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Abstract

In this work, we address the problem of improving ro-
bustness of convolutional neural networks (CNNs) to image
distortion. We argue that higher moment statistics of feature
distributions can be shifted due to image distortion, and the
shift leads to performance decrease and cannot be reduced
by ordinary normalization methods as observed in our exper-
imental analyses. In order to mitigate this effect, we propose
an approach base on feature quantization. To be specific,
we propose to employ three different types of additional
non-linearity in CNNs: i) a floor function with scalable reso-
lution, ii) a power function with learnable exponents, and iii)
a power function with data-dependent exponents. In the ex-
periments, we observe that CNNs which employ the proposed
methods obtain better performance in both generalization
performance and robustness for various distortion types for
large scale benchmark datasets. For instance, a ResNet-50
model equipped with the proposed method (+HPOW) obtains
6.95%, 5.26% and 5.61% better accuracy on the ILSVRC-12
classification tasks using images distorted with motion blur,
salt and pepper and mixed distortions.

1. Introduction
Recognition of objects using distorted images is a chal-

lenge that has been studied extensively in computer vision
and pattern recognition in the last decade [3, 8, 13, 28, 30,
32, 34]. While convolutional neural networks (CNNs) have
achieved impressive progress for object classification and
recognition in various benchmark datasets [17, 20, 42, 45],
recent works [11, 12] show that their performance is severely
degraded for distorted images.

In this work, we consider a collection of image distortions
that are observed in real-world natural images. Specifically,
we consider the following types of distortion: i) distortion
caused by signal processing, ii) statistical noise and iii) oc-
clusion (see Section 3.1 for details). Image distortions result
in change of statistical properties of datasets. In other words,
recognition of objects using distorted datasets can be posed
as a dataset shift problem. Suppose that Xtr and Xte are sets
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Figure 1: Divergence between distributions of neuron ac-
tivities can be observed between original and distorted in-
put images. This effect is accumulated through layers of
CNNs, which can finally result in degraded performance.
The probability densities are calculated using VGG-16 [42]
for 5,000 original images, which belong to the validation set
of ILSVRC-12, and their manually distorted versions.

of features extracted from examples belonging to datasets
Dtr and Dte, respectively. Moreover, suppose that a CNN
model is trained using Dtr, and tested using Dte, a set of
distorted images. Then, the distortion (such as noisy pixels)



occurred on the dataset Dte will affect extraction of feature
representations learned using Dtr. Consequently, feature
distributions p(Xtr) and p(Xte) may diverge.

Feature normalization methods have been popularly used
to address the data shift problems. However, normaliza-
tion methods [20] do not ensure minimization of difference
between higher moments, e.g. skewness and kurtosis. The
relationship between moment statistics and classification per-
formance has been studied in the last decade. For instance,
the effect of moments and percentile statistics on surface
reflectance properties was analyzed in [41]. On the other
hand, dataset shift caused by only skewness and kurtosis can
also decrease the performance of neural networks severely
(see Section 2.1). In CNNs, the aforementioned shifts be-
tween higher moments of features extracted from clean and
distorted images can be observed. In addition, the shifts are
usually irregular, and their magnitude can grow from bottom
to top layers (Figure 1).

In this paper, we propose an alternative approach to re-
solve the aforementioned problem by employing a weak
quantization operation on features obtained at the output of
convolution layers. Quantization methods are initially pro-
posed to increase the computational performance and energy
efficiency [15], while they are also helpful in eliminating
minor perturbation of features under full numerical preci-
sion. We realize this approach by employing three different
types of additional non-linearity in CNNs: i) a floor function
with scalable resolution, ii) a power function with learnable
exponents, and iii) a power function with data-dependent
exponents. Our contributions can be summarized as follows:

1. We explore how a shift of higher moments of feature
distributions can lead to a performance degradation.
In addition, we investigate the viability of divergence
reduction by using normalization methods and non-
linear functions.

2. We propose a new approach to employ feature quantiza-
tion while training CNNs. Briefly, we integrate the floor
or power non-linearity function into the CNNs, such
that the features from distorted images can be mapped
to a new space with less divergence. Our proposed
approach enables us to improve robustness of CNNs
without utilizing additional training techniques such as
stability training [50].

3. In experimental analyses, we demonstrate that the gen-
eralization performance of CNNs and their robustness
to various types of image distortions can be improved
using our proposed methods for object recognition and
detection tasks using large scale datasets (e.g. the
ILSVRC-12 and Pascal Voc).

Related Work

Processing Distorted Images using Deep Learning Meth-
ods: The dataset shift problem caused by image distortion
has been previously tackled using several approaches [23,
43, 46]. The most widespread approach used to minimize
the divergence, is to employ a generative model p(z)pθ(X|z)
such that both p(Xtr) and p(Xte) could be inferred from
a fixed distribution p(z) which is parametrized by a set
of parameters θ [19, 39, 53]. Due to the intractability of
pθ(X|z), it could be difficult to estimate parameters θ [27].
Recent works [9, 21] have considered modeling of some
specific transformation patterns such as scale and rotation
by learning sub-networks with a parameter set φ. These
sub-networks can yield a new distribution for a test dataset
qφ(Xte) that is similar to p(Xtr), or a new qφ(Xtr) that is
likely to be an approximation to p(Xte). Still, estimation of
parameters φ is challenging since the transformation patterns
can be very different for Xtr and Xte. On the other hand,
training techniques, which are used to explicitly minimize
D(Xtr,I,Xtr,I′) between an input image I and its distorted
version I′ during training, are also shown to be helpful [50],
where D is a measure for distance such as the `2 distance.
However, these techniques increase computational complex-
ity of training methods. In addition, the improvement could
be marginal if the prior knowledge of p(Xte) used for gen-
erating distorted images is not available (see Section 3.2).

Normalization Methods used in Deep Learning: State-of-
the-art normalization methods such as Batch Normalization
(BN) [20] and Layer Normalization (LN) [26] are used to re-
duce the inherent data shift problems by fixing the mean and
the variance of distribution of input features at each layer of
a CNN. Concretely, if X (which denotes either a data matrix
of training/testing samples, or a matrix of features extracted
from samples) is received as input, then normalization meth-
ods output X̃ = X−µX

σX
that has zero mean and unit variance.

Although these normalization methods are confirmed to work
well empirically, still they implicitly assume that distribu-
tions of features obtained from clean and distorted images
can be parameterized according to the same function, i.e.
Gaussian. In addition, these methods do not aim minimiza-
tion of the classification loss. However this assumption does
not apply to general cases as mentioned above, especially
when the divergence is usually observed for higher moment
statistics, i.e. skewness and kurtosis. In practice, these nor-
malization methods are followed by a linear transformation
method. This ad-hoc method slightly mitigates the problem,
but still there remains large divergence between p(Xtr) and
p(Xte).

Feature Quantization Methods used by CNNs: The effec-
tiveness of dimension and complexity reduction of feature
quantization/hashing methods have been demonstrated in the
previous studies [1, 48]. Recently, various approaches have



(a) Original (b) Normalization (c) Floor (Scale=100) (d) Tanh (e) Softsign (f) Power (Exp.=0.25)

Figure 2: A demonstration of change of distributions observed by using different nonlinear functions. In the analyses, κ value
of (a) original blue and green distribution was set to −0.2 and 0.5, respectively. (b)(c)(d)(e) depict distributions computed after
employment of the corresponding transformations. It can be seen that distributions mapped by using additional non-linearity
have smaller divergence with better fitted shapes for this task.

been proposed for quantization of weights and activations
in CNNs in order to compress the networks or reduce flops
during inference [37, 51, 35, 29, 52]. For instance, XNOR-
Net [37] is a type of CNN that uses mostly bitwise operations
to approximate convolutions, where both filters and features
are binary. DoReFa-Net [51] generalizes this method and
quantizes weights, activations and gradients using different
widths of bits. Both methods provide accelerated training
and inference, together with a reduced model size. However,
these quantization methods are not proposed to gain inherent
robustness against image distortion, and mainly focus on the
trade-off between compression effectiveness and accuracy
(although robustness can be observed against specified types
of distortion, see Section 3.2).

Design of Non-linearity in CNNs: Various types of non-
linearity functions have been explored and proved to be ben-
eficial for training CNNs empirically [2, 10, 18, 24, 31, 36].
However, functions endowed with power operations have
been barely utilized. A former attempt [14] proposed an `p
nonlinear unit with a learnable order p. An `p unit employed
at a layer receives signals from a subset of units used at the
previous layer, and performs `p normalization. This can be
interpreted as an implicit employment of power operation for
estimation and assignment of different weights to different
feature activation. Their experimental results show perfor-
mance improvement for some benchmark datasets. S-shaped
rectified linear units (SReLU) [22] have been proposed to
achieve more complicated non-linearity, and they are con-
sidered as imitation of the behavior of power or logarithm
functions with performance boost.

2. Proposed Feature Quantization

Suppose that we are given a convolution kernel
W ∈ RC×D×h×w with D output channels that slides on
a tensor of features X ∈ RC×H×W . Then, the output of a
convolution operation U ∈ RD×H̃×W̃ can be computed by

Ud =
∑
c

Wc,d ?Xc, (1)

where ? is the two dimensional convolution operation, Ud is
the dth channel of U, c = 1, 2, . . . , C and d = 1, 2, . . . , D
denotes the index of input and output channels, respectively.
In our proposed approach, we consider that a distorted im-
age I′ = Fθ(I), where Fθ is the transformation function
parameterized by θ. For instance, a noisy image I′ is ob-
tained using additive noise ε such that I′ = I + ε. Various
nonlinear functions Fθ are used to perform more compli-
cated distortions such as occlusion and compression. Under
this setting, we aim to learn features X′ extracted from dis-
torted image I′, whose change is relatively small compared
to X extracted from clean image I, using feature quantiza-
tion methods while training CNNs. For this purpose, we
use a floor function with scalable resolution, a power func-
tion with learnable exponents and a power function with
data-dependent exponents.

Floor function with scalable resolution: The floor oper-
ation can be used to remove small noise ε by quantizing
the input into a set of integers. However, a trade-off be-
tween increasing the strength of quantization and the errors
occurred due to quantization should be made in order to ben-
efit from the floor operation. Therefore, we employ scaling
coefficients and compute the convolution by

Ud =
∑
c

Wc,d ? τ(Xc, βc,d), (2)

where βc,d ∈ R is a channel-wise coefficient, and τ is the
element-wise floor function defined by

y = τ(x, β) ,
bβxc
β

, (3)

where bxic = max{z ∈ Z|z ≤ xi} is the floor function,
which is applied to each element xi of a tensor x.

Mathematically, floor function has zero gradient with
respect to its input. In order to compute its gradient, we also
employ the “straight-through estimator” method as proposed
in [4, 51]. That is, we assign 1 to gradients back-propagated
to lower layers during back-propagation.



Power function with a learnable exponent: Instead of ex-
plicit quantization of the input, we propose to use the power
operation in the convolution operation in order to employ an-
other non-linearity. The power function with an exponential
map with range [0, 1] is able to map any positive real number
closer to 1. Thus, the input can be considered as 1+ζ, where
1 is the identity 1-tensor having the same shape that the input
has. We consider this mapping as a quasi-quantization ef-
fect, where the smaller exponent is the heavier quantization
we obtain. It is worth noting that, this can be achieved by
any non-linearity functions with saturation activity, such as
sigmoid, Tanh or Softsign (further discussions are given in
Section 2.1). In order to append the power function into the
convolution operation, we define the convolution by

Ud =
∑
c

Wc,d ? ψ(Xc, αc,d), (4)

where αc,d ∈ R is the corresponding channel-wise exponent,
and ψ is the element-wise power function defined by

y = ψ(x, α) =

{
xα+1
m , if xm ≥ 0

−(−xm)α+1, otherwise
, (5)

where xm is themth element of x ∈ RM . We apply a mirror
operation for negative inputs, since power function is defined
on R+, while they are safely ignored in CNNs employing
ReLU, where only positive values are propagated into the
next convolution layer. The parameters α are determined to
be learnable to provide an appropriate quantization strength,
and they are estimated using gradients computed during back-
propagation (BP) by (d and c are omitted for simplicity)

∂L
∂α

=

m∑
i=1

∂L
∂yi

yi ln |xi|,
∂L
∂xi

=
∂L
∂yi

(α+ 1)
yi
xi
, (6)

where L denotes a loss function such as a classification loss.
Note that xi 6= 0, otherwise we assign a 0 to the gradients.
In this work, instead of providing a hard restriction to the
range of α, we employ `2 and `1 (lasso) regularized terms
towards α for computation of the final loss during training.
Empirically this is able to stabilize the training while α may
grow larger 1. Detailed analysis on the distribution of learned
α as well as the effects of `2 and `1 (lasso) regularization are
provided in supplementary material.

Hyper-exponent for power function: We introduce a Hy-
perNetwork [16] approach for estimating strength of quasi-
quantization effect of power function defined by

αd = Fd(µXd
,σXd

), (7)

where µXd
,σXd

∈ Rc stand for mean and standard devi-
ation for all input channels, Fd is a mapping function and
αd ∈ Rc is an exponent computed for the output channel d.

Table 1: Averaged classification accuracy (%) of two-layer
neural network models obtained using artificial datasets over
10 runs. During each run, 10,000 training and 10,000 test
samples are generated, respectively. Trans. stands for the
followed linear transformation proposed in [20].

Total Features (M) 128

Determinant Features (N) 1 2 4 8

Base w/o divergence 96.4 92.6 83.0 36.3
Base 93.9 87.9 73.7 26.9

Batch Norm. Only 92.1 84.9 71.5 29.3
Batch Norm. + Trans. 95.2 89.2 77.5 39.1

Base + 1 layer 93.2 85.1 70.5 27.8
Base + 2 layers 93.1 85.3 69.6 29.8

Floor 94.3 89.2 75.9 28.8
Tanh 97.4 95.1 89.4 59.5

Softsign 98.4 96.9 93.0 65.7
Power 99.0 98.4 97.5 77.6

In (2), (4) and (7), we let each output channel d own a
set of parameters applied to C input channels. This method
is helpful to obtain varying quantization strength in imple-
mentation of CNNs. However, c and d usually take large
values in the recent CNNs. Thus, the number of parameters
and computational complexity of the CNNs which employ
this method may increase. Therefore, we suggest a method
for sharing α among output channels. Concretely, we split
D output channels into Λ portions, and all the channels
within Dλ share the same set of αc,Dλ (λ = 1, 2, . . . ,Λ),
for employment of convolution with power operation. In
the experimental analyses, we use λ = 1 as a default value.
We employ a single β for all input and output channels to
perform convolution with the floor operation.

2.1. An Analysis of Non-linearity

As discussed in Section 1, divergence caused by shifted
skewness and kurtosis between feature distributions, is harm-
ful for inference using new samples. However, minimiza-
tion of this type of divergence cannot be achieved by nor-
malization methods. Thus, we consider an alternative ap-
proach by introducing quantization non-linearity to CNNs.
Our proposed approach is used to map a space of diverged
distributions to a new space in which the divergence be-
tween distributions could be minimized. More precisely, the
feature distributions p(Xtr) and p(Xte) are mapped into
new distributions p̃θ(Xtr) and p̃θ(Xte), such that we ob-
tain ρ(p̃θ(Xte)||p̃θ(Xtr)) ≤ ρ(p(Xte)||p(Xtr)), where ρ
is a function which is used to measure similarity between
distributions, such as Jensen–Shannon divergence.

In order to illustrate this, we design a multi-class clas-
sification experiment using an artificial dataset, where all
features of samples have identical mean and variance but



(a) Motion Blur (b) Jpeg (c) Salt and pepper

(d) NGRN (e) Inpainting (f) Target occlusion

Figure 3: Samples of distorted images obtained using differ-
ent types of distortion.

different skewness and kurtosis in training and testing phases.
Concretely, the inputs are M -dimensional vectors X ∈ RM .
All features of X are sampled from a generalized normal
distribution with zero mean and unit variance defined by

Φ(y)

1− κx
, (8)

where Φ is the standard normal probability distribution func-
tion, and y is defined by

y =

−
log [1− κx]

κ
if κ 6= 0

x if κ = 0
. (9)

We control the higher moments by randomly choosing the
shape parameter from an uniform distribution κ ∼ U(−1, 1).
Each vector X consists of N < M features that are used to
identify class labels, and the remaining M −N features are
utilized as noise. The corresponding labels are defined to
be

∑N−1
n=0 2n · 1(Xn ≥ 0), where 1(·) is an indicator func-

tion that outputs 1 when the argument of the indicator is
true. Thereby, we have 2N number of classes. We choose
M = 128, and N ∈ {1, 2, 4, 8} to control the noise level.

A two-layer neural network (NN) employing ReLU acti-
vation function with 128 hidden units is employed as a base
model. We first generate a dataset using the same shape
parameter κ for both training and test sets as a reference set
(Base w/o divergence). Then, we generate diverged datasets
using different κ to construct both training and test data
(Base). We first compare the performance of the two-layer
NN (Base) trained using both of them. Then, we employ
different non-linearity (on input vectors), and test the per-
formance using diverged datasets. The results are given in
Table 1. It can be seen that, if the distributions of features are
shifted by higher moment statistics, then the performance of
base model (Base) is degraded notably in all cases. While
BN seems to be helpful, normalization without using a linear
transformation even performs worse than the Base, except

the cases where the number of classes is large. In Figure 2,
we can see that the divergence is even larger for the normal-
ized data compared to the original data. The results indicate
that the linear transformation contributes to improvement of
the robustness to divergence more than normalization.

Next, we examine the change of performance using the
proposed scalable floor function (defined in (3)) and power
function with trainable exponents (defined in (5)), together
with two reference functions Tanh [25] and Softsign [5]. We
observed that the floor function improved the performance
of the base model by 0.4% to 1.8%, only by employing weak
quantization operation that decreases the precision of input
values. Meanwhile, the networks overcome the shift of dis-
tributions by a large margin using the non-linearity function
which reshapes the distributions. We emphasize that em-
ployment of such non-linearity is not targeting at removing
skewness and kurtosis totally, but rather mapping them into
less diverged distributions (Figure 2). Meanwhile, Tanh and
Softsign have been replaced by rectified non-linearity [33] in
state-of-the-art CNNs due to the vanishing gradient problem.

3. Experimental Results

3.1. A Brief Analysis of Image Distortions

In this subsection, we define the distortion methods em-
ployed in our analyses. We consider three types of distortion,
namely statistical noise, signal processing loss, and occlu-
sion. Samples of distorted images obtained using different
distortion methods are given in Figure 3. For each type
of distortion, we employ four sets of hyper-parameters to
generate samples at different distortion strength.

Signal Processing Loss: We consider this type of distortion
as information loss occurred during acquisition or processing
of 2D images. We choose three cases for generating distorted
images; Motion/Defocus blurring [M./D. Blur]: Blurring an
image attenuates the image’s high-frequency components,
hence the information in the corresponding frequency is
lost. We convolve the image with 2D blurring kernels of
different sizes to generate blurred test images. Jpeg compres-
sion [Jpeg/Jpeg2K]: The Jpeg compression [47] is a popu-
larly used image compression method that offers a selectable
trade-off between storage size and image quality. Encoding
steps of Jpeg compression such as down-sampling and quan-
tization will result in certain loss of information. Especially,
when a large compression ratio is employed, severe high fre-
quency loss can be observed. Chromatic aberration [Aber.]:
Chromatic aberration is observed, when a lens cannot bring
all color wavelengths to the same focal plane due to disper-
sion. Then, colored edges can be observed around objects
in the images. We simply shift RGB channels of an image
towards different directions to reproduce this phenomena.

Statistical Noise: We consider the following noise types;



Table 2: Classification accuracy (Top-5 accuracy(%)) obtained using distorted images.

Models Clean M.Blur D.Blur Jpeg Jpeg2K Aber. S. & P. NGRN Y+N CC+N Inp. Occ. Mix.

ResNet18 90.29 55.08 79.81 59.47 74.13 83.28 53.84 71.81 63.00 59.96 63.26 54.26 59.15
+SF-100 90.38 56.67 79.35 62.92 73.94 84.35 51.90 73.67 62.16 61.50 64.23 52.80 54.29
+POW-1 90.26 57.72 79.29 57.65 73.49 83.23 57.27 74.46 60.99 67.70 66.48 54.19 60.57
+HPOW 89.80 58.28 77.89 58.20 74.97 83.09 58.57 72.35 62.17 64.22 65.36 51.21 62.30

+SF-POW 90.35 59.56 79.41 62.83 74.32 84.03 57.83 74.94 61.20 64.20 64.73 54.83 55.51
+DoReFa [51]b 84.14 51.99 78.97 59.47 72.52 69.60 35.24 58.53 53.33 26.00 45.34 43.78 43.41
+Stability [50] 89.61 49.67 75.73 61.07 71.16 82.19 50.66 68.31 56.70 61.58 62.71 41.21 54.37

ResNet50 93.40 63.29 84.44 79.80 80.93 88.94 69.94 81.27 72.72 73.71 69.06 59.31 65.35
+SF-100 93.48 65.28 84.08 79.98 80.94 87.91 67.24 82.82 73.30 74.94 62.41 60.17 59.88
+POW-1 93.59 66.15 83.73 80.19 81.42 88.91 71.66 82.91 73.33 76.91 63.65 61.33 65.31
+HPOW 93.70 70.24 84.80 78.26 82.16 89.19 75.20 84.24 77.65 78.49 71.20 60.38 70.96

+SF-POW 93.38 64.20 84.87 79.14 80.55 88.40 69.66 83.23 72.39 77.29 69.61 59.98 67.07
+DoReFa [51]b 86.37 48.37 72.03 57.14 71.11 76.19 41.40 59.71 46.92 49.21 59.74 45.54 48.86
+Stability [50] 92.85 57.48 81.82 71.62 80.26 87.65 60.09 76.60 67.12 75.68 67.14 57.14 50.44

a Top-1 accuracy is reported.
b We employ (W,A,G) = (1,4,32) for configuration as suggested in [51].

Salt and pepper noise (impulse valued noise) [S. & P.]: Salt
and pepper noise [7] randomly drops original values (or
maximize the values) of some pixels in an image, instead of
corrupting the whole image. We randomly select pixels in the
image according to a uniform distribution, and set their val-
ues to 0 or 255. Non-Gaussian random noise [NGRN]: Ran-
dom noise is characterized by intensity and color fluctuations
above and below actual image intensity. We employ Fast
Fourier Transform (FFT) and inverse FFT to obtain the rep-
resentations in different domains, and employ noise sampled
from a Gaussian distribution with zero mean and different
standard deviations. Additive Gaussian noise [Y/CC+N ]:
Furthermore, we transform the images into YCbCr color
space, and employ additive Gaussian noise to the Y chan-
nel (the luma component) and the CbCr channels (blue-
difference and red-difference chroma components).

Occlusions: We consider two different artificial occlusion
methods; Inpainting [Inp.]: Inpainting [6] confuses CNNs
in a similar way as semantic occlusions do, i.e. features ex-
tracted from regions covered by translucent in-painting may
appear to be from other classes due to the shift in statistics.
We employ randomly generated strings with different trans-
parencies to generate inpaintings. Targeted occlusion [Occ.]:
Attention targeted occlusion [44] is designed to obliterate the
information important for recognition of a target class [44].
We employ gradient methods to obtain a saliency map that
records pixel-wise classification scores. Then, we occlude
some clusters of pixels that contribute most to the final clas-
sification score with black masks. We employ a pre-trained
Plain-18 [17] network to compute the saliency map. The
strength of this type of occlusion can be increased by increas-
ing the number of clusters occluded. Mixed Noise [Mix.]:
Image distortions in real-world scenario are often more com-

plicated, therefore we introduce a mixture of various types
of synthetic distortions (Additive Gaussian noise in CbCr
channels, Salt and pepper, Inpainting and Jpeg compression)
to simulate the real-world distortions.

3.2. Experimental Analyses of Classification Perfor-
mance using the ILSVRC-12 Dataset

We performed a standard object classification task using
the ILSVRC-12 [40] dataset to investigate the robustness
of our proposed method. We employ two different models
learned using ResNet-18 and ResNet-50 as base models, and
modify them with our proposed methods. We employ the
training scheme and data augmentation methods described
in [17] for training, and a single crop of size 256× 256 for
validation. The proposed models are employed as follows:
i) ResNet quantized by floor with scale β=100.0 (+SF-100),
ii) ResNet equipped with power non-linearity using one
set of learnable exponents (+POW-1), iii) ResNet equipped
with a HyperNetwork for estimating the exponents of power
function (+HPOW), iv) ResNet equipped with both power
and floor functions (scale β=100 and split Λ=1, +SF-POW).
For ResNet-50, the proposed methods are only employed
before the convolution layers with 3× 3 kernels.

Moreover, we introduce two different models for refer-
ence: i) DoReFa Networks [51] (+DoReFa) that employ
1, 4, and 32 bit widths for weights, activations and gradi-
ents, respectively, as suggested in their paper. It is worth
noting that, the models equipped with scalable floor non-
linearity is closely related to DoReFa models with full preci-
sion weights, gradients and activations with low bit widths,
where the range of values is restricted within the present abil-
ity of the low bit widths (e.g. [0, 1]). However, the proposed
floor method does not have this limitation by employing



(a) Motion Blur (b) Jpeg

(c) Salt and pepper (d) NGRN
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Figure 4: Classification accuracy (Top-5 accuracy(%)) ob-
tained using images with different strength of distortions.

full precision of floating numbers. ii) Models optimized
through a stability training method proposed in [50]. Briefly,
we fine-tune the last fully-connected layer of the learned
models by regularizing the divergence between classifica-
tion score p(y|I) and p(y′|I′) inferred from the image I
and I ′ = I + ε, where ε ∼ N (0,σ). We use the hyper-
parameters that are employed for classification tasks in [50],
where σ = 0.04, and the regularization coefficient is 0.01.

Robustness is evaluated by Top-5 classification accuracy
for distorted images, except for the target occlusion, where
Top-1 is employed since this type of distortion is only tar-
geted for the ground truth label. We analyze robustness of
performance of the models to the proposed distortions in
Table 2. We also report the detailed results obtained for
different models and distortion strength in Figure 4 (ResNet-
18, results for ResNet-50 are provided in the supp. mat.).
In Table 2, we observe that most of the proposed methods

have similar performance compared to reference models on
clean or slightly distorted images, while the stability training
employed in [50] decreases performance. For instance, the
+HPOW model boosted the standard classification perfor-
mance of the ResNet-50 by 0.30%. The only notable perfor-
mance decrease (0.49%) is observed in ResNet-18+HPOW
model, which can be attributed to increasing complexity of
the baseline ResNet-18 by employment of HyperNetworks
at all its convolution layers. However, if stability training
is used, then the performance is decreased by 0.68% and
0.55% for ResNet-18 and and ResNet-50, respectively.

In addition, models that employ quantization with either
a floor or power function perform better than the original
model under most of the conditions. Notably, when ResNet-
18 is used as a reference, the +SF-100 model provided
the robustness against Jpeg compression by 3.45%. The
+POW-1 model provided 7.74% and 3.22% performance
boost against CC+N and Inpainting, respectively. Mean-
while, the +HPOW models boost the robustness of ResNet-
50 against most of the distortions. For instance, 6.95%,
5.26%, 4.97% and 5.61% performance boost were observed
against Motion blur, Salt and pepper, Y+N and mixed dis-
tortions, respectively. On the other hand, there also exist
risks of performance decrease in some special cases. For
instance, the ResNet-50+SF-100 model is disrupted by in-
painting, while +POW1 and +HPOW models are weak or
neutral against Jpeg compression. Moreover, the integrated
model +SF-POW is able to dodge this risk and boost the per-
formance for most types of distortion. These improvements
can be further observed in Figure 4, where the proposed
method boosts the robustness of the base model under both
minor and heavy distortion in most cases.

Furthermore, we observed that the DoReFa models be-
have similar to +SF-100 models, which perform well against
Jpeg compression. However, their overall performance is
underwhelming, and decreases heavily with respect to sta-
tistical noise and occlusion. The models optimized with
stability training also gain decent robustness against Jpeg
compression as reported in [50]. However, their performance
is severely degraded for other types of distortion. We argue
that, although better robustness is observed for Jpeg com-
pression empirically, the Gaussian prior is still not a viable
choice for numerous types of distortion. Hence, employment
of the prior knowledge on distortion is necessary to carry out
stability training, which could be difficult in practice.

3.3. Analyses of Detection Results using the Pascal
Voc 2007 Dataset

In this section, we examine the performance of our pro-
posed method for an object detection task using the Pascal
Voc 2007 dataset. We employ Faster-RCNN [38] for detec-
tion, and Zeiler and Fergus (ZF) model [49] as the baseline
CNN model. We append our proposed power function to



ZF ZF+POW-1 ZF ZF+POW-1

Figure 5: Examples of object detection results obtained using distorted images. Text given in green color indicates the class of
objects with confidence. Rows from top to bottom: Original images, images with minor distortion (Inpainting, Random noise),
images with heavy distortion (Inpainting, Random noise, Salt & Pepper noise, blurring, Jpeg compression). Left and right
images are selected from training and validation set, respectively.

the last three convolution layers of the ZF model (ZF-POW-
1), and evaluate the change in performance. We implement
the both models for training using the ILSVRC-2012 with
random initialization to ensure the fairness for evaluation
of detection. We manually select snapshots of both mod-
els that provide the same classification accuracy (Top-1/5
58.6%/81.7%). Then, we train both models using the Pascal
Voc 2007 training dataset, and we manually select a snap-
shot of the ZF-POW-1 model which provides the detection
performance (58.7% mAP) that is same to that of the fully
trained ZF model. We employ the distortion patterns given
in Section 3.1, and two datasets (Mix.Light and Mix.Heavy)
that employ mixed patterns of distortion (see Figure 5). The
results given in Table 3 show that, although both models
have the same detection performance in the original valida-
tion set, the model equipped with power convolution gains
2.2%− 3.3% mAP under different distortions.

4. Conclusions and Discussions
In this work, we propose a feature quantization approach

to enhance the robustness of CNNs to image distortion for
popular object recognition and detection problems. We con-
sider this challenge as a dataset shift problem, where the
higher moment statistics of feature distributions shift due
to distortion. In order to attenuate this effect, we apply
non-linearity by integrating a floor or power function into

Table 3: Detection performance (% mAP) for the distorted
Pascal Voc 2007 validation set using different patterns.

Models Original Mix. Minor Mix. Heavy

ZF [49, 38] 58.7 50.0 14.3
ZF+POW-1 58.7 52.2 17.6

the convolution operation in CNNs. We give insights into
the efficiency of our proposed method in dealing with the
dataset shift problem, compared to other different types of
non-linearity. The experimental results obtained using bench-
mark datasets indicate a substantial boost of robustness of
feature representations to various types of distortions. We
believe that this approach can be beneficial for training of
CNNs in various computer vision tasks, where distortions
may impair the performance, such as object identification
and detection, image retrieval and restoration.
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