[40] is one of the early studies, which adopts Restricted
Boltzmann Machine (RBM) [20] model as a deep hash func-
tion, and trains its parameters using an unsupervised learn-
ing approach. Deep Hashing (DH) [10] applies an unsuper-
vised loss function to a hierarchical neural networks to have
quantized, balanced and independent hash code bits. Lin et
al. introduced DeepBit [32] as an unsupervised deep hash-
ing algorithm by defining an objective function based on
quantization loss and balanced and rotation invariant hash

bits. In addition to quantization and balanced hash bits loss
functions, unsupervised triplet hashing (UTH) [22] employs
an unsupervised triplet loss, which minimizes the distance
of an anchor image and its rotated version (i.e. positive pair)
while maximizing the distance of the anchor image with a
random image (i.e. negative pair). Another method with
two steps is introduced in [21] to learn discriminative bi-
nary representations in an unsupervised manner. A convo-
lutional neural network (CNN) is trained using a clustering
algorithm in the first step, and then the learned cluster as-
signments are used as soft pseudo labels in a triplet ranking
loss for training a deep hash function in the second step.

Our proposed model falls in the category of unsupervised
deep hash functions. But unlike the unsupervised deep hash
functions, which have insignificant improvements over the
shallow alternatives, and/or require supervised pretraining
using a large labeled dataset, HashGAN outperforms unsu-
pervised alternatives with significant margins without any
supervised pretraining.

2.2. Applications of GAN

Goodfellow et al. proposed a powerful generative model,
called generative adversarial networks (GAN) [15], which is
able to synthesize realistic images with great details. Partic-
ularly, GAN objective includes a two-player minimax game
between two networks, a generator and a discriminator. The
discriminator aims to distinguish between the real and syn-
thesized (i.e. fake) images, and the generator maps samples
from arbitrary distribution (i.e. random noise) to the dis-
tribution of real images, trying to synthesize fake images
that fool the discriminator. Several studies [7, 38] further
addressed problems such as the unstable training process
of GAN and noisy and blurry synthesized images, resulting
in higher quality images. Moreover, some works [35, 37]
tried to improve the quality and diversity of generated im-
ages by conditioning on the supervisory signals like class
labels and text descriptions, and incorporating these su-
pervised information into the generative and discriminative
pathways. In addition, GAN has been adopted in supervised
and semi-supervised tasks to use the input data distribution
as a generalization force, and enhance the classification re-
sults [44, 41, 38]. Unlike these supervised/semi-supervised
studies, our model employs GAN in the unsupervised hash-
ing task, and does not require any supervisory signals like
class labels and image captions.

3. Unsupervised Deep Generative Adversarial
Hashing Network

In this section, we first introduce HashGAN by show-
ing its architecture and explaining the intuition behind the
model. Then, we define its loss function and describe the
effect of each term in our learning framework.

e

Generator
13p0oug 79 JojeulwosIqg palL

N o e - ——

Figure 2: HashGAN architecture, including a genera-
tor (green), a discriminator (red) and an encoder (blue),
where the last two share their parameters in several layers
(redblue=purple). The arrows on top represent the loss
functions.

3.1. HashGAN Architecture

Our proposed HashGAN model consists of three com-
ponents, a generator, a discriminator and an encoder. The
generator is supposed to synthesize images that fool the dis-
criminator by mapping samples from a random distribution
to the real data distribution. The discriminator is expected
to distinguish the synthesized images from real ones. The
encoder is designed to map the images to discriminative
binary hash codes. As shown in Figure 2, the discrimi-
nator and encoder share all of their parameters except for
the weights of their last layer. The inputs of generator are
also the concatenation of samples from two random distri-
butions, including binary and uniform random variables.

In order to train the discriminator parameters, we use the
standard adversarial loss function in GAN models. The pa-
rameters of encoder are trained via a hashing loss on real
data and an /5-norm loss on fake data. The hashing loss en-
sures having quantized, balanced, consistent and indepen-
dent hash codes for real images, and the />-norm loss is de-
termined to have similar hash codes as the generator binary
inputs for synthesized images. To train the parameters of
generator, we utilize the feature matching loss, introduced
in [41], to match the statistics of the real and fake images.
To do so, the expected value of the features in the last hid-
den layer of discriminator (encoder) network is selected in
the feature matching loss function.

HashGAN architecture has several advantages in our un-
supervised deep learning framework. First, tying the dis-
criminator and encoder is very useful in unsupervised train-

ing of our deep hash function, because the adversarial loss
can be considered as a data-dependent regularization term
in training HashGAN, which avoids overfitting and getting
stuck in bad local minima. From another point of view, the
encoder pathway utilizes the information in the data distri-
bution, which is discovered in the latent variables of dis-
criminator.

It has been shown that interpolations in the input space
of the generator produce semantic variations along data dis-
tribution [38, 9]. Hence, training the encoder to utilize these
information hidden in the input variables of generator is
helpful in learning discriminative binary codes. The feature
matching loss and the ¢5-norm loss for training the genera-
tor and encoder networks can be considered as collaborative
loss functions, which aim to use the generator binary in-
puts as the pseudo-hash-labels for the synthesized images,
while they have similar statistics with the real images. This
novel approach fits our unsupervised hashing problem, and
it is different with the conventional conditional GAN mod-
els [35, 37], which need supervisory signals.

3.2. HashGAN Loss Function

Consider there are N images in the gallery set, denoted
by X = {x;|i = 1,---, N}, which are used in training our
deep hash function. We utilize a multi-layer hash encoder
to map the input images into the K-bit hash codes. To do
so, there are K independent sigmoid functions in the last
layer of our encoder network. Thus, the output of encoder
for each image is represented by t; = £(x;), which shows
the composition of K independent probabilities as t;; =
P(b;, = 1x;; Wg), where t;, and b, are the k-th output
of encoder and binary hash code for the i-th image, and
‘W ¢ indicates the encoder parameters. Note that the binary
hash codes are simply computed using b;, = 1(¢;; > 0.5),
where 1(.) is the indicator function.

Our HashGAN model employs a generator network,
which maps the samples from a random distribution to the
data distribution. As mentioned earlier, the random input
of generator is concatenation of binary and uniform ran-
dom variable as z; = [z}, b}], where z, ~ U(0, 1) shows
the uniform random noise and b, ~ B indicates the bi-
nary random noise. While the real images are shown by
x;, the synthesized images by the generator are represented
by X; = G(z;). We also obtain the encoder outputs for the
synthesized images as t; = £(%;) = £(G(z;)).

The discriminator of HashGAN is supposed to determine
whether its input image is a real or a synthesized sample. A
sigmoid function is considered as the last layer of discrim-
inator, computing the probabilities p;, = D(x;) = P(y; =
l|x;; Wp) and p; = D(G(z;)) = P(yi = 1%;; Wp),
where p; and p; are the probabilities of being real (y; = 1)
for the i-th real and synthesized images respectively.

Now, we are able to define the loss function in our learn-

ing framework. The total loss function is summation of the
adversarial loss, hashing loss, and collaborative loss for the
real and synthesized images:

Etotal = Lad’u + Ehash + ‘Ccol . (1)

Following, we describe each term of the loss function in
more details, and explain the role of each one in achieving
discriminative binary hash codes. As proposed in [15], the
adversarial loss in GAN models is designed as a minimax
play between the discriminator and the generator models,
in which the discriminator is trained to correctly distinguish
the real and synthesized images, and the generator is trained
to synthesize fake images that fool the discriminator. The
adversarial loss function for training our discriminator has
the following form:

max By p(x) [log(D(x))] + Epnp(a) [log(1 — D(G(2))]
()

where the goal is to train the discriminator D to distinguish
the real image x from the synthesized sample G(z). The
adversarial loss is maximized w.rt. the discriminator to in-
crease the log-likelihood of correct predictions on real im-
ages and decrease the log-likelihood of mis-prediction on
fake samples.

The hashing objective for real data contains four losses,
including minimum-entropy, uniform frequency, consistent,
and independent bits loss functions. The following equation
shows these loss functions:

Hlln Z thk log tix, + (1 - t?k) 10g<1 - t?,k)
i=1 k=1

minimum entropy bits

K
+ > fulog fi + (1 fi) log(1 — fi)

k=1

uniform frequency bits

N K
~ T
3 e — Bkll3+ [[WE WE-T3, (3)
| ——

=l k=l independent bits

consistent bits

where t;;, = P(bjx|%;; We) is the k-th encoder output for
the ¢-th real image, transformed by translation, rotation,
flipping, or noise, fr = 1/N ZZI\; t;x is the frequency of
the k-th hash bit code over sampled images, and W% is the
weights of the last layer on the encoder network.

The first term in the hashing loss function is equiva-
lent to entropy of each hash bit, and minimizing this term
pushes hash bits for each image toward 0 or 1. Thus, the
minimum-entropy bits loss function reduces the quantiza-
tion loss without using the sign function. Considering fx

as the empirical frequency of each hash bits, the second
term in this loss function is a negative of entropy for the
bits frequency. By maximizing (i.e. minimizing negative
of) the entropy of bits frequency, the encoder tends to have
balanced hash codes. The third term in the loss function
constrains the encoder to extract similar hash codes for an
image and its transformed variants, making the encoder ro-
bust to the transformations. Finally, the last term in this loss
function pushes the encoder to have independent hash bits.

We also take advantages of the synthesized images in
training the encoder network by a ¢5-norm loss function,
which minimizes the distance of encoder outputs and gen-
erator binary inputs. Following equation shows the £5-norm
loss on the synthesized data:

H}Sin EzNP(z) [HE(Q(Z)) - bl”%]) “)

where b’ is the binary random variable in the generator in-
put z = [z’,b’]. Using this ¢5-norm loss function, the en-
coder network is able to provide similar hash codes for the
synthesized images, which share the same binary attributes
b’, but vary due to different uniform random variables z’.

In order to train the generator network, we used the fea-
ture matching loss instead of directly optimizing the out-
put of the discriminator via the traditional adversarial loss
function. The feature matching loss requires the generator
to synthesize images that have similar statistic to the real
images. We consider the last hidden layer of discrimina-
tor, denoted by F, as the source of statistic, and define the
following loss function:

min [Bxp0 P00~ BapmFG@)IE,)

where F is also the last hidden layer of encoder network,
affecting the hash codes and the adversarial probability. The
feature matching loss provides more stability in training our
model, and leads the synthesized images to share statistic
with real data. This is very helpful in collaborating with
{5-norm loss, making the pseudo-hash-labels for fake data
effective on obtaining discriminative binary representations
for real images.

In order to train our HashGAN model, we are able to use
stochastic learning techniques. Thus, we alternatively train
the generator and tie the discriminator and the encoder net-
works. In particular, we optimize the parameters of discrim-
inator and encoder jointly using the adversarial, hashing and
{y-norm loss functions in one step, and train the parameters
of generator using the feature matching loss in the next step.

4. Experiments

We perform several experiments to evaluate the perfor-
mance of our proposed model on multiple datasets. The
quality of hash codes extracted by HashGAN is explored

in image retrieval and clustering tasks. We also investigate
the effect of each component in our loss function using an
ablation study.

Implementation details: We use almost similar archi-
tectures for HashGAN to the Improved-GAN networks in
[41]. We avoid pooling layers and use strided convolu-
tional layers, utilize weight normalization [42] to stabilize
the training process, consider ReLU and leaky-ReLLU non-
linearities [34] as the activation function of convolutional
layers in our discriminator and encoder. For image pre-
processing, we only normalize the image intensities to be
in the range of [0,1] or [—1, 1], and consequently use sig-
moid and TanH functions in the last layer of our gener-
ator. A zero mean Gaussian noise with standard devia-
tion of 0.15 is also added to the input images of our dis-
criminator/encoder. Moreover, we set the learning rate to
9 x 10~* and linearly decrease it to 3 x 10~%, and adopt
Adam [23] as our optimization method with the hyper-
parameters 5, = 0.5, B2 = 0.999, ¢ = le — 08. Since our
hashing task is unsupervised, we did not tune any hyper-
parameters for adjusting the effect of our losses in differ-
ent datasets, and use the default setting. In particular, we
set the weights for the adversarial (L,q4,), feature match-
ing (L fcqt), independent bits (L;y,4p4+), uniform frequency
bits (Lynirrgpit), consistent bits (Leonspit) loss functions
equal to 1, and the weight of ¢5-norm loss (L) equal to
0.1. For L,inEntrppit in the hash loss function, the weight
is selected from Ainmntrppic = {1073,1072} based on
the final epoch loss value in the training process. Besides,
we first train HashGAN without the hash and ¢5-norm loss
functions by setting its weight equal to zero for one tenth
of the maximum epoch, since the obtained hash codes in
the first iterations may not be reliable for training the en-
coder parameters. We use Theano toolbox [!] for writing
our code, and run the algorithm in a machine with one Titan
X Pascal GPU.

Datasets: We compare our model with unsupervised
hash functions in the image retrieval task on CIFAR-10 [24]
and MNIST [28]. Furthermore, we analyze the discrimina-
tive capability of HashGAN binary codes in the image clus-
tering task on MNIST, USPS, FRGC [56] and STL-10 [5]
datasets. Following, we describe each dataset briefly.

CIFAR-10 dataset [24] contains 60K 32 x 32 colored im-
ages balanced across 10 classes (i.e. airplane, automobile,
bird, cat, deer, dog, frog, horse, ship and truck).

MNIST dataset [28] includes 70K 28 x 28 gray scale im-
ages of hand written digits (0-9) across 10 classes.

USPS is a dataset of 11K 16 x 16 gray scale handwritten
digits from USPS postal service, with unbalanced distribu-
tion across the ten digits.

FRGC contains 2,462 facial images from randomly se-
lected 20 subjects on this dataset [56]. Similar to [56], we
crop the images to 32 x 32 colored facial images.

Dataset CIFAR-10 MNIST - g
mAP (%) mAP@1000 (%) mAP (%) mAP@1000 (%) 25

Model 16 32 o 16 32 64 16 32 o4 16 32 64 | & A
KMH [15] 1359 13.93 1446 | 24.08° 23.56" 25.19" | 32.12 3329 35.78 | 59.12° 70.32° 67.62° | X

_ | SphH [19] 13.98 14.58 1538 |24.52* 24.16" 26.09% | 25.81 30.77 34.75 | 52.97* 65.45% 6545% | X
2| SpeH [50] 1255 1242 12.56 | 22.10% 21.79* 21.97° | 26.64 25.72 24.10 | 59.72* 64.37* 67.60° | X
= | PCAH [46] 1291 12,60 12.10 | 21.52* 21.62* 20.54* | 27.33 24.85 2147 | 60.98* 64.47* 63.31* | X
2| LSH [13] 1255 13.76 15.07 | 12.63* 16.31* 18.00° | 20.88 25.83 31.71 | 42.10* 50.45* 66.23* | X
ITQ [14] 15.67 1620 16.64 | 26.71* 27.41* 28.93* | 41.18 43.82 4537 |70.06" 76.86" 80.23* | X
DH [10] 16.17 1662 1696 | - - - 4314 4497 4674 - - - X
o | DAR[21] 1682 17.01 1721 - - - - - - - - - X
8 | DeepBit [3] - - - | 1943 2486 2773 | - - - | 2818 3202 4453 | v
Q| urH [22] - - - | 2866 3066 3241 | - - - | 4315 4658 4988 | v
HashGAN [ours] | 29.94 31.47 32.53 | 44.65 46.34 48.12 |91.13 9270 93.93 | 9431 9548 96.37 | X

Table 1: Image retrieval results (mAP and mAP@1000) of unsupervised hash functions on CIFAR-10 and MNIST datasets,
when the number of hash bits are 16, 32 and 64. The usage of supervised pretraining is shown for each model using the
tick sign. The results of alternative models are reported from the reference papers, except for the ones marked by (x) on top,

which are obtained by us running the released code.

STL-10 database [5] includes 13K colored images across
10 classes (i.e. airplane, bird, car, cat, deer, dog, horse,
monkey, ship and truck). The images are resized to 32 x 32.

4.1. Image Retrieval

Alternative models: For image retrieval, we compare
our method with the previous unsupervised hash functions
including K-means hashing (KMH) [18], spherical hash-
ing (SphH) [19], spectral hashing (SpeH) [50], PCA-based
hashing (PCAH) [46], locality sensitivity hashing (LSH)
[13], iterative quantization (ITQ) [14], deep hashing (DH)
[10], discriminative attributes representations (DAR) [21],
DeepBit [32] and unsupervised triplet hashing (UTH) [22].

Evaluation metrics: We evaluate the performance of
HashGAN compared to the aforementioned unsupervised
hashing functions using precision and mean average pre-
cision (mAP). We follow the standard protocol for both
MNIST and CIFAR-10 datasets, and randomly sample 1000
images (100 per class) as the query set and use the remain-
ing data as the gallery set. In particular, we report the results
of the image retrieval in terms of precision@1000, mAP,
and mAP@1000', where precision@1000 is the fraction of
correctly retrieved samples from the top 1000 retrieved sam-
ples in gallery, mAP is the mean of the average precision of
query images over all the relevant images, mAP@1000 is
mAP calculated over the top 1000 ranked images from the
gallery set. The reported results are the average of 5 exper-
imental results.

Performance comparison: Table | shows the mAP and
mAP@1000 results of HashGAN and other alternative mod-

Note that comparisons in some of the previous studies are confusing,
as they comapre mAP results of baseline models with mAP@ 1000 results
of other models. To avoid such confusion, we provide evaluations in terms
of both of these metrics, separately.

els across different hash bit sizes. To better compare the
models, we divide the hash functions into two groups of
shallow and deep models, and indicate whether they use su-
pervised pretraining or not. The results demonstrate that
our model consistently outperforms other models with sig-
nificant margins across different number of bits, datasets
and metrics. Although, HashGAN gives better performance
with more number of hash bits, its performance has small
drops with less hash bits. Interestingly, the unsupervised
deep hash functions, which use supervised pretraining via
ImageNet dataset, show better results on CIFAR-10 dataset
compared to the shallow models, but have relatively lower
performance on MNIST dataset. This shows that pretraining
on ImageNet dataset is more helpful for CIFAR-10 than for
MNIST, which is not that surprising, given that ImageNet
data distribution looks more similar to the CIFAR-10 image
distribution than MNIST. However, our model does not re-
quire any supervised pretraining, and consequently is not
affected by pretraining biases, and achieves superior results
on both datasets.

Table 2 indicates the results of precision@1000 for
HashGAN and some of the unsupervised hash functions.
Similar to Table 1, HashGAN achieves superior results in
comparison with the alternative shallow and deep mod-
els. The improvements of our model are consistent across
both MNIST and CIFAR-10 datasets and different hash code
sizes, showing the effectiveness of our learning framework
in dealing with different conditions. We also compare
HashGAN with the baselines using precision-recall curves
on CIFAR-10 dataset. Figure 3 clearly demonstrates bet-
ter performance for HashGAN consistently across different
number of bits.

Moreover, we visualize the HashGAN’s top 10 retrieved
images for some query data on CIFAR-10 dataset, when the

0.7 0.7

0.7

e—e LSpeH
oo ITQ

0.6 - ; o—e SphH 0.6
o—e SpeH
e—e PCAH

05)) e—e HashGAN 03

o
=
o
=

Precision
Precision

03fp- S - - 0.3

0.2

e—e |SpeH o—e |SpeH
o—o ITQ oo ITQ

e—e SphH 1 0.6 - e e—e SphH
o—e SpeH o—e SpeH
e—e PCAH ; ; ; e—s PCAH
o—s HashGAN || 05 i : +—s HashGAN

o
=

Precision

0.3

0.2

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2
Recall

0.4

0.6 0.8 1.0 0.0
Recall Recall

(a) 16 bits (b) 32 bits (c) 64 bits

Figure 3: Precision-Recall curves on CIFAR-10 database for HashGAN and five baselines with 16, 32, and 64 hash bits.

Dataset CIFAR-10 MNIST
precision@ 1000 (%) | precision@ 1000 (%)
Model 16 32 64 16 32 64
KMH [18] 18.83 19.72 20.16 (51.08* 53.82* 54.13"
5 SphH [19] 18.90* 20.91* 23.25%|46.31" 54.74* 62.50"
S|SpeH [50] 18.83 19.72 20.16 |51.08" 53.75* 54.13*
E‘ PCAH [46] 18.89 19.35 18.73|51.79" 51.90" 48.36"
C|LSH [13] 16.21 19.10 22.25|31.95" 45.05" 55.31*
ITQ [14] 22.46 2530 27.09(61.94* 68.80" 71.00*
DH [10] 16.17 16.62 16.96| - - -
2|DAR [21] 24.54 26.62 28.06| - - -
5 HashGAN [ours]| 41.76 43.62 45.51|93.52 94.83 95.60

Table 2: Image retrieval results (precision@1000) of unsu-
pervised hash functions on CIFAR-10 and MNIST datasets,
when the number of hash bits are 16, 32 and 64. The re-
sults of alternative models are reported from the reference
papers, except for the ones marked by (x) on top, which are
obtained by us running the released code.

hash bit size is 32. Figure 4 illustrates these results, qual-
itatively showing that our hash function is able to extract
semantic binary attributes.

4.2. Ablation Study

We perform an ablation study to examine the contri-
bution of each loss component in the achieved results.
We evaluate this experiment across L;n,qpit, L2, LeonsBits
LyniFrqpit and Lygy + L feqt + Lo. Note that in the absence
of adversarial loss, the feature matching and ¢5-norm losses
are also excluded due to their co-dependencies with the ad-
versarial loss. We exclude loss components one at a time,
measuring the difference in precision@ 1000 on MNIST and
CIFAR-10 datasets (See Fig. 5). The first observation is
that all of the loss components contribute in improving the
results. Furthermore, the figure shows the strong effect
of Loy + Lyfeat + Lo as the key components in avoid-

Query Retrieved

E EE-UVcNLBR-L
N T N e 5

¥ 2PBE0REGCSE
B o

Figure 4: Top 10 retrieved images for query data by Hash-
GAN on CIFAR-10 dataset with 32 bits hash code.

ing overfitting. In other words, employing GAN in our
model has the highest practical contribution, and removing
the discriminator and generator degrades the performance
substantially. It also demonstrates that the presence of uni-
form frequency loss is very important. Examining the re-
sults achieved in the absence of this loss demonstrates that
some of the binary codes collapse to either zero or one,
reducing the capacity of the assigned hash bit size. The
relative analysis of the results in each dataset demonstrates
that consistency loss is more effective in CIFAR-10 than in
MNIST. This is expected as we only use noise for image
transformation on MNIST since the images are centered and
scaled, but rely on extra transformations including transla-
tions and horizontal flipping for CIFAR-10. The figure also
demonstrates considerable contribution from the f5-norm
loss, showing the effectiveness of our framework in using
the synthesized images for training the encoder network.
The lowest effect is provided by the independent bit loss.

4.3. Image Clustering

One way to measure whether the hash function is effec-
tive in extracting distinctive codes is to evaluate their per-
formance in clustering tasks. Hence, we assess HashGAN’s

Dataset MNIST USPS FRGC STL-10
Model NMI ACC NMI ACC NMI ACC NMI ACC
K-means 0.500 0.534 0.450 0.460 0.287 0.243 0.209" 0.284
. N-Cuts [43] 0.411 0.327 0.675 0.314 0.285 0.235 - -
=] SC-LS [4] 0.706 0.714 0.681 0.659 0.550 0.407 - -
E AC-PIC [58] 0.017 0.115 0.840 0.855 0.415 0.320 - -
« SEC [36] 0.779 0.804 0.511 0.544 - - 0.245* 0.307
LDMGI [57] 0.802 0.842 0.563 0.580 - - 0.260" 0.331
NMF-D [45] 0.152 0.175 0.287 0.382 0259 0274 - -
DEC [53] 0.816 0.844 0.586 0.619 0.505 0.378 0.284" 0.359
& | JULE-RC [56] 0.913 0.964 0.913 0.950 0.574 0.461 - -
A DEPICT [12] 0917 0.965 0.927 0.964 0.610 0.470 | 0.303" 0.371*
HashGAN [ours] 0.913 0.965 0.920 0.958 0.602 0.465 0.316 0.394

Table 3: Clustering performance of HashGAN and several other algorithms on four image datasets based on accuracy (ACC)
and normalized mutual information (NMI). The results of alternative models are reported from the reference papers, except
for the ones marked by () on top, which are obtained by us running the released code.

MNIST

CIFAR-10

=10

-15

Ladn + Lfeat + Lo
Lo |

-20

Difference in precision@1000

LuniFrBit

=25
Leonspit

LinaBit

-30

Figure 5: The difference in the precision@ 1000, when each
of the loss components are excluded from the HashGAN’s
objective function on MNIST and CIFAR-10 datasets.

ability in clustering, by using the extracted hash codes as
low dimensional input features for K-means and compare
the results with alternative clustering models.

Alternative Models: We compare our clustering method
with several baselines and state-of-the-art clustering algo-
rithms, including K -means, normalized cuts (N-Cuts) [43],
large-scale spectral clustering (SC-LS) [4], agglomerative
clustering via path integral (AC-PIC) [58], spectral embed-
ded clustering (SEC) [36], local discriminant models and
global integration (LDMGI) [57], NMF with deep model
(NMF-D) [45], task-specific clustering with deep model
(TSC-D) [48], deep embedded clustering (DEC) [53], joint
unsupervised learning (JULE-RC) [56] and DEPICT [12].

Evaluation metrics: To compare the clustering results
of our model with previous studies, we rely on the two pop-
ular metrics used to evaluate clustering: normalized mutual
information (NMI), and accuracy (ACC). NMI provides a
measure of similarity between two data with the same la-

bel, which is normalized between O (lowest similarity) to 1
(highest similarity) [54]. To calculate ACC we find the best
mapping between the predicted clusters and the true labels,
following the approach proposed by [25].

Performance comparison: Table 3 gives the evaluation
results for our clustering method and the mentioned algo-
rithms in terms of NMI and ACC across MNIST, USPS,
FRGC, and STL-10 datasets. The results demonstrate that
our method (HashGAN + K-means) achieves superior or
competitive results compared to the state-of-the-art clus-
tering algorithms. Note that our method is not specially
designed for clustering, since we only run K-means algo-
rithm on the HashGAN representations without backpropa-
gating clustering error through the network. The table also
indicates clear advantage of deep models compared with
shallow models, emphasizing the importance of deep rep-
resentations in image clustering. Overall, this experiment
demonstrates the effectiveness of HashGAN model in ex-
tracting discriminative representations on different datasets
in completely unsupervised manner.

5. Conclusion

This paper introduced HashGAN, an unsupervised deep
hashing model, composed of a generator, a discriminator
and an encoder. We defined a novel objective function to
efficiently train our deep hash function without any super-
vision. Using the tied discriminator and encoder, we em-
ployed the adversarial loss as a data-dependent regulariza-
tion for unsupervised learning of our hash function. Our
novel hashing loss also led to quantized, balanced, consis-
tent and independent hash bits for real images. Further-
more, we introduced a collaborative loss to use the syn-
thesized images in training our hash function. HashGAN
outperformed unsupervised hashing models in information
retrieval with significant margin, and achieved state-of-the-
art results in image clustering.

References

(1]

(2]

(3]

[4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

[15]

R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller,
D. Bahdanau, N. Ballas, F. Bastien, J. Bayer, A. Belikov,
A. Belopolsky, et al. Theano: A python framework for fast
computation of mathematical expressions. arXiv preprint,
2016. 5

A. Alahi, R. Ortiz, and P. Vandergheynst. Freak: Fast retina
keypoint. In IEEE conference on Computer vision and pat-
tern recognition (CVPR), pages 510-517. Ieee, 2012. 2

M. Calonder, V. Lepetit, C. Strecha, and P. Fua. Brief: Bi-
nary robust independent elementary features. European con-
ference on Computer Vision (ECCV), pages 778-792, 2010.
2

X. Chen and D. Cai. Large scale spectral clustering with
landmark-based representation. In AAAZ, 2011. 8

A. Coates, A. Ng, and H. Lee. An analysis of single-layer
networks in unsupervised feature learning. In Proceedings
of the fourteenth international conference on artificial intel-
ligence and statistics, pages 215-223,2011. 5, 6

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. Imagenet: A large-scale hierarchical image database. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 248-255. IEEE, 2009. 2

E. L. Denton, S. Chintala, R. Fergus, et al. Deep genera-
tive image models using a laplacian pyramid of adversarial
networks. In Advances in neural information processing sys-
tems (NIPS), pages 1486-1494, 2015. 3

T.-T. Do, A.-D. Doan, and N.-M. Cheung. Learning to hash
with binary deep neural network. In European Conference on
Computer Vision (ECCV), pages 219-234. Springer, 2016. 1,
2

A. Dosovitskiy and T. Brox. Generating images with percep-
tual similarity metrics based on deep networks. In Advances
in Neural Information Processing Systems, pages 658—660,
2016. 4

V. Erin Liong, J. Lu, G. Wang, P. Moulin, and J. Zhou. Deep
hashing for compact binary codes learning. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2475-2483, 2015. 2, 6,7

T. Ge, K. He, and J. Sun. Graph cuts for supervised binary
coding. In European Conference on Computer Vision, pages
250-264. Springer, 2014. 2

K. Ghasedi Dizaji, A. Herandi, C. Deng, W. Cai, and
H. Huang. Deep clustering via joint convolutional autoen-
coder embedding and relative entropy minimization. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (ICCV), pages 5736-5745, 2017. 8

A. Gionis, P. Indyk, R. Motwani, et al. Similarity search in
high dimensions via hashing. In VLDB, volume 99, pages
518-529, 1999. 2, 6,7

Y. Gong and S. Lazebnik. Iterative quantization: A pro-
crustean approach to learning binary codes. In In Proc. of
the IEEE Int. Conf. on Computer Vision and Pattern Recog-
nition (CVPR), 2011. 1,2, 6,7

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

(29]

(30]

erative adversarial nets. In Advances in neural information
processing systems (NIPS), pages 2672-2680, 2014. 3, 4

J. Guo, S. Zhang, and J. Li. Hash learning with convolu-
tional neural networks for semantic based image retrieval. In
Pacific-Asia Conference on Knowledge Discovery and Data
Mining, pages 227-238. Springer, 2016. 1, 2

R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality re-
duction by learning an invariant mapping. In IEEE computer
society conference on Computer vision and pattern recogni-
tion, volume 2, pages 1735-1742. IEEE, 2006. 2

K. He, F. Wen, and J. Sun. K-means hashing: An affinity-
preserving quantization method for learning binary compact
codes. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2938-2945, 2013. 1,
2,6,7

J.-P. Heo, Y. Lee, J. He, S.-F. Chang, and S.-E. Yoon. Spher-
ical hashing. In Computer Vision and Pattern Recogni-
tion (CVPR), 2012 IEEE Conference on, pages 2957-2964.
IEEE, 2012. 1,2, 6,7

G. E. Hinton and R. R. Salakhutdinov. Reducing the
dimensionality of data with neural networks.
313(5786):504-507, 2006. 2

C. Huang, C. Change Loy, and X. Tang. Unsupervised learn-
ing of discriminative attributes and visual representations. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 5175-5184, 2016.
3,6,7

S. Huang, Y. Xiong, Y. Zhang, and J. Wang. Unsuper-
vised triplet hashing for fast image retrieval. arXiv preprint
arXiv:1702.08798,2017. 1,2,3,6

D. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014. 5

A. Krizhevsky and G. Hinton. Learning multiple layers of
features from tiny images. Computer Science Department,
University of Toronto, Tech. Rep, 1(4):7, 2009. 5

H. W. Kuhn. The hungarian method for the assignment prob-
lem. Naval Research Logistics (NRL), 2(1-2):83-97, 1955.
8

B. Kulis and K. Grauman. Kernelized locality-sensitive
hashing. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 34(6):1092-1104, 2012. 2

H. Lai, Y. Pan, Y. Liu, and S. Yan. Simultaneous feature
learning and hash coding with deep neural networks. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3270-3278, 2015. 1, 2

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEFE, 86(11):2278-2324, 1998. 2, 5

S. Leutenegger, M. Chli, and R. Y. Siegwart. Brisk: Binary
robust invariant scalable keypoints. In IEEE International
Conference on Computer Vision (ICCV), pages 2548-2555.
IEEE, 2011. 2

W.-J. Li, S. Wang, and W.-C. Kang. Feature learning based
deep supervised hashing with pairwise labels. In Proceed-
ings of the Twenty-Fifth International Joint Conference on
Artificial Intelligence, pages 1711-1717. AAAI Press, 2016.
1,2

science,

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

[42]

[43]

[44]

[45]

[46]

G. Lin, C. Shen, Q. Shi, A. Van den Hengel, and
D. Suter. Fast supervised hashing with decision trees for
high-dimensional data. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
1963-1970, 2014. 2

K. Lin, J. Lu, C.-S. Chen, and J. Zhou. Learning compact
binary descriptors with unsupervised deep neural networks.
In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 1183-1192, 2016. 1,2, 6

W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang. Su-
pervised hashing with kernels. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 2074—
2081. IEEE, 2012. 1,2

A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlin-
earities improve neural network acoustic models. In Interna-
tional Conference on Machine Learning (ICML), volume 30,
2013. 5

M. Mirza and S. Osindero. Conditional generative adversar-
ial nets. arXiv preprint arXiv:1411.1784,2014. 3, 4

F. Nie, Z. Zeng, 1. W. Tsang, D. Xu, and C. Zhang. Spectral
embedded clustering: A framework for in-sample and out-
of-sample spectral clustering. /EEE Transactions on Neural
Networks, 22(11):1796-1808, 2011. 8

A. Odena, C. Olah, and J. Shlens. Conditional image
synthesis with auxiliary classifier gans. arXiv preprint
arXiv:1610.09585, 2016. 3, 4

A. Radford, L. Metz, and S. Chintala. Unsupervised repre-
sentation learning with deep convolutional generative adver-
sarial networks. arXiv preprint arXiv:1511.06434, 2015. 3,
4

E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb:
An efficient alternative to sift or surf. In IEEE international
conference on Computer Vision (ICCV), pages 2564-2571.
IEEE, 2011. 2

R. Salakhutdinov and G. Hinton. Semantic hashing. Inter-
national Journal of Approximate Reasoning, 50(7):969-978,
2009. 2

T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Rad-
ford, and X. Chen. Improved techniques for training gans. In
Advances in Neural Information Processing Systems (NIPS),
pages 2234-2242,2016. 3, 5

T. Salimans and D. P. Kingma. Weight normalization: A
simple reparameterization to accelerate training of deep neu-
ral networks. In Advances in Neural Information Processing
Systems (NIPS), pages 901-909, 2016. 5

J. Shi and J. Malik. Normalized cuts and image segmenta-
tion. [EEE Transactions on pattern analysis and machine
intelligence, 22(8):888-905, 2000. 8

J. T. Springenberg. Unsupervised and semi-supervised learn-
ing with categorical generative adversarial networks. arXiv
preprint arXiv:1511.06390, 2015. 3

G. Trigeorgis, K. Bousmalis, S. Zafeiriou, and B. Schuller.
A deep semi-nmf model for learning hidden representations.
In International Conference on Machine Learning (ICML),
pages 1692-1700, 2014. 8

J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised hash-
ing for scalable image retrieval. In Computer Vision and Pat-

(47]

(48]

(49]

(50]

[51]

(52]

(53]

[54]

[55]

[56]

(571

(58]

(591

tern Recognition (CVPR), 2010 IEEE Conference on, pages
3424-3431. IEEE, 2010. 1,2, 6, 7

J. Wang, H. T. Shen, J. Song, and J. Ji. Hashing for similarity
search: A survey. arXiv preprint arXiv:1408.2927, 2014. 1
Z. Wang, S. Chang, J. Zhou, M. Wang, and T. S. Huang.
Learning a task-specific deep architecture for clustering. In
Proceedings of the 2016 SIAM International Conference on
Data Mining, pages 369-377. SIAM, 2016. 8

K. Q. Weinberger and L. K. Saul. Distance metric learning
for large margin nearest neighbor classification. Journal of
Machine Learning Research, 10(Feb):207-244, 2009. 2

Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In
Advances in neural information processing systems (NIPS),
pages 1753-1760, 2009. 1, 2, 6,7

H. Xia, P. Wu, S. C. Hoi, and R. Jin. Boosting multi-kernel
locality-sensitive hashing for scalable image retrieval. In
Proceedings of the 35th international ACM SIGIR confer-
ence on Research and development in information retrieval,
pages 55-64. ACM, 2012. 2

R. Xia, Y. Pan, H. Lai, C. Liu, and S. Yan. Supervised hash-
ing for image retrieval via image representation learning. In
AAAI volume 1, pages 2156-2162, 2014. 1, 2

J. Xie, R. Girshick, and A. Farhadi. Unsupervised deep em-
bedding for clustering analysis. In International Conference
on Machine Learning (ICML), 2016. 8

W. Xu, X. Liu, and Y. Gong. Document clustering based
on non-negative matrix factorization. In Proceedings of the
26th annual international ACM SIGIR conference on Re-
search and development in informaion retrieval, pages 267—
273. ACM, 2003. 8

H.-F. Yang, K. Lin, and C.-S. Chen. Supervised learning of
semantics-preserving hash via deep convolutional neural net-
works. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2017. 1,2

J. Yang, D. Parikh, and D. Batra. Joint unsupervised learn-
ing of deep representations and image clusters. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5147-5156, 2016. 5, 8

Y. Yang, D. Xu, F. Nie, S. Yan, and Y. Zhuang. Image cluster-
ing using local discriminant models and global integration.
IEEE Transactions on Image Processing, 19(10):2761-2773,
2010. 8

W. Zhang, D. Zhao, and X. Wang. Agglomerative clustering
via maximum incremental path integral. Pattern Recogni-
tion, 46(11):3056-3065, 2013. 8

H. Zhu, M. Long, J. Wang, and Y. Cao. Deep hashing net-
work for efficient similarity retrieval. In AAAIL pages 2415—
2421, 2016. 1,2

