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Abstract

We present an efficient subpixel refinement method using
a learning-based approach called Linear Predictors. Two
key ideas are shown in this paper. Firstly, we present a
novel technique, called Symbolic Linear Predictors, which
makes the learning step efficient for subpixel refinement.
This makes our approach feasible for online applications
without compromising accuracy, while taking advantage of
the run-time efficiency of learning based approaches. Sec-
ondly, we show how Linear Predictors can be used to pre-
dict the expected alignment error, allowing us to use only
the best keypoints in resource constrained applications. We
show the efficiency and accuracy of our method through ex-
tensive experiments.

1. Introduction
A small but important step for accurate 3D reconstruc-

tions in robotic applications such as visual SLAM is sub-
pixel refinement. One of the first steps in a conventional
visual SLAM pipeline involves the extraction of salient key-
points, followed by the formation of point correspondences.
As keypoint extraction methods [8, 14] are usually accurate
up to only one pixel, the goal of subpixel refinement is to
refine the position of these keypoints in order to improve
the quality of the final 3D reconstruction.

Energy minimization methods [13, 7, 16, 1, 3] have been
the de-facto method for performing subpixel refinement.
These can be divided into variants of the Lucas-Kanade
(LK) algorithm, or the efficient second-order minimization
(ESM) algorithm. Among them, the inverse compositional
variant of the LK algorithm (IC-LK) [13], along with the
ESM algorithm [3] are preferred due to their computational
efficiency. The IC-LK method is efficient as the Jacobian
can be pre-computed and re-used during subsequent itera-
tions, while the ESM method has a high convergence rate.

Besides energy-based methods, learning-based ap-
proaches [4, 11, 19, 20, 21] have been studied extensively in
the broader context of template matching, with subpixel re-

finement being one of its applications. In a pre-computation
step, a set of synthetic warps is applied to a template patch,
and the resulting change in pixel intensities is measured.
A Linear Predictor, which predicts the change in pixel in-
tensities to the corresponding update in warp parameters is
then learned. Once learned, warp updates can be obtained
via simple matrix-vector multiplications, making it compu-
tationally cheaper compared to energy-based methods.

However, the pre-computation step is usually computa-
tionally expensive. Thus, learning-based approaches have
so far only been used for a single large image patch consist-
ing of a sub-sampled grid of points. Holzer et al. [10] pro-
posed methods to make the pre-computation step more ef-
ficient. However, the computational savings obtained from
this method do not translate well to the problem of subpixel
refinement. Further, in an image, an additional challenge is
that there are typically hundreds of keypoints of interest.

In this paper, we present an approach which makes the
learning step efficient for subpixel refinement. We propose
to divide the learning step into two stages. Firstly, we per-
form a once-off step which learns a symbolic representation
of the Linear Predictor. Once learned, it can be re-used mul-
tiple times for different image patches. Our approach is very
efficient for small image patches, thus making it suitable for
subpixel refinement. We envision our approach being used
in situations where Linear Predictors for multiple keypoints
are learned efficiently in the background process of a real-
time application such as visual odometry (VO) or SLAM.
Further, we propose an error measure which allows the ex-
pected error in the warp parameters of an image patch to be
predicted. This allows us to prioritize image patches that
are expected to exhibit smaller alignment errors, especially
when an image consists of hundreds of keypoints.

The rest of this paper is organized as follows: We first
formally define the problem of subpixel refinement in Sec 2.
In order to make the paper self-contained, we briefly review
the IC-LK and ESM methods in Sec 3, followed by Linear
Predictors in Sec 4. We describe our proposed Symbolic
Linear Predictors in Sec. 5 and show experimental results
in Sec 6.



2. Subpixel Refinement
Throughout this paper, subpixel refinement is defined as

a template matching problem. Given a pair of point corre-
spondences x1 ↔ x2, where x = (x, y)T is a pixel loca-
tion, a template T is centered around x1 and another image
patch I is centered around x2. The goal is to align the tem-
plate with the image patch. Both patches are small and of
equal sizes, typically ranging from 4 × 4 to 8 × 8 pixels.
Further, different sampling methods can be used to select
the pixels that will be used within the patch. We let n de-
note the number of pixels used in a patch.

We let M define an affine warp matrix parametrized by
the warp parameters p ∈ R6, which maps a pixel location
x to a subpixel location. We define M as

M =

[
1 + p0 p1 p2

p3 1 + p4 p5

]
. (1)

3. Energy Minimization Methods
In this section, we provide a brief review of energy min-

imization methods for sub-pixel refinement.

3.1. The Lucas-Kanade Algorithm

The Lucas-Kanade (LK) algorithm [13] minimizes a cost
function defined by the sum of squared differences (SSD)
over pixel correspondences between a warped input image
patch and the template patch. Given an initial estimate of
the parameters, p, the cost function is defined as

min∆p||I(p + ∆p)− T (0)||22, (2)

where I(p) is the warped image patch, and ∆p is the warp
update being estimated. The cost function is linearized by
performing a first-order Taylor expansion around ∆p = 0:

min∆p||I(p) +
∂I(p)

∂∆p
∆p− T (0)||22, (3)

where the term ∂I(p)
∂∆p , known as the steepest descent im-

age [1], is the composition of the gradient image and the
Jacobian with respect to the warp parameters. As the cost
function is non-linear, the LK algorithm is applied itera-
tively, with the update computed as p ← p + ∆p. How-
ever, the steepest descent image must be computed on the
re-warped image at every iteration, thus making the LK al-
gorithm computationally demanding.

Baker and Matthews [1] proposed a computationally ef-
ficient variant of the LK algorithm, known as the inverse
compositional method (IC-LK). The IC-LK algorithm is de-
rived by swapping the roles of the input image and the tem-
plate, thus minimizing the cost function

min∆p||I(p)− T (∆p)||22. (4)

Proceeding in a manner similar to the LK algorithm, the
cost function (4) is linearized:

min∆p||I(p)− T (0)− ∂T (0)

∂∆p
∆p||22, (5)

and the warp update is computed as

∆p =
∂T (0)

∂∆p

†
(I(p)− T (0)), (6)

where the subscript † denotes the pseudo-inverse operator.
The advantage of this formulation is that the Jacobian and
the pseudo-inverse are independent of ∆p, and hence can
be pre-computed and re-used during subsequent iterations.

3.2. Efficient Second-order Minimization

The Efficient Second-order Minimization (ESM) algo-
rithm was proposed by Benhimane et al. [3]. It is derived
by performing a second-order Taylor expansion on the cost
function (2):

min∆p||I(p)+
∂I(p)

∂∆p
∆p+

1

2
∆pTH∆p−T (0)||22, (7)

where H is the Hessian matrix. A first-order Taylor expan-
sion is then performed on the steepest descent image:

∂I(p)

∂∆p
≈ ∂I(0)

∂∆p
+ H∆p. (8)

Substituting this first-order Taylor expansion (8) into (7)
yields

min∆p||I(p) +
1

2
(
∂I(0)

∂∆p
+
∂I(p)

∂∆p
)− T (0)||22 (9)

where the Hessian matrix has now been approximated from
two steepest descent images, one which is independent of
the warp updates whereas the other has to be computed from
the re-warped image.

4. Learning-based Methods
In this section we briefly review the Linear Predictor

(LP) method proposed by Jurie and Dhome [11] and its
efficient variants [10]. Note that there are other variants
[19, 20, 21] where multiple LPs are applied to learn a non-
linear function, with each LP responsible for one iteration
of the update step. These methods are beyond the scope of
this paper.

4.1. Linear Predictors

The concept of a Linear Predictor (LP) was first pro-
posed by Jurie and Dhome [11]. Assuming that prior knowl-
edge of the distribution of warp displacements is known,



a set of m synthetic warps, usually much greater than the
number of pixels n used (m � n), is applied to the tem-
plate. Let ∆i denote the SSD score from (2) rasterized
as a column vector. Each synthetic warp update generates
one such column vector, and these vectors can be stacked
to form the error matrix E = [∆i1,∆i2, · · · ,∆im]. Simi-
larly, the warp updates can be stacked to form a warp matrix
P = [∆p1,∆p2, · · · ,∆pm]. The Linear Predictor, A, re-
lates P and E as

P = AE, (10)

and it can be computed in closed-form as

A = PET (EET )−1. (11)

The drawback is that the learning step can be computation-
ally expensive, depending on (1) the number of synthetic
warps used, and (2) the cost of inverting the term EET .

4.2. Efficient Linear Predictors

Holzer et al. [10] proposed three approaches to make the
learning step of LPs faster.

Discrete Cosine Transform DCT is commonly used for
image compression, where the image is transformed into the
frequency space and the DCT coefficients containing high
frequencies are discarded. For a h × h matrix V, a DCT
operation is defined as

U = CVCT , (12)

where C is called the DCT matrix. Each element in C is
defined as

Ci,j =

√
αi

d
cos

[
π(2j + 1)i

2h

]
, (13)

where αi = 1 if i = 0 and αi = 2 otherwise. In order to
adapt (12) for a rasterized column vector such as ∆i (see
Sec. 4.1), let [B1,B2, · · · ,Bn] be a set of matrices, where
each matrix B has the same size as the image template. As-
suming a row-major order, all the elements in Bn are zero
except for the nth element, which is set to a value of 1.
Hence, Bn is a basis of the template in the image space. The
matrix V in (12) is substituted with the basis Bn, and the
resultant matrix U is rasterized as a column vector which
we denote as w. Stacking these column vectors together
produces an n × n matrix W = [w1,w2, · · · ,wn], which
is used to transform the error matrix E into the frequency
domain:

Ê = WE. (14)

A faster learning step can be achieved by retaining only
the top r DCT coefficients, resulting in an r×nmatrix Wr.
This results in a low-rank approximation of the error matrix,

denoted as Ê = WrE. Substituting Ê into (10), the LP can
be computed as

A = PÊr(ÊrÊ
T
r )−1Wr, (15)

where the matrix to be inverted is of size r × r.

Re-formulation Instead of learning the LP using (11), the
pseudo-inverse of the warp matrix P is used in (10), result-
ing in

I6×6 = AEPT (PPT )−1. (16)

Now, if we denote I6×6 = AD, where D =
EPT(PPT )−1, we can compute the LP as

A = (DTD)−1DT . (17)

Although two matrix inversions have to be performed, both
matrices are only of the size 6× 6.

Hybrid method This approach combines the two meth-
ods described above. Firstly, recall that the matrix D is
defined as D = EPT(PPT )−1. If we use the low-rank
approximation of the error matrix Êr in the matrix D, we
end up with a dimensionally reduced version of D, denoted
as D̂ = W−1

r ÊrP
T (PPT )−1. In a manner similar to the

re-formulation approach, the LP is then computed as

A = (D̂T D̂)−1D̂T (18)

where, again, the size of the matrix to be inverted is 6× 6.

5. Symbolic Linear Predictors
From Sec. 3 and Sec. 4, we see that both energy

and learning-based methods consist of two steps: (1) a
pre-computation step and (2) a run-time step. Although
learning-based methods are faster during run-time, they also
have a huge cost associated with the pre-computation step.
The methods in Sec. 4.2 reduce learning time through di-
mensionality reduction that results in a smaller matrix in-
version. Although this results in computational savings for
the application of planar target tracking, these savings do
not translate to the problem of subpixel refinement.

5.1. Symbolic Error Matrix

We propose a once-off, pre-training step to learn a sym-
bolic representation for LPs that is independent of pixel in-
tensities. Once learned, it can be re-used on different image
patches to learn the specific LP for that patch.

Our approach revolves around creating a representation
for the error matrix E that is independent of pixel intensi-
ties. Fig. 1 illustrates how this is done. A bounding box, B
(shown as the red box), encapsulates all possible pixel lo-
cations that can be reached by the m number of of warps
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Figure 1. Overview of the symbolic error matrix. See Sec. 5.1 for more details.

during pre-computation. An example warped template is
shown in Fig. 1 as the black box, where each pixel from the
template is transformed to a subpixel location.

For each sample warp, we first rasterize the warped tem-
plate into an n-vector, t, and the pixels in the bounding box
into an l-vector, u. An equivalent representation of the vec-
tor t is shown in Fig. 1 as a multiplication of a Warp Coef-
ficient Matrix, WCM(∆p), and the vector u. This matrix
is a function of the warp update, where each row has 4 non-
zero values representing bilinear interpolation coefficients.

For m number of sample warps, we obtain m number of
WCM(∆p), which can be stacked up to create a tensor of
size n ×m × l (shown as the blue cuboid). We also define
a WCM(0) at the identity warp, whereby each row has 1
non-zero value with a coefficient of 1.0, representing a pixel
location in the template. Stacking m number of WCM(0)
gives another tensor of size n×m× l (shown as the green
cuboid). Now, if we subtract the tensor of WCM(0) from
the tensor of WCM(∆p), the resultant tensor, Y consists
of coefficient values for pixel intensities. Most importantly,
Y is now independent of pixel intensities.

5.2. Symbolic Terms

Referring to (11), two terms have to be computed to learn
the LP, which are (1) PET , which is a linear combination
of pixel intensities, and (2) EET , which is a quadratic com-
bination of pixel intensities. In order to create a symbolic
linear predictor, we replace the error matrix E with the ten-
sor Y from Sec. 5.1. We first define the following index
variables:
• a ∈ 1, · · · , 6→ index for the parameter update ∆p,
• b ∈ 1, · · · , n → index for the pixel location in the n-

vector t (the rasterized template),
• c ∈ 1, · · · ,m→ index for the sample warps, and

• d ∈ 1, · · · , l→ index for the l-vector u (the rasterized
bounding box).

With these indices, we can then compute a symbolic lin-
ear tensor L ∈ R6×n×l as

La,b,d =

m∑
c=1

Pa,cYb,c,d. (19)

For the quadratic term, EET , we can compute a sym-
bolic quadratic tensor, Q ∈ Rn×n×q , where q ≈ 1

2 l
2 as the

result of EET is symmetric. The tensor Q is computed as

Qb1,b2,e(d1,d2) =

m∑
c=1

Yb1,c,d1
Yb2,c,d2

, (20)

where e = 1, 2, · · · q, noting that every index in e corre-
sponds to a unique combination of the indices d1 and d2.
Fig. 2 provides an illustration of the symbolic terms.

5.3. Linear Predictor from Symbolic Terms

Once the tensors L and Q are learned, they can be used
to compute the Linear Predictor for different templates. The
linear term, PET , can be computed by left-multiplying the
l-vector t (see Sec. 5.1) with the tensor L:

(PET )a,b =

l∑
d=1

La,b,dtd. (21)

On the other hand, the quadratic term, EET , can be com-
puted as

(EET )b1,b2 =

l∑
d1=1

l∑
d2=1

Qb1,b2,etd1
td2

. (22)
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We note that our approach is complementary with the DCT
method described in Sec. 4.2. For the linear term, this is
done by right multiplying PET with the mapping Wr, re-
sulting in PETWT

r . For the quadratic term, a multiplica-
tion on both sides with Wr results in WrEETWT

r .

5.4. Prediction of Alignment Quality

As there can be hundreds of keypoints of interest in an
image, it is useful to measure the quality of the warp updates
estimated by a LP. We propose an approach to estimate the
expected squared error of a LP. From (10), the LP A at-
tempts to minimize the following error function through
least-squares:

minA||AE−P||22. (23)

The expansion of (23) can be expressed as

minA(AE−P)(AE−P)T . (24)

As we are only interested in the expected squared error of
the 6 parameters in the affine warp, we are only concerned
with the diagonal elements of the result in (24). This implies
that we can express the expected squared error as

ē2 = Tr[(AE−P)(AE−P)T ], (25)

where Tr(.) is the trace operator. After expanding (25) and
performing some simple manipulations, we can express the
expected squared error as

ē2 = Tr(PPT )− Tr(A(PET )). (26)

From (26), the first term, Tr(PPT ) does not depend on
pixel intensities and can be computed in a once-off, offline
step. The second term, Tr(A(PET )), has a computational
complexity which grows with the number of pixels used, n,
but is independent of the number of sample warps, m. As
m � n, this term is computationally cheap. To find out
how (26) is derived, we refer the reader to the supplemen-
tary material.

Figure 3. (a) Image with detected FAST keypoints used for syn-
thetic experiment. (b) Example warped images centered around a
keypoint of interest.

6. Experimental Results
We evaluate our approach against the IC-LK and ESM

methods in Sec. 3, and the Linear Predictors in Sec. 4.
Tracking by detection methods such as [9, 22] are not eval-
uated as they are usually used for tracking a single, large
patch and they do not account for affine warp models.

Experimental Settings All methods were implemented
in C++ in order to enable a fair comparison. We have also
implemented a CUDA version of our approach, whereby the
pre-computation step is done using a GPU (NVIDIA 1080).

Notation Throughout this section, “jd” represents the
method of Jurie and Dhome, “dct-r” denotes the DCT
method with r number of retained coefficients, “hp” de-
notes the re-formulation approach, and “hpdct-r” denotes
the hybrid approach. Further, “sym” denotes our proposed
approach, and “symdct-r” represents a combination of our
approach with the DCT approach.

6.1. Synthetic Experiment

In this experiment, the image in Fig. 3(a) is used. Firstly,
FAST corners are extracted, and a LP is learned for each
corner, where each learning method is trained with the same
parameters. Then, 100 test warps are applied to each corner
to generate synthetically warped images (see Fig. 3(b)). For
each test warp, the estimated warp update for each method
under evaluation is recorded. 10 iterations are used for the
energy-based methods. For the learning-based methods, ex-
cept specified otherwise, we train the LPs to handle trans-
lations between -1.0 to 1.0, whereas other parameters are
trained to vary between -0.2 and 0.2. The RMSE of the
warp updates over all corners, as well as the timing for each
method is recorded.

We first compare our proposed approach with other LPs
under different training settings:
• Number of sample warps: The number of sample

warps used for training is increased, with the patch size
used fixed at 9× 9 pixels.
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Figure 4. Comparison of Symbolic Linear Predictor with other
Linear Predictors with different training settings. (a) Increasing
the number of sample warps. (b) Increasing the number of pixels
used. (c) Increasing the maximum parameter variation.

• Number of pixels used: The patch size is increased,
with the number of sample warps fixed at m = 5000.
• Maximum parameter variation: Using m = 5000

sample warps and a 9×9 patch, we increase the amount
of variation in the translation parameters for training.

The results are shown in Fig. 4, where we show dis-
play RMSE with two plots as methods based on the re-
formulation approach exhibit a much larger error compared
to the other methods. From Fig. 4(a), we see that the learn-
ing time for our method increases very slowly as the number
of sample warps increases. In contrast, the learning time for
all other methods increases quickly with the number of sam-
ple warps. As the number of sample warps increases, the
accuracy of all methods improves until around 5000 sample
warps, and do not improve by much subsequently.

From Fig. 4(b), the learning time for our method is again
much lower compared to other methods when larger patch
sizes are used. In contrast to Fig. 4(a), learning time in-
creases more quickly, and starts becoming expensive at a
size of 13 × 13 pixels. This is because the number of pos-
sible pixel locations increases, resulting in an increase in
the number of non-zero coefficients in the symbolic terms.
With a 13×13 patch, the “hp” method is only slightly more
expensive than our method. This is unsurprising as the tech-
niques proposed by Holzer et al. [10] reduces training time
by reducing the dimensionality of the matrix to be inverted,
which depends on the number of pixels used. Similar to Fig.

Method Training Refinement RMSE
time (ms) time (ms)

ESM 0.10 3.26 0.12
IC-LK 0.19 0.99 0.16
Sym (CPU) 3.75 0.002 0.04Sym (GPU) 0.41

Table 1. Comparison with energy-based methods.

Figure 5. Thumbnails of images used for real data experiment.

4(a), the accuracy of all methods improve with an increas-
ing patch size. Increasing the maximum parameter variation
results in a similar pattern to Fig. 4(b) in terms of timing
for the same reasons above. The accuracy of all methods
degrades as the amount of parameter variation increases.

Note that the “jd” RMSE plot overlaps with the RMSE
plot of our approach, whereas the “symdct-25” RMSE plot
overlaps with the “dct-25” RMSE plot. This is because the
LP obtained by the “sym” method is identical to the LP of
the “jd” method, and the same applies to the LPs obtained
by the “symdct-25” and the “dct-25”. The only difference
is that our approach produces a much shorter learning time.

Finally, using a patch size of 9× 9 pixels and m = 5000
sample warps, we compare our proposed approach with the
IC-LK and ESM methods. The results are shown in Table 1,
where we also show timing results for our approach where
the learning step is done on a GPU. As expected, energy-
based methods exhibit faster training time on a CPU but
they also suffer from a longer refinement time as well as
slightly lower accuracy compared to our approach. How-
ever, note that on a GPU, the learning step is almost as effi-
cient as energy-based methods for our approach.

6.2. Still Image Pairs Experiment

In this experiment, we perform an evaluation using the
“Hannover” dataset [5] which provides accurate ground
truth homographies for different scenes shown in Fig. 5.
Similar to the previous experiment, we first extract FAST
corners [14] for each image. ORB descriptors [15] are then
computed for every corner. Using image pairs between suc-
cessive images in each scene, we obtain inlier point corre-
spondences by first performing feature matching, followed
by a verification step using the ground-truth homography.

For each inlier point correspondence, the ground-truth
affine warp is estimated from the homography using the
method of [2]. All LPs are then trained using m = 5000
sample warps. Further, we train the translational parameters
to vary from -1.0 to 1.0, whereas the remaining parameters
vary from -0.3 to 0.3.



Sequence Pair RMSE
IC-LK ESM hp hpdct-25 hpdct-49 dct-25 dct-49 jd sym symdct-25

posters 1,2 0.2433 0.1946 0.3164 0.3142 0.2433 0.1409 0.1677 0.1677 0.1677 0.1409
2,3 0.2519 0.2151 0.3748 0.3731 0.3748 0.2375 0.2747 0.2747 0.2747 0.2375
3,4 0.4459 0.4185 0.5871 0.6343 0.5871 0.3323 0.3411 0.3411 0.3411 0.3323
4,5 0.3249 0.2898 0.4090 0.4365 0.4090 0.2740 0.2857 0.2857 0.2857 0.2740
5,6 0.3784 0.2676 0.3073 0.3185 0.3073 0.2112 0.2263 0.2263 0.2263 0.2112

grace 1,2 0.2289 0.2178 0.2809 0.2980 0.2809 0.2066 0.2067 0.2067 0.2067 0.2066
2,3 0.1751 0.1590 0.2324 0.2468 0.2324 1604 0.1731 0.1731 0.1731 0.1604
3,4 0.1713 0.1612 0.2670 0.2908 0.2670 0.1584 0.1654 0.1654 0.1654 0.1584
4,5 0.3013 0.2723 0.3575 0.3780 0.3575 0.2612 0.2523 0.2523 0.2523 0.2612
5,6 0.2546 0.2524 0.2882 0.3177 0.2882 0.2074 0.2168 0.2168 0.2168 0.2074

underground 1,2 0.2945 0.2817 0.4951 0.5014 0.4951 0.2204 0.2457 0.2457 0.2457 0.2204
2,3 0.3279 0.3105 0.5394 0.5499 0.5394 0.2040 0.2097 0.2097 0.2097 0.2040
3,4 0.3269 0.3144 0.5716 0.5846 0.5716 0.4444 0.4741 0.4741 0.4741 0.4444
4,5 0.3500 0.3400 0.6497 0.6723 0.6497 0.3542 0.3899 0.3899 0.3899 0.3542

colors 1,2 6.3163 1.3642 0.4547 0.4920 0.4547 0.4072 0.4930 0.4930 0.4930 0.4072
2,3 1.7302 0.7730 0.3936 0.3983 0.3936 0.3701 0.4959 0.4959 0.4959 0.3701
4,5 1.75 0.9822 0.6739 0.7312 0.6739 1.0135 1.0944 1.0944 1.0944 1.0135
5,6 1.11 0.7538 0.7124 0.6952 0.7124 0.8512 0.8067 0.8067 0.8067 0.8512

there 1,2 0.3477 0.3117 0.4117 0.4318 0.4318 0.3999 0.4063 0.4063 0.4063 0.3999
Table 2. RMSE of warp estimates on the “Hannover” data set using image pairs in each sequence provided in the data set.
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Figure 6. Evaluating the accuracy of the error prediction scheme.(a) The steps taken to estimate ground-truth homographies and affine
warps. (b) Plots showing how the predicted error varies with test error.

The results from this experiment are shown in Table 2,
where we only show results for image pairs with more than
50 point correspondences. For the energy-based methods,
we find that ESM generally exhibits lower errors compared
to IC-LK. Among all the methods, the results indicate that
“symdct-25” and “dct-25” method are in general the best
performing method, obtaining slightly lower error values
compared to “sym” and “jd”. This may be because some
DCT coefficients corresponding to high frequency noise
have been discarded. The sequences with the lowest errors
are the “posters” and “grace” sequence. The latter half of
the “underground” sequence, as well as the image pair in
the “there” sequence, exhibits medium errors whereas the
“color” sequence exhibits large errors. In the “color” se-
quence, the best performing method is “hpdct-25”. Never-
theless, the error values indicate that all methods in discus-
sion do not provide satisfactory results on this sequence.

6.3. Error Prediction Experiment

In this experiment, we evaluate the usage of a Linear
Predictor to predict its expected error as described in Sec.
5.4. We collect a dataset of 5 planar targets shown in Fig.
6(b), with each planar target consisting of 11 view points
encapsulating the target. This allows us to compute an av-
erage test error for each keypoint which can then be com-
pared against the predicted average error. After extracting a
bounding box surrounding the planar target in each image, a
homography is computed between the first and every other
image in the data set. This homography is then refined us-
ing dense image alignment on all the pixels in the bounding
box. These steps are illustrated in Fig. 6(a).

We estimate the ground-truth affine warps in a manner
similar to Sec. 6.2. To compute the average test error, cor-
ner points lying within the bounding box of the first image
in the data set are computed. These points are projected
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Figure 7. Localization experiment using UR5. (a) The experimen-
tal setup. (b) Estimated trajectory using the top 250 keypoints with
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onto the other images using the refined homographies. We
quantize these projections to the nearest pixel location, thus
creating 11− 1 = 10 point correspondences for every key-
point in the first image. For each keypoint, the average test
error is computed using its point correspondences.

The results in Fig. 6(b) show scatter plots of the average
predicted error against the average test error for the differ-
ent planar targets. While the average test errors are gener-
ally higher than the average predicted errors, they exhibit a
linear trend in general. This is expected as a margin of error
is introduced in the ground-truth estimation process due to
image noise, an imperfect camera model, and an imperfect
alignment between the images.

6.4. Localization Experiment

Finally, we evaluate our method in a simple localiza-
tion setting shown in Fig. 7(a), where we have a web-
cam mounted on a 6DoF, UR5 robotic arm which provides
accurate ground-truth poses up to ±0.1mm accuracy. We
first perform a once-off hand-eye calibration step to find the
transformation from the end-effector to the webcam using
Tsai and Lenz’s method [18]. We then collected a simple
image sequence using the webcam.

We create a metric 3D map from two pre-selected view
points using the ground-truth poses. For each view point,
a Symbolic Linear Predictor is learned for each observa-
tion corresponding to a 3D landmark. For each subsequent
frame in the image sequence, we use the front-end of the
SLAM system of [6] to localize the camera relative to the
map. However, instead of using the subpixel refinement
technique in [6] whereby only the translational parameters
and mean intensity difference are optimized, we use our
proposed method that handles the full affine motion model.

We measured the absolute trajectory error (ATE) [17] by
running two variants of the experiment: (1) with and with-
out subpixel refinement using all the keypoints observed by
the current view, and (2) only using the best and worst 250
observed keypoints as predicted by the metric (26). The re-
sult is shown in Table 3. The best ATE is produced when
subpixel refinement is performed. Using the best 250 ob-

Estimation method ATE (mm)
With “sym” 2.3

Without subpixel refinement 8.1
Best 250 keypoints 2.3

Worst 250 keypoints 3.1
Table 3. Absolute Trajectory Error (mm)

served keypoints produces a similar ATE as using all the
observed keypoints. Further, using the worst 250 observed
keypoints defined by the metric in (26) produces a slightly
higher ATE.

6.5. Limitations and Future Work

For our method, the computational complexity depends
on the linear and quadratic terms introduced in Sec. 5.2.
There is a computational complexity ofO(n) andO(l) w.r.t
the number of pixels in the template and bounding box re-
spectively. Thus for the symbolic linear term PET , we ex-
pect this term to have a complexity of ≈ O(nl). For the
quadratic term EET , on top of the O(n) and O(l) com-
plexity, the overall complexity also depends on the number
of non-zero pairwise coefficient multiplications. Hence, the
benefits of our method are limited to applications where the
patch size for each template is small. This means that the
method’s benefits do not currently translate to planar target
tracking and is left as future work.

As discussed in Sec. 4, there are other variants of Lin-
ear Predictors [19, 20, 21] that learn non-linear functions. It
will be interesting to explore the use of symbolic representa-
tions for non-linear functions. Further, recently, researchers
have started to use template matching methods to improve
the robustness of neural networks towards spatial variation
[12]. Exploring the use of symbolic representations for this
application is another interesting avenue.

7. Conclusion
We presented the concept of Symbolic Linear Predictors,

where a symbolic representation is used to enable Linear
Predictors to be learned efficiently without compromising
accuracy. We show that our method can perform learning
much faster compared to conventional Linear Predictors and
have bridged the gap with energy-based methods in terms of
pre-computation time. Added with the fact that Linear Pre-
dictors are much faster during run-time and more accurate
makes Linear Predictors a viable option for subpixel refine-
ment. Further, we also proposed a method which allows the
expected error from a Linear Predictor to be predicted.
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