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Abstract

We introduce Similarity Group Proposal Network
(SGPN), a simple and intuitive deep learning framework for
3D object instance segmentation on point clouds. SGPN
uses a single network to predict point grouping proposals
and a corresponding semantic class for each proposal, from
which we can directly extract instance segmentation results.
Important to the effectiveness of SGPN is its novel represen-
tation of 3D instance segmentation results in the form of a
similarity matrix that indicates the similarity between each
pair of points in embedded feature space, thus producing
an accurate grouping proposal for each point. Experimen-
tal results on various 3D scenes show the effectiveness of
our method on 3D instance segmentation, and we also eval-
uate the capability of SGPN to improve 3D object detection
and semantic segmentation results. We also demonstrate
its flexibility by seamlessly incorporating 2D CNN features
into the framework to boost performance.

1. Introduction
Instance segmentation on 2D images have achieved

promising results recently [18, 10, 31, 23]. With the rise of
autonomous driving and robotics applications, the demand
for 3D scene understanding and the availability of 3D scene
data has rapidly increased in recently. Unfortunately, the
literature for 3D instance segmentation and object detec-
tion lags far behind its 2D counterpart; scene understanding
with Convolutional Neural Networks (CNNs) [44, 45, 11]
on 3D volumetric data is limited by high memory and com-
putation cost. Recently, deep learning frameworks Point-
Net/Pointnet++ [33, 35] on point clouds open up more effi-
cient and flexible ways to handle 3D data.

Following the pioneering works in 2D scene understand-
ing, our goal is to develop a novel deep learning framework
trained end-to-end for 3D instance-aware semantic segmen-
tation on point clouds that, like established baseline systems
for 2D scene understanding tasks, is intuitive, simple, flexi-
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Figure 1: Instance segmentation for point clouds using
SGPN. Different colors represent different instances. (a)
Instance segmentation on complete real scenes. (b) Single
object part instance segmentation. (c) Instance segmenta-
tion on point clouds obtained from partial scans.

ble, and effective.
An important consideration for instance segmentation on

a point cloud is how to represent output results. Inspired by
the trend of predicting proposals for tasks with a variable
number of outputs, we introduce a Similarity Group Pro-
posal Network (SGPN), which formulates group proposals
of object instances by learning a novel 3D instance segmen-
tation representation in the form of a similarity matrix .

Our pipeline first uses PointNet/PointNet++ to extract a
descriptive feature vector for each point in the point cloud.
As a form of similarity metric learning, we enforce the idea
that points belonging to the same object instance should
have very similar features; hence we measure the distance
between the features of each pair of points in order to form
a similarity matrix that indicates whether any given pair of
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points belong to the same object instance.
The rows in our similarity matrix can be viewed as in-

stance candidates, which we combine with learned confi-
dence scores in order to generate plausible group proposals.
We also learn a semantic segmentation map in order to clas-
sify each object instance obtained from our group proposals.
We are also able to directly derive tight 3D bounding boxes
for object detection.

By simply measuring the distance between overdeter-
mined feature representations of each pair of points, our
similarity matrix simplifies our pipeline in that we remain
in the natural point cloud representation of defining our ob-
jects by the relationships between points.

In summary, SGPN has three output branches for in-
stance segmentation on point clouds: a similarity matrix
yielding point-wise group proposals, a confidence map for
pruning these proposals, and a semantic segmentation map
to give the class label for each group.

We evaluate our framework on both 3D shapes
(ShapeNet [4]) and real 3D scenes (Stanford Indoor Se-
mantic Dataset [1] and NYUV2 [42]) and demonstrate that
SGPN achieves state-of-the-art results on 3D instance seg-
mentation. We also conduct comprehensive experiments
to show the capability of SGPN on achieving high perfor-
mance on 3D semantic segmentation and 3D object detec-
tion on point clouds. Although a minimalistic framework
with no bells and whistles already gives visually pleasing
results (Figure 1), we also demonstrate the flexibility of
SGPN as we boost performance even more by seamlessly
integrating CNN features from RGBD images.

2. Related Works

2.1. Object Detection and Instance Segmentation

Recent advances in object detection [39, 14, 24, 37, 38,
26, 13, 25] and instance segmentation [23, 10, 9, 32, 31]
on 2D images have achieved promising results. R-CNN
[15] for 2D object detection established a baseline system
by introducing region proposals as candidate object regions.
Faster R-CNN [39] leveraged a CNN learning scheme and
proposed Region Proposal Networks(RPN). YOLO [37] di-
vided the image into grids and each grid cell produced
an object proposal. Many 2D instance segmentation ap-
proaches are based on segment proposals. DeepMask [31]
learns to generate segment proposals each with a corre-
sponding object score. Dai et al. [10] predict segment can-
didates from bounding box proposals. Mask R-CNN [18]
extended Faster R-CNN by adding a branch on top of RPN
to produce object masks for instance segmentation.

Following these pioneering 2D works, 3D bounding box
detection frameworks have emerged [40, 44, 45, 11, 5].
Song and Xiao [45] use a volumetric CNN to create 3D
RPN on a voxelized 3D scene and then use both the color

and depth data of the image in a joint 3D and 2D object
recognition network on each proposal. Deng and Latecki
[11] regress class-wise 3D bounding box models based on
RGBD image appearance features only. Armeni et al [1]
use a sliding shape method with CRF to perform 3D object
detection on point cloud. To the best of our knowledge, no
previous work exists that learns 3D instance segmentation.

2.2. 3D Deep Learning

Convolutional neural networks generalize well to 3D by
performing convolution on voxels for certain tasks such as
object classification [34, 48, 27, 51, 41, 29, 30], shape
reconstruction [49, 17, 8] of simple objects, and 3D ob-
ject detection as mentioned in Section 2.1. However, vol-
umetric representation carry a high memory and compu-
tational cost and have strong limitations dealing with 3D
scenes [7, 1, 46]. Octree-based CNNs [41, 47, 48] have been
introduced recently, but they are less flexible than volumet-
ric CNNs and still suffer from memory efficiency problems.

A point cloud is an intuitive, memory-efficient 3D repre-
sentation well-suited for representing detailed, large scenes
for 3D instance segmentation using deep learning. Point-
Net/Pointnet++ [33, 35] recently introduce deep neural net-
works on 3D point clouds, learning successful results for
tasks such as object classification and part and semantic
scene segmentation. We base our network architecture
off of PointNet/PointNet++, achieving a novel method that
learns 3D instance segmentation on point clouds.

2.3. Similarity Metric Learning

Our work is also closely related to similarity metric
learning, which has been widely used in deep learning on
various tasks such as person re-identification [52], match-
ing [16], image retrival [12, 50] and face recognition [6].
Siamese CNNs [6, 43, 3] are used on tasks such as track-
ing [22] and one-shot learning [20] by measuring the simi-
larity of two input images. Alejandro et. al [28] introduced
an associative embedding method to group similar pixels for
multi-person pose estimation and 2D instance segmentation
by enforcing that pixels in the same group should have simi-
lar values in their embedding space without actually enforc-
ing what those exact values should be. Our method exploits
metric learning in a different way in that we regress the like-
lihood of two points belonging to the same group and for-
mulate the similarity matrix as group proposals to handle
variable number of instances.

3. Method
The goal of this paper is to take a 3D point cloud as in-

put and produce an object instance label for each point and
a class label for each instance. Utilizing recent develop-
ments in deep learning on point clouds [33, 35], we intro-
duce a Similarity Group Proposal Network (SGPN), which



consumes a 3D point cloud and outputs a set of instance
proposals that each contain the group of points inside the
instance as well as its class label. Section 3.1 introduces
the design and properties of SGPN. Section 3.2 proposes
an algorithm to merge similar groups and give each point
an instance label. Section 3.3 gives implementation details.
Figure 2 depicts the overview of our system.

3.1. Similarity Group Proposal Network

SGPN is a very simple and intuitive framework. As
shown in Figure 2, it first passes a point cloud P of size
Np through a feed-forward feature extraction network in-
spired by PointNets [33, 35], learning both global and lo-
cal features in the point cloud. This feature extraction net-
work produces a matrix F . SGPN then diverges into three
branches that each pass F through a single PointNet layer to
obtain sized Np×Nf feature matrices FSIM , FCF , FSEM ,
which we respectively use to obtain a similarity matrix, a
confidence map and a semantic segmentation map. The ith
row in aNp×Nf feature matrix is aNf -dimensional vector
that represents point Pi in an embedded feature space. Our
loss L is given by the sum of the losses from each of these
three branches: L = LSIM + LCF + LSEM . Our network
architecture can be found in the supplemental.

Similarity Matrix We propose a novel similarity matrix
S from which we can formulate group proposals to directly
recover accurate instance segmentation results. S is of di-
mensions Np × Np, and element Sij classifies whether or
not points Pi and Pj belong to the same object instance.
Each row of S can be viewed as a proposed grouping of
points that form a candidate object instance.

We leverage that points belonging to the same object in-
stance should have similar features and lie very close to-
gether in feature space. We obtain S by, for each pair of
points {Pi, Pj}, simply subtracting their corresponding fea-
ture vectors {FSIMi , FSIMj} and taking the L2 norm such
that Sij = ||FSIMi

− FSIMj
||2. This reduces the problem

of instance segmentation to learning an embedding space
where points in the same instance are close together and
those in different object instances are far apart.

For a better understanding of how SGPN captures corre-
lation between points, in Figure 3(a) we visualize the simi-
larity (euclidean distance in feature space) between a given
point and the rest of the points in the point cloud. Points in
different instances have greater euclidean distances in fea-
ture space and thus smaller similarities even though they
have the same semantic labels. For example, in the bottom-
right image of Figure 3(a), although the given table leg point
has greater similarity with the other table leg points than the
table top, it is still distinguishable from the other table leg.

We believe that a similarity matrix is a more natural and
simple representation for 3D instance segmentation on a

point cloud compared to traditional 2D instance segmenta-
tion representations. Most state-of-the-art 2D deep learning
methods for instance segmentation first localize the image
into patches, which are then passed through a neural net-
work and segment a binary mask of the object.

While learning a binary mask in a bounding box is
a more natural representation for space-centric structures
such as images or volumetric grids where features are
largely defined by which positions in a grid have strong sig-
nals, point clouds can be viewed as shape-centric structures
where information is encoded by the relationship between
the points in the cloud, so we would prefer to also define
instance segmentation output by the relationship between
points without working too much in grid space.

Hence we expect that a deep neural network could better
learn our similarity matrix, which compared to traditional
representations is a more natural and straightforward rep-
resentation for instance segmentation in a point cloud.

Double-Hinge Loss for Similarity Matrix As is the case
in [28], in our similarity matrix we do not need to precisely
regress the exact values of our features; we only optimize
the simpler objective that similar points should be close to-
gether in feature space. We define three potential similarity
classes for each pair of points {Pi, Pj}: 1) Pi and Pj belong
to the same object instance; 2) Pi and Pj share the same se-
mantic class but do not belong to the same object instance;
3) Pi and Pj do not share the same semantic class. Pairs
of points should lie progressively further away from each
other in feature space as their similarity class increases. We
define out loss as:

LSIM =

Np∑
i

Np∑
j

l(i, j)

l(i, j) =


||FSIMi

− FSIMj
||2 Cij = 1

αmax(0,K1 − ||FSIMi
− FSIMj

||2) Cij = 2

max(0,K2 − ||FSIMi
− FSIMj

||2) Cij = 3

where Cij indicates which of the similarity classes defined
above does the pair of points ({Pi, Pj)} belong to and
α,K1,K2 are constants such that α > 1, K2 > K1.

Although the second and third similarity class are treated
equivalently for the purposes of instance segmentation, dis-
tinguishing between them in LSIM using our double-hinge
loss allows our similarity matrix output branch and our se-
mantic segmentation output branch to mutually assist each
other for increased accuracy and convergence speed. Since
the semantic segmentation network is actually wrongly try-
ing to bring pairs of points in our second similarity class
closer together in feature space, we also add an α > 1 term
to increase the weight of our loss to dominate the gradient
from the semantic segmentation output branch.
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Figure 2: Pipeline of our system for point cloud instance segmentation.

(a) (b)
Figure 3: (a) Similarity (euclidean distance in feature space)
between a given point (indicated by red arrow) and the rest
of points. A darker color represents lower distance in fea-
ture space thus higher similarity. (b) Confidence map. A
darker color represents higher confidence.

At test time if Sij < ThS where ThS < K1, then points
pair Pi and Pj are in the same instance group.

Similarity Confidence Map SGPN also feeds FCF

through an additional PointNet layer to predict a Np × 1
confidence map CM reflecting how confidently the model
believes that each grouping candidate is indeed a correct
object instance. Figure 3(b) provides a visualization of the
confidence map; points located in the boundary area be-
tween parts have lower confidence.

We regress confidence scores based on ground truth
groupsG represented as aNp×Np matrix identical in form
to our similarity matrix. If Pi is a background point that
does not belong to any object in the ground truth then the
row Gi will be all zeros. For each row in Si, we expect the
ground-truth value in the confidence map CMi to be the in-
tersection over union (IoU) between the set of points in the
predicted group Si and the ground truth group Gi. Our loss
LCF is the L2 loss between the inferred and expected CM .

Although the loss LCF depends on the similarity ma-
trix output branch during training, at test time we run the
branches in parallel and only groups with confidence greater
than a threshold ThC are considered valid group proposals.

Semantic Segmentation Network The semantic seg-
mentation map acts as a point-wise classifier. SGPN passes
FSEM through an additional PointNet layer whose archi-
tecture depends on the number of possible semantic classes,
yielding the final output MSEM , which is a Np×NC sized
matrix where NC is the number of possible object cate-
gories. MSEMij

corresponds to the probability that point
Pi belongs to class Cj .

The loss LSEM is a weighted sum of the cross entropy
softmax loss for each row in the matrix. We use median fre-
quency balancing [2] and the weight assigned to a category
is ac = medianfreq/freq(c), where freq(c) is the total
number of points of class c divided by the total number of
points in samples where c is present, and medianfreq is
the median of these freq(c).

At test time, the class label for a group instance is as-
signed by calculating the mode of the semantic labels of the
points in that group.

3.2. Group Proposal Merging

The similarity matrix S produces Np group proposals,
many of which are noisy or represent the same object. We
first discard proposals with predicted confidence less than
ThC or cardinality less than ThM2. We further prune
our proposals into clean, non-overlapping object instances
by applying Non-Maximum Suppression; groups with IoU
greater than ThM1 are merged together by selecting the
group with the maximum cardinality.

Each point is then assigned to the group proposal that
contains it. In the rare case (∼ 2%) that after the merging
stage a point belongs to more than one final group proposal,
this usually means that the point is at the boundary between
two object instances, which means that the effectiveness of
our network would be roughly the same regardless of which
group proposal the point is assigned to. Hence, with min-
imal loss in accuracy we randomly assign the point to any
one of the group proposals that contains it. We refer to this
process as GroupMerging throughout the rest of the paper.

3.3. Implementation Details

We use an ADAM [19] optimizer with initial learning
rate 0.0005, momentum 0.9 and batch size 4. The learning
rate is divided by 2 every 20 epochs. The network is trained
with only the LSIM loss for the first 5 epochs. In our ex-
periment, α is set to 2 initially and is increased by 2 every
5 epochs. This design makes the network more focused on
separating features of points that belong to different object
instances but have the same semantic labels. K1,K2 are set
to 0.8 and 1.0, respectively. We use per-category histogram
thresholding to get the threshold point Ths for each testing
sample. ThM1 is set to 0.6 and ThM2 is set to 200. ThC is
set to 0.1. Our network is implemented with Tensorflow and
a single Nvidia GTX1080 Ti GPU. It takes 16-17 hours to



converge. At test time, SGPN takes 40ms on an input point
cloud with size 4096 × 9 with PointNet++ as our baseline
architecture. Further runtime analysis can be found in Sec-
tion 4.2.

4. Experiments
We evaluate SGPN on 3D instance segmentation on the

following datasets:

• Stanford 3D Indoor Semantics Dataset (S3DIS) [1]:
This dataset contains 3D scans in 6 areas including 271
rooms. The input is a complete point cloud generated
from scans fused together from multiple views. Each
point has semantic labels and instance annotations.

• NYUV2 [42]: Partial point clouds are generated from
single view RGBD images. The dataset is annotated
with 3D bounding boxes and 2D semantic segmenta-
tion masks. We use the improved annotation in [11].
Since both 3D bounding boxes and 2D segmentation
masks annotations are given, ground truth 3D instance
segmentation labels for point clouds can be easily gen-
erated We follow the standard split with 795 training
images and 654 testing images.

• ShapeNet [4, 53] Part Segmentation: ShapeNet con-
tains 16, 881 shapes annotated with 50 types of parts
in total. Most object categories are labeled with two
to five parts. We use the official split of 795 training
samples and 654 testinn percentageg samples in our
experiments.

We also show the capability of SGPN to improve seman-
tic segmentation and 3D object detection. To validate the
flexibility of SGPN, we also seamlessly incorporate 2D
CNN features into our network to boos performance on the
NYUV2 dataset.

4.1. S3DIS Instance Segmentation and 3D Object
Detection

We perform experiments on Stanford 3D Indoor Seman-
tic Dataset to evaluate our performance on large real scene
scans. Following experimental settings in PointNet [33],
points are uniformly sampled into blocks of area 1m× 1m.
Each point is labeled as one of 13 categories (chair, table,
floor, wall, clutter etc.) and represented by a 9D vector
(XYZ, RGB, and normalized location as to the room). At
train time we uniformly sample 4096 points in each block,
and at test time we use all points in the block as input.

SGPN uses PointNet as its baseline architecture for this
experiment.1 Figure 5 shows instance segmentation results

1PointNet [33] proposed a 3D detection system while PointNet++ [35]
does not. To make fair comparison, we use PointNet as our baseline ar-
chitecture for this experiment while using PointNet++ in Sections 4.2 and
4.3.

on S3DIS with SGPN. Different colors represent different
instances. Point colors of the same group are not necessarily
the same as their counterparts in the ground truth since ob-
ject instances are unordered. To visualize instance classes,
we also add semantic segmentation results. SGPN achieves
good performance on various room types.

We also compare instance segmentation performance
with the following method (which we call Seg-Cluster):
Perform semantic segmentation using our network and then
select all points as seeds. Starting from a seed point, BFS
is used to search neighboring points with the same label. If
a cluster with more than 200 points has been found, it is
viewed as a valid group. Our GroupMerging algorithm is
then used to merge these valid groups.

We calculate the IoU on points between each predicted
and ground truth group. A detected instance is considered
as true positive if the IoU score is greater than a threshold.
The average precision (AP) is further calculated for instance
segmentation performance evaluation. Table 1 shows the
AP for every category with IoU threshold 0.5. To the best
of our knowledge, there are no existing instance segmenta-
tion method on point clouds for arbitrary object categories,
so we further demonstrate the capability of SGPN to handle
various objects by adding the 3D detection results of Ar-
meni et al. [1] on S3DIS to Table 1. The difference in
evaluation metrics between our method and [1] is that the
IoU threshold of [1] is 0.5 on a 3D bounding box and the
IoU calculation of our method is on points. Despite this dif-
ference in metrics, we can still see our superior performance
on both large and small objects.

We see that a naive method like Seg-Cluster tends to
properly separate regions far away for large objects like the
ceiling and floor. However for small object, Seg-Cluster
fails to segment instances with the same label if they are
close to each other. Mean APs with different IoU thresh-
olds (0.25, 0.5, 0.75) are also evaluated in Table 2. Figure 4
shows qualitative comparison results.

Once we have instance segmentation results, we can
compute the bounding box for every instance and thus pro-
duce 3D object detection predictions. In Table 3, we com-
pare out method with the 3D object detection system intro-
duced in PointNet [33], which to the best of our knowledge
is the state-of-the-art method for 3D detection on S3DIS.
Detection performance is evaluated over 4 categories AP
with IoU threshold 0.5.

The method introduced in PointNet clusters points given
semantic segmentation results and uses a binary classifica-
tion network for each category to separate close objects with
same categories. Our method outperforms it by a large mar-
gin, and unlike PointNet does not require an additional net-
work, which unnecessarily introduces additional complex-
ity during both train and test time and local minima dur-
ing train time. SGPN can effectively separate the difficult



Mean ceiling floor wall beam column window door table chair sofa bookcaseboard
Armeni et al. [1] 49.93 71.61 88.70 72.86 66.67 91.77 25.92 54.11 46.02 16.15 6.78 54.71 3.91

Seg-Cluster 20.39 43.58 35.52 16.64 12.59 15.90 23.86 15.75 22.63 10.33 3.92 43.33 10.71
SGPN 54.35 79.44 66.29 88.77 77.98 60.71 66.62 56.75 46.90 40.77 6.38 47.61 11.05

Table 1: Results on instance segmentation in S3DIS scenes. The metric is AP(%) with IoU threshold 0.5. To the best of our
knowledge, there are no existing instance segmentation methods on point clouds for arbitrary object categories. The result of
Armeni et al. [1] is on 3D object detection and IoU is calculated on 3D bounding boxes, while Seg-Cluster and SGPN are
on points.

AP0.25 AP0.5 AP0.75

Seg-Cluster 25.56 20.39 16.08
SGPN 59.85 54.35 43.09

Table 2: Comparison results on instance segmentation with
different IoU thresholds in S3DIS scenes. Metric is mean
AP(%) over 13 categories.

Mean table chair sofa board
PointNet [33] 24.24 46.67 33.80 4.76 11.72
Seg-Cluster 18.72 33.44 22.8 5.38 13.07

SGPN 30.20 49.90 40.87 6.96 13.28

Table 3: Comparison results on 3D detection in S3DIS
scenes. SGPN uses PointNet as baseline. The metric is AP
with IoU threshold 0.5.

Mean IoU Accuracy
PointNet [33] 49.76 79.66

SGPN 50.37 80.78

Table 4: Results on semantic segmentation in S3DIS scenes.
SGPN uses PointNet as baseline. Metric is mean IoU(%)
over 13 classes (including clutter).

cases of objects of the same semantic class but different in-
stances (c.f. Figure 4) since points in different instances are
far apart in feature space even though they have the same
semantic label. We further compare our semantic segmen-
tation results with PointNet in Table 4. SGPN outperforms
its baseline with the help of its similarity matrix.

4.2. NYUV2 Object Detection and Instance Seg-
mentation Evaluation

We evaluate the effectiveness of our approach on partial
3D scans on the NYUV2 dataset. In this dataset, 3D point
clouds are lifted from a single RGBD image. An image of
size H × W can produce H × W points. We subsample
this point cloud by resizing the image to H

4 ×
W
4 and get the

corresponding points using a nearest neighbor search. Both
our training and testing experiments are conducted on such
a point cloud. PointNet++ is used as our baseline.

In [36], 2D CNN features are combined 3D point cloud
for RGBD semantic segmentation. By leveraging the flexi-
bility of SGPN, we also seamlessly integrate 2D CNN fea-
tures from RGB images to boost performance. A 2D CNN
consumes an RGBD map and extracts feature maps F2 with

(a) (b) (c) (d) (e)
Figure 4: Comparison results on S3DIS. (a) Ground Truth
for instance segmentation. Different colors represents dif-
ferent instances. (b) SGPN instance segmentation results.
(c) Seg-Cluster instance segmentation results. (d) Ground
Truth for semantic segmentation. (e) Semantic Segmenta-
tion and 3D detection results of SGPN. The color of the
detected bounding box for each object category is the same
as the semantic labels.

size H
4 ×

W
4 ×NF2. Since there are H

4 ×
W
4 sub-sampled

points for every image, a feature vector of size Nf2 can
be extracted from F2 at each pixel location. Every fea-
ture vector is concatenated to F (a Np × NF feature ma-
trix produced by PointNet/PointNet++ as mentioned in Sec-
tion 3.1) for each corresponding point, yielding a feature
map of size NP × (NF + NF2), which we then feed to
our output branches. Figure 6 illustrates this procedure;
we call this pipeline SGPN-CNN. In our experiments, we
use a pre-trained AlexNet model [21] (with the first layer
stride 1) and extract F2 from the conv5 layer. We use
H × W = 316 × 415 and Np = 8137. The 2D CNN
and SGPN are trained jointly.

Evaluation is performed on 19 object categories. Fig-
ure 7 shows qualitative results on instance segmentation of
SGPN. Table 5 shows comparisons between Seg-Cluster
and our SGPN and CNN-SGPN frameworks on instance
segmentation. The evaluation metric is average precision
(AP) with IoU threshold 0.25.

The margin of improvement for SGPN compared to Seg-
Cluster is not as high as it is on S3DIS, because in this



Mean
Seg-Cluster 38.8 43.3 83.9 28.2 2.9 53.6 43.0 41.4 5.4 49.0 56.4 24.4 3.1 30.9 36.1 68.4 49.3 32.1 12.2 74.1

SGPN 40.1 46.4 84.1 30.9 5.8 54.6 44.8 40.1 6.0 51.4 56.1 27.6 4.1 30.9 35.1 67.1 50.1 34.9 15.0 76.3
SGPN-CNN 43.5 54.4 83.2 45.9 7.7 56.6 43.6 42.0 5.2 50.1 54.3 35.4 5.3 37.8 40.3 66.6 59.1 43.6 18.1 77.6

Table 5: Results on instance segmentation in NYUV2. The metric is AP with IoU 0.25.

Figure 5: SGPN instance segmentation results on S3DIS.
The first row is the prediction results. The second row is
groud truths. Different colors represent different instances.
The third row is the predicted semantic segmentation re-
sults. The fourth row is the ground truths for semantic seg-
mentation.
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Figure 6: Incorporating CNN features in SGPN.

dataset objects with the same semantic label are usually far
apart in Euclidean space. Additionally, naive methods like
Seg-Cluster benefit since it is easy to separate a single in-
stance into parts since the points are not connected due to
occlusion in partial scanning. Table 5 also illustrates that

(a) (b) (c) (d)
Figure 7: SGPN instance segmentation results on NYUV2.
(a) Input point clouds. (b) Ground truths for instance seg-
mentation. (c) Instance segmentation results with SGPN.
(d) Instance segmentation results with SGPN-CNN.

Mean
Deep Sliding Shapes [45] 37.55 58.2 36.1 27.2 28.7

Deng and Latecki [11] 35.55 46.4 33.1 33.3 29.4
SGPN 36.25 44.4 30.4 46.1 24.4

SGPN-CNN 41.30 50.8 34.8 49.4 30.2

Table 6: Comparison results on 3D detection (AP with IoU
0.25) in NYUV2. Please note we use point groups as infer-
ence while [45, 11] use large bounding box with invisible
regions as ground truth. Our prediction is the tight bound-
ing box on points which makes the IoU much smaller than
[45, 11].

SGPN can effectively utilize CNN features. Instead of con-
catenating fully-connected layer of 2D and 3D networks as
in [45], we combine 2D and 3D features by considering
their geometric relationships.

We further calculate bounding boxes with instance seg-
mentation results. Table 6 compares our work with the
state-of-the-art works [45, 11] on NYUV2 3D object detec-
tion. Following the evaluation metric in [44], AP is calcu-
lated with IoU threshold 0.25 on 3D bounding boxes. The
NYUV2 dataset provides ground truth 3D bounding boxes
that encapsulate the whole object including the part that is
invisible in the depth image. Both [45] and [11] use these
large ground truth bounding boxes for inference. In our
method, we infer point groupings, which lack information



Mean air-
plane bag cap car chair head

phone guitar knife lamp laptopmotor mug pistol rocket skate
board table

[35] 84.6 80.4 80.9 60.0 76.8 88.1 83.7 90.2 82.6 76.9 94.7 68.0 91.2 82.1 59.9 78.2 87.5
SGPN 85.8 80.4 78.6 78.8 71.5 88.6 78.0 90.9 83.0 78.8 95.8 77.8 93.8 87.4 60.1 92.3 89.4

Table 7: Semantic segmentation results on ShapeNet part dataset. Metric is mean IoU(%) on points.

(a)

(b)

(c)

(d)
Figure 8: Qualitative results on ShapeNet Part Dataset.
(a) Generated ground truth for instance segmentation. (b)
SGPN instance segmentation results. (c) Semantic segmen-
tation results of PointNet++. (d) Semantic segmentation re-
sults of SGPN.

of the invisible part of the object. Our output is the derived
tight bounding box around the grouped points in the partial
scan, which makes our IoUs much smaller than [45, 11].
However, we can still see the effectiveness of SGPN on the
task of 3D object detection on partial scans as our method
achieves better performance on small objects.

Computation Speed To benchmark the testing time with
[45, 11] and make fair comparison, we run our framework
on an Nvidia K40 GPU. SGPN takes 170ms and around
400M GPU memory per sample. CNN-SGPN takes 300ms
and 1.4G GPU memory per sample. GroupMerging
takes 180ms on an Intel i7 CPU. However, the detection net
in [11] takes 739ms on an Nvidia Titan X GPU. In [45],
RPN takes 5.62s and ORN takes 13.93s per image on an
Nvidia K40 GPU. Our model improves the efficiency and
reduces GPU memory usage by a large margin.

4.3. ShapeNet Part Instance Segmentation

Following the settings in [35], point clouds are gener-
ated by uniformly sampling shapes from Shapenet [4]. In
our experiments we sample each shape into 2048 points.
The XYZ of points are fed into network as input with size
2048 × 3. To generate ground truth labels for part instance
segmentation from semantic segmentation results, we per-
form DBSCAN clustering on each part category of an object
to group points into instances. This experiment is conducted
as a toy example to demonstrate the effectiveness of our ap-

proach on instance segmentation for pointclouds.

We use Pointnet++ as our baseline. Figure 8(b) illus-
trates the instance segmentation results. For instance re-
sults, we again use different colors to represent different
instances, and point colors of the same group are not nec-
essarily the same as the ground truth. Since the generated
ground truths are not “real” ground truths, only qualitative
results are provided. SGPN achieves good results even un-
der challenging conditions. As we can see from the Fig-
ure 8, SGPN is able to group the chair legs into four in-
stances even though even in the ground truth DBSCAN can
not separate the chair legs apart.

The similarity matrix can also help the semantic segmen-
tation branch training. We compare SGPN to PointNet++
(i.e. our framework with solely a semantic segmentation
branch) on semantic segmentation in Table 7. The inputs
of both networks are point clouds of size 2048. Evaluation
metric is mIoU on points of each shape category. Our model
performs better than PointNet++ due to the similarity ma-
trix. Qualitative results are shown in Figure 8. Some false
segmentation prediction is refined with the help of SGPN.

5. Conclusion
We present SGPN, an intuitive, simple, and flexible

framework for 3D instance segmentation on point clouds.
With the introduction of the similarity matrix as our out-
put representation, group proposals with class predictions
can be easily generated from a single network. Experiments
show that our algorithm can achieve good performance on
instance segmentation for various 3D scenes and facilitate
the tasks of 3D object detection and semantic segmentation.

Future Work While a similarity matrix provides an intu-
itive representation and an easily defined loss function, one
limitation of SGPN is that the size of the similarity matrix
scales quadratically as Np increases. Thus, although much
more memory efficient than volumetric methods, SGPN
cannot process extremely large scenes on the order 105 or
more points. Future research directions can consider gener-
ating groups using seeds that are selected based on SGPN
to reduce the size of the similarity matrix. SGPN can also
be extended in future works to learn in a more unsupervised
setting or to learn more different kinds of data representa-
tions beyond instance segementation.
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