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Abstract

Person re-identification benefits greatly from deep neural
networks (DNN) to learn accurate similarity metrics and
robust feature embeddings. However, most of the current
methods impose only local constraints for similarity learn-
ing. In this paper, we incorporate constraints on large im-
age groups by combining the CRF with deep neural net-
works. The proposed method aims to learn the “local sim-
ilarity” metrics for image pairs while taking into account
the dependencies from all the images in a group, forming
“group similarities”. Our method involves multiple images
to model the relationships among the local and global sim-
ilarities in a unified CRF during training, while combines
multi-scale local similarities as the predicted similarity in
testing. We adopt an approximate inference scheme for es-
timating the group similarity, enabling end-to-end training.
Extensive experiments demonstrate the effectiveness of our
model that combines DNN and CRF for learning robust
multi-scale local similarities. The overall results outper-
form those by state-of-the-arts with considerable margins
on three widely-used benchmarks.

1. Introduction
Person re-identification (Re-ID) is a critical task in intel-

ligent video surveillance, aiming to associate the same peo-
ple across different cameras. It is generally formulated as a
ranking problem: given a probe image of a person, the al-
gorithm needs to rank all gallery images based on their sim-
ilarities w.r.t. the probe image. The ranking performance
heavily relies on the quality of similarity metric, which is
usually learned from the data.

Encouraged by the remarkable success of deep neu-
ral networks (DNN), the Re-ID community also employs
DNNs for end-to-end similarity learning. A common prac-
tice is to employ local constraints. For instance, most meth-
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Figure 1: Illustration of different constraints for similarity learning. (a)
pairwise loss, (b) triplet loss, (c) quardruplet loss, and (d) proposed CRF
based model. The green lines connect positive pairs whose in-between
distances need to be minimized, while red lines indicate the negative pairs
whose in-between distances need to be maximized.

ods straightforwardly make use of the pairwise constraints
between image samples [1, 38, 40] (Fig. 1a), trying to mini-
mize the distances between positive pairs while maximizing
the distances between negative pairs. Beyond the pairwise
constraints, several methods adopt the triplet loss [9, 48, 14]
to enforce a correct ranking order (Fig. 1b). Recently, a
quadruplet loss [7] is proposed to further improve the triplet
loss by reducing the intra-class variations and enlarging the
inter-class variations (Fig 1c). To make use of these local
constraints with DNNs, existing approaches have to sample
small cliques such as pairs, triplets or quadruplets, which
are further used to organize training batches and construct
the optimization losses, making the learning of similarity
metric largely dependent on the sampling strategies. As
most of the local constraints can be easily satisfied by the
learned similarity metrics during training, local constraints
are less efficient to contribute useful learning signals. Fur-
thermore, with stochastic gradient descent method, the con-
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straints optimized by one update can probably become in-
valid by another update, leading to suboptimal solutions.

Instead of imposing local constraints over small clips,
we propose to leverage supervision with image groups and
model more complex image-to-image relations. Each group
consists of a probe image and a set of gallery images. We
define “local similarity” and “global similarity” to describe
the inter-image relationships, which are based on the related
two images and the whole image group, respectively. The
two kinds of similarities are associated in a unified graph-
ical model by a Conditional Random Field (CRF), where
the local similarities are input variables that have been ob-
served while the group similarities are output variables to
be predicted. As diverse dependencies are modeled in the
CRF, optimizing the group similarities can in turn learn
more consistent local similarity metrics as well as feature
embeddings. Besides, benefited from the flexibility and rep-
resentative power of the graphical model, we can effectively
fuse different types of local similarities of multi-scale fea-
ture embeddings for more accurate similarity estimation. To
implement our model with DNN, we derive approximate in-
ference to estimate the group similarity, yielding mean-field
updating procedure. Three network modules are designed
for multi-scale feature embeddings (MFE), local similar-
ity computation (LS) and group similarity estimation (GS),
respectively. It is noteworthy that we only perform group
similarity estimation in the training stage. The similarity to
be predicted in testing is the linear combination of multi-
scale local similarities, where the combination parameters
are adaptively learned from the CRF.

In summary, our main contributions are as follows. (1)
We combine the CRF model with DNN to learn more con-
sistent multi-scale similarity metrics. Various inter-image
dependencies within an image group are modeled by a uni-
fied graphic model. (2) We adopt approximate inference
scheme for our model and implement the inference pro-
cedure via neural network modules, allowing end-to-end
training. (3) Extensive ablation studies validate the effec-
tiveness of employing group similarities within the CRF for
training. It benefits the feature embeddings, local similar-
ities and multi-scale similarity combination. We evaluate
our approach on three large-scale Re-ID datasets and the
results outperform those by state-of-the-art methods.

2. Related Work
Early works on person Re-ID concentrated on either fea-

ture extraction [42, 27, 10, 12] or metric learning [16, 22, 3,
29]. Recent methods mainly benefit from the advances of
CNN architectures, which learn the two aspects in an end-
to-end fashion [20, 1, 4, 38, 40, 5, 19, 7]. Our work can be
uniquely positioned as deep similarity learning with CRF.

A typical category of deep similarity learning for person
Re-ID is to train a siamese network with contrastive loss

[38, 39, 40, 1], where the task is to reduce the distances
between images of the same person and to enlarge the dis-
tances between the images of different persons. One down-
side of this approach is that it focuses on absolute distances,
whereas relative distances are more important for a rank-
ing problem like person Re-ID. Several methods [11, 9, 48]
employed triplet loss to enforce the correct order of rela-
tive distances among image triplets, i.e., the positive im-
age pair is more similar than the negative image pair w.r.t.
a same anchor image. Chen et al. [7] proposed quadru-
plet loss which combined the the advantages of contrastive
loss and triplet loss, complementing the triplet loss by min-
imizing the intra-class variations and maximizing the inter-
class variations. However, all these constraints are based on
small clips which do not take the global structure of the em-
bedding space into consideration, usually leading inefficient
training and sub-optimal solutions. In fact, recent works be-
gan to develop effective sampling strategies [33, 14, 43, 1].
They evidently improve the local constraints often relies on
expensive computational requirements and may be sensitive
to data distribution.

To overcome the limitation of local constraints, we adopt
the CRF model [18] to connect various dependencies within
a large image group, and combine it with DNN. Our ap-
proach is motivated by the advances in semantic image seg-
mentation [50, 6, 24] and depth/surface normals estimation
[45, 41], where they implement the mean-field inference for
CRF [17, 32] in an end-to-end learnable neural networks.
However, different from these methods that build the inter-
pixel dependencies in a single image, our approach mod-
els the inter-image dependencies in a training batch. Deep
metric learning methods [30, 35] also stressed incorporat-
ing more images in the training constraints. They either
mine the hard negative samples or enforce clustering for the
images with the same label, while our model associates all
the group images in a unified graphical model, aiming to
learn more consistent similarity metrics within the group.
During training, we apply the verification loss on the group
similarities and employ the identification loss on the feature
embeddings to supervise the similarity learning. The effec-
tiveness of such joint identification-verification losses have
been validated by [36, 40, 51, 21], which generally adopted
cross-entropy loss for the identification of the feature em-
beddings. Slightly different from their method, we choose
the OIM loss proposed in [44] for the identification, which
is scalable to large dataset where each person can have a
variable number of person images.

3. Our Approach
Our method aims to learn more robust similarity metric

for the Re-ID task by taking into account the inter-image re-
lations within image groups. We define “local similarities”
and “global similarities” in the image group (Section 3.1),
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Figure 2: Graphical model for the local similarities and group similarities
in an image group. The local similarities T between image pairs are es-
timated by a deep neural network. The group similarities Y are random
variables conditioned on T , and the distribution P (Y|T ) is modeled as
the CRF. We only illustrate the local similarities with a single scale s.

then jointly model them in the CRF (Section 3.2). For net-
work implementation, we adopt an approximate inference
scheme for group similarity estimation (Section 3.3), and
design three network modules (Section 3.4). The overall
network and training details are introduced in Section 3.5
and Section 3.6.

3.1. Local Similarity and Group Similarity

The training data for DNNs are usually organized in
batches, where the images not only participate in a same
forward and backward pass for optimization, but also con-
tain abundant inter-images relations that allow us to exploit.
We construct image groups in a batch, and each of them can
have a flexible number of images.

Let O denote all the images in a group. Among them,
there is a probe image Ip, and the remaining images are
gallery images forming the set G = {I1, I2, ..., IG}. We de-
fine tm,n to represent the “local similarity” for two arbitrary
images Im and In in the group, and tm,n is only related to
the appearance of the two images. On the other hand, the
similarity between two images can also be inferred by their
relations to other images. We further define “group similar-
ity” yp,i between the probe image Ip and an arbitrary gallery
image Ii in G. yp,i makes use of the whole image group for
similarity estimation.

In this work, both local similarity tm,n and group sim-
ilarity yp,i are assumed to be within the range (0, 1). The
higher values the similarities are, the more likely the two
images belong to a same person.

3.2. Group Consistency Modeling via CRF

Given a group of images O, we first estimate the local
similarities T for the image group. In particular, we con-
sider multi-scale local similarities and each local similarity
are about two arbitrary images in the group. Therefore, we
have T = {T s}Ss=1 and T s = {tsm,n|Im, In ∈ O}, where
T s contains the local similarities of scale s. In this work,
the local similarity tsm,n is computed via a deep neural net-
work, denoted by a function:

tsm,n = ξs(Im, In), (1)

where ξs(Im, In) computes the similarity based on the scale
s feature embeddings φs(Im) and φs(In).

The group similarities are modeled as random variables
that describe the similarities between the probe image and
gallery images, forming the set Y = {yp,i|Ii ∈ G}. They
are conditioned on the local similarities T , and the pair
(Y, T ) can be modeled as the continuous CRF, character-
ized by a Gibbs distribution:

P (Y|T ) =
1

Z(T )
exp(−E(Y|T )), (2)

where Z(T ) is the partition function and E(Y|T ) is the en-
ergy function. For the fully connected pairwise CRF model,
E(Y|T ) can be represented as:

S∑
s=1

(
αs
∑
i

Ψu(yp,i, t
s
p,i)+βs

∑
i<j

Ψp(yp,i, yp,j , t
s
i,j)
)
, (3)

where αs and βs are positive parameters associated with
the unary terms and pairwise terms of scale s. With these
terms, the energy function models the relations between the
multi-scale local similarities and group similarities. More
specifically, the unary term is given by:

Ψu(yp,i, t
s
p,i) = (yp,i − tsp,i)2. (4)

It enforces the group similarity yp,i to be close to the local
similarity tsp,i, which predicts the group similarity without
considering the consistency of other images in the group.
The pairwise term is :

Ψp(yp,i, yp,j , t
s
i,j) = tsi,j(yp,i − yp,j)2. (5)

If the local similarity tsi,j of Ii and Ij is high, the two images
are encouraged to be commonly similar or dissimilar to the
probe image Ip. Such assumption enhances the consistency
among the group similarities between gallery images. The
graphical model for the proposed CRF is depicted in Fig. 2.

3.3. Approximate Inference

After obtaining local similarities T , we exploit the mean-
field approximation to derive a tractable inference proce-
dure. It approximates P (Y|T ) by a simpler distribution



 c
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Figure 3: Network Structures for different modules. (a), learning multi-scale feature embeddings with ResNet-50 as the backbone network, where RB
represents the residual block. (b)-(c) are the network modules for estimating local similarities and group similarities, where Tu contains the local similarities
for unary term, Tp contains the local similarities for pairwise term and ŷl is the vector containing the group similarities at the lth iteration.

Q(Y), which can be written as the product of a set of inde-
pendent marginal distributions, i.e., Q(Y) =

∏
iQi(yp,i).

By minimizing the KL divergence between P (Y|T ) and
Q(Y)[2], the optimal distribution Q̂i(yp,i) is estimated by:

ln Q̂i(yp,i) = Ej 6=i[lnP (Y|T )] + const, (6)

where Ej 6=i[·] denotes an expectation under Q(Y) over all
group similarities except yp,i. By expanding P (Y|T ) with
Eq. (3), Q̂i(yp,i) can be written as:

Q̂i(yp,i) ∝ exp
( S∑

s=1

(
αsΨu(yp,i, t

s
p,i)

+ βs
∑
j 6=i

E[Ψp(yp,i, yp,j , t
s
i,j)]

))
.

(7)

The definitions of Ψu(yp,i, t
s
p,i) and Ψp(yp,i, yp,j , t

s
i,j) im-

ply that Q̂i(yp,i) is a Gaussian function, whose expectation
also yields the maximum probability, denoted by ŷp,i. By
taking Eq. (4) and Eq. (5) into Q̂i(yp,i) , we can have the
followings updates for ŷp,i:

ŷl+1
p,i =

∑S
s=1 α

stsp,i +
∑S

s=1 β
s∑

j 6=i t
s
i,j ŷ

l
p,j∑S

s=1 α
s +

∑S
s=1 β

s
∑

j 6=i t
s
i,j

, (8)

where one group similarity is influenced by both the local
similarities and group similarities. As the mean-field algo-
rithm will generally achieve convergence after L iterations,
the final estimated group similarity ŷp,i = ŷLp,i. We collect
the estimated group similarities in set: Ŷ = {ŷp,i|Ii ∈ G}.

3.4. CRF modeling with Deep Neural Network

The implementation of our deep CRF model consists of
the modules for multi-scale feature embedding, local simi-
larity estimation and the group similarity estimation.
Feature embedding module (Fig. 3a). The local and group
similarities are calculated based on multi-scale feature maps
generated by a DNN. Inspired by Feature Pyramid Network

(FPN) [25], the feature embedding module takes ResNet-50
[13] as backbone, and generates the multi-scale high-level
semantic feature maps by combining the top-down pathway
and lateral connections. In particular, the top-down pathway
employs upsampling and 1×1 convolutions to match the
lateral input in both spatial dimension and feature dimen-
sion. To obtain the feature maps for the whole image, we
apply non-overlapped 8×4 spatial pooling to feature maps
of all scales. Such pooling strategy can partially preserve
the spatial structure of the feature maps at larger scales, and
balance the semantic and spatial information.

Local similarity module (Fig. 3b). The local similarity
tsm,n is estimated based on φs(Im) and φs(In), the s scale
feature embeddings of images Im and Im. More specif-
ically, we compute the difference vector of the two fea-
ture embeddings, perform an element-wise square opera-
tion over the vector, and normalize the vector by a BN layer
[15]. The resulting vector is mapped to a scalar via a fully-
connected layer, which is further normalized to (0, 1) via a
sigmoid function, indicating the probability of Im and In
belonging to the same person.

Group similarity module (Fig. 3c). The group similarities
Y are conditioned on the local similarities T , which can be
further divided into Tu and Tp to be used in unary terms
and pairwise terms, respectively. Among them, Tu contains
the local similarities between the probe and gallery images,
i.e., Tu = {tsp,k|Ik ∈ G, s = 1, 2, ..., S}, while Tp contains
the local similarities between all pairs of gallery images,
i.e., Tp = {tsi,j |Ii, Ij ∈ G, s = 1, 2, ..., S}. The parame-
ters {αs}Ss=1 and {βs}Ss=1 are required to be positive, we
generate them by exponential mappings of trainable param-
eters, i.e., αs = exp(ws) and βs = exp(vs), and initialize
{ws}Ss=1 and {vs}Ss=1 to be zeros. With {αs}Ss=1, we fur-
ther initialize ŷ0p,i by

∑S
s=1 α

stsp,i/
∑S

s=1 α
s.

According to Eq. (8), the updating of group simi-
larity consists of several steps. (i) Unary combination,
which computes the information from unary terms, e.g.,
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Figure 4: Network architectures for training and testing. The blue flowchart indicates the training network, and red flowchart indicates the testing network.∑S
s=1 α

stsp,i for ŷl+1
p,i , by using the local similarities in

Tu. (ii) Message passing, which computes the passed mes-
sages, e.g.,

∑S
s=1 β

s
∑

j 6=i t
s
i,j ŷ

l
p,j for ŷl+1

p,i , by using the
local similarities in Tp. We can compute the messages for
all the group similarities by matrix multiplication Tŷl. Tak-
ing i, j as the ordered image indexes in G that consists of G
images, T ∈ RG×G is a fixed symmetric matrix:

Tij =

{ ∑S
s=1 β

stsi,j , if i 6= j
0, if i = j

, Ii, Ij ∈ G, (9)

and ŷl is a vector composed by all the group sim-
ilarities estimated from the last update, i.e., ŷl =
[ŷlp,1, ŷ

l
p,2, ..., ŷ

l
p,G]>. (iii) Normalization, which first cal-

culates the normalization factor and then performs the nor-
malization with element-wise division. After L iterations,
we put the elements in vector ŷL into Ŷ as the estimation
for group similarities. According to Eq. (8) and tsp,i∈(0, 1),
it is easy to prove that ŷp,i ∈ (0, 1), which still can be used
to represent the probability of being a same person.

3.5. Overall Network Architecture

The network architectures for training and testing are
demonstrated in Fig. 4. In training, the inputs of training
network are in the form of image groups, each of which
consists of a probe image and multiple gallery images. The
group similarities play two roles: (1) they guide the learn-
ing of local similarity metrics considering the diverse de-
pendencies in the group; (2) they learn the linear weights to
combine the multi-scale local similarities for more accurate
estimation. In testing, the network inputs can be an arbi-
trary number of probe image and gallery images, and the
final similarity is the linear combination of multi-scale lo-
cal similarities with {αs}Ss=1 learned from the GS module:

x̂p,k =
S∑

s=1

αstsp,k/
S∑

s=1

αs. (10)

Discussion: One important reason that prevents us from
adopting group similarities for prediction is the inconsis-
tency between the training and testing configurations. In
training, we build a fully connected graph between group

similarities (see Fig. 2). In testing, the corresponding graph
structure are much larger as there are more gallery images.
The differences between the graphs make the learned mes-
sage passing parameters {βs}Ss=1 cannot be directly appli-
cable for the testing data. As local similarity metrics have
been benefited from learning with group similarity, the pre-
dicted similarity (Eq. (10)) can further combine multi-scale
local similarities and is flexible to be applied to different
testing configurations. To some extent, the proposed CRF
model can also be regarded a special loss function with
trainable parameters, which mediates among more abundant
inter-image constraints.

3.6. End-to-end Optimization

Batch organization. In our implementation, an image
batch B contains images of NB person identities, and each
person identity has KB images. With the image batch, we
can form NB groups with each group having a probe image
from a different identity, the remaining images are gallery
images shared by all the groups. In this way, local similari-
ties between two gallery images can be reused by different
groups, largely reducing the computational cost.
Loss functions. Since the group similarity represents the
same-person probability of an image pair, we can apply the
binary cross-entropy loss to each image pair, treating the
similarity learning as a verification problem:

LB
veri(Ip, Ik)=

{
−λ log(ŷp,k) if lp,k =1

−(1−λ) log(1−ŷp,k) if lp,k =0
(11)

where the label lp,k =1 if the probe image Ip and the gallery
image Ik belong to the same person, otherwise lp,k =0, λ is
a hyper-parameter to adjust the importance of positive and
negative image pairs. The MFE also predicts the person
identities during the training. We employ the OIM loss [44]
to supervise the per-image multi-scale feature embeddings:

LB
id(Ik)=−

Ntr∑
i=1

S∑
s=1

l′k,i log

(
exp(ws

i · φs(Ik))∑Ntr
j=1 exp(ws

j · φs(Ik))

)
. (12)

There are totally Ntr identities in the training set, if the
image Ik belongs to the ith identity, l′k,i = 1, otherwise



l′k,i = 0. ws
i are the coefficients associated with the s scale

feature embedding of the ith identity. They are obtained by
using an online updated buffer and measuring similarities
between the current person and all other persons in the fea-
ture buffer with inner product. The final loss function for
each batch is a linear combination of the verification loss
averaged over all the group similarities and the identifica-
tion loss averaged over all the images.

4. Experiments
We evaluate the proposed approach on three datasets.

Ablation studies are mainly conducted on Market-1501 [49]
and DukeMTMC-reID [52], which have fixed training / test-
ing splits and thus are convenient for extensive evaluation.
We also report the final results on CUHK03 [20] to compare
with other methods in addition to the above two datasets.

4.1. Experimental Setup

Datasets. All the employed datasets contain multiple im-
ages for each person identity. Among them, Market-1501
consists of 32,668 image, including 12,936 training images
from 751 identities and 19,732 testing images from 750
identities. DukeMTMC-reID is a subset of the multi-target,
multi-camera pedestrian tracking dataset [31]. It contains
1,812 identities captured by 8 cameras. There are 36,411
images in total, where 16,522 images of 702 identities are
used for training, 2,228 images of another 702 identities
are used as query images, and the remaining 17,661 im-
ages are gallery images. In our experiments, we follow the
standard single-query protocol [49] for both Market-1501
and DukeMTMC-reID. CUHK03 contains 13,164 images
of 1,467 identities. We follow the standard single-shot pro-
tocol for the labeled images and detected images separately,
which needs to repeat 20 times of random 1,367/100 train-
ing/testing identity splitting and report the averaged results.
Implementation details. For our implementation, the in-
put images are resized to 256 × 128 after random cropping
and flipping, and REDA [54] is used for data augmentation.
Stochastic gradient descent is applied with a momentum of
0.9. The initial learning rate is 0.01, which is further de-
cayed to 0.001 after the 50th epochs. The iteration number
L is set to 6. The weighting factor λ in Eq. (11) is set to
be 0.7. Each batch contains NB = 15 persons and each
persons has KB = 6 images.

4.2. Ablation Study

Baseline and the varaints of our approach. Our ap-
proach is developed based on the model proposed in [44],
which adopts ResNet-50 as the backbone architecture, uti-
lizes OIM loss for feature embedding, and outputs a 128-
dimensional single-scale feature vector for each image.
Based on the model, we build additional six variants of our
approach for ablation studies.

Model Training Loss scale
Identifi. Verifi. num.

1. basel. Y None 1
2. basel.(S)+local Y single-scale local sim. 1
3. basel.(M)+local Y (t1p,k + t2p,k + t3p,k)/3 3
4. basel.(M)+group* N group sim. ŷp,k 3
5. basel.(S)+group Y single-scale group sim. 1
6. basel.(M)+local# Y group training batches 3
7. basel.(M)+group Y group sim. ŷp,k 3

Table 1: Detailed configurations for the baseline and other variants.

The configurations of the baseline and the variants are
displayed in Table 1. Among them, basel. only adopts
the identification loss in Eq. (12), basel.(M)+group* only
adopts the verification loss in Eq. (11), and other models
employ both identification loss and verification loss. For
the methods that adopt verification loss, basel.(S)+local and
basel.(M)+local directly apply the verification loss to su-
pervise the local similarities, while the others apply the
verification loss to the group similarities, which indirectly
influence the learning of local similarities and feature em-
beddings. In addition, the models denoted by “(S)” utilize
singe-scale feature embeddings while the models denoted
by “(M)” employ three-scale feature embeddings.

Our method depends on a special training batch (Sec.
3.6) to construct image pairs for group similarity. To high-
light the characteristic of group similarity, the variants em-
ploying local similarities utilize randomly shuffled image
pairs to compose training batches as previous methods. We
also design basel.(M)+local# to adopt the same way to con-
struct the image pairs as the proposed method. Results in
Table 2m show that data organization is critical, which im-
plicitly connects a group of images for similarity learning
and can better discriminate the intra-person variations from
inter-person ones in one batch.

Feature embeddings. To investigate how group similarity
can benefit the learning of feature embeddings, we com-
pare basel., basel.(S)+local and basel.(S)+group. For fair
comparison, all the methods use single-scale feature em-
bedding φ1(Ii) obtained from the MFE module (see Fig.
3) and adopt the Euclidean distance to measure the similar-
ity between two feature embeddings. The feature embed-
dings of basel.(S)+local (Table 2b) consistently improve
those of basel. (Table 2a), and the feature embeddings of
basel.(S)+group further improve those of basel.(S)+local,
where the mAP is increased by 6.9% and 5.2% on the
Market-1501 dataset and the DukeMTMC-reID dataset. We
employ t-SNE to visualize the feature embeddings of the
same 40 testing persons yielded by basel.(S)+local and
basel.(S)+group in Fig. 5, which clearly shows that in-
corporating the group similarities for training can generate
more discriminative feature embeddings.

Local similarities. To investigate whether learning with
the group similarity can improve the quality of local simi-



Models Similarity Metric Embeddings Used Modules Market-1501 DukeMTMC-reID
LS GS mAP top-1 top-5 mAP top-1 top-5

a. basel. ‖φ1(Ip)−φ1(Ik)‖22 φ1(Ii) N N 63.4 83.2 93.8 55.1 74.2 86.2
b. basel.(S)+local ‖φ1(Ip)−φ1(Ik)‖22 φ1(Ii) Y N 70.6 88.2 95.8 59.6 77.2 88.8
c. basel.(S)+group ‖φ1(Ip)−φ1(Ik)‖22 φ1(Ii) Y Y 77.5 90.4 97.2 64.8 80.9 90.8
d. basel.(S)+local t1p,k φ1(Ii) Y N 71.1 88.3 96.0 61.9 79.5 89.2
e. basel.(S)+local t2p,k φ2(Ii) Y N 70.9 87.7 95.7 59.0 76.8 88.2
f. basel.(S)+local t3p,k φ3(Ii) Y N 69.5 86.6 95.8 59.4 77.3 89.1
g. basel.(S)+group t1p,k φ1(Ii) Y Y 78.7 91.8 97.2 66.4 81.7 91.0
h. basel.(S)+group t2p,k φ2(Ii) Y Y 77.9 91.4 97.1 65.1 80.6 90.8
i. basel.(S)+group t3p,k φ3(Ii) Y Y 77.2 91.1 97.2 64.7 80.4 90.3
j. basel.(M)+local (t1p,k + t2p,k + t3p,k)/3 {φs(Ii)}3s=1 Y N 73.8 89.8 96.5 62.9 78.9 90.4
k. basel.(M)+group (t1p,k + t2p,k + t3p,k)/3 {φs(Ii)}3s=1 Y Y 80.5 92.7 97.4 68.0 83.1 91.5
l. basel.(M)+group* x̂p,k {φs(Ii)}3s=1 Y Y 73.7 86.9 94.9 63.7 79.7 90.1
m. basel.(M)+local# (t1p,k + t2p,k + t3p,k)/3 {φs(Ii)}3s=1 Y N 78.4 92.2 97.6 67.8 82.0 91.9
n. basel.(M)+group x̂p,k {φs(Ii)}3s=1 Y Y 81.6 93.5 97.7 69.5 84.9 92.3

Table 2: Evaluation of our baseline and its variants on the Market-1501 dataset and the DukeMTMC-reID dataset. We study the influence of multi-scale
feature embeddings, different similarity metrics, and training with group similarities. Top-1,-5 accuracies (%) and mAP (%) are reported.

(a)    basel.(S) + local (b)     basel.(S) + group
Figure 5: t-SNE visualization of feature embeddings. Each point indicates a
testing image from randomly selected 40 identities of Market-1501, and its
color indicates the identity. Different identities may share the same color.
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Figure 6: Parameter analysis for group composition. (a) mAP changes with
the per-batch person number NB . (b) mAP changes with the per-person
image number KB .

larities, we compare basel.(S)+group with basel.(S)+local,
and evaluate them with the feature embeddings of all the
three-scale obtained from the MFE module. The main dif-
ference between the two modules is that basel.(S)+local
only consider local constraints for similarity learning, while
basel.(S)+group depends on the whole group, which indi-
rectly influences the learning of local similarities. The re-
sults reported in Table 2 show that basel.(S)+group (Table
2 g,h,i) can consistently improve the basel.(S)+local (Table
2 d,e,f) of different scales, where the average gain of top-
1 accuracy and mAP are 3.9%, 3.0% on the Market-1501
dataset, and 7.4%, 5.3% on the DukeMTMC-reID dataset.
Multi-scale combination. As CRF excels in exploit-
ing diverse information, we utilize the learned coefficients
{αs}3s=1 to linearly combine t1p,k, t2p,k and t3p,k to obtain x̂i,j
(Eq. (10)) for the final similarity between Ip and Ik. We
evaluate the proposed weighted combination by comparing
it with two different fusion methods: (i) basel.(M)+local
with the average of local similarities as the similarity met-
ric (Table 2j), (ii) basel.(M)+group also with the average
of local similarities as the similarity metric (Table 2k). By
comparing the variants using multi-scale feature embed-
dings with the variants using single-scale feature embed-

dings (Table 2j vs. Table 2 d,e,f, and Table 2k vs. Table
2g,h,i), we observe that the models with multi-scale fea-
ture embeddings can generally bring improvements over the
models of a single-scale. Among the models with multi-
scale feature embeddings, basel.(M)+group shows the ad-
vantages against basel.(M)+local by employing group sim-
ilarities for training. Besides, CRF learned coefficients lead
to better combination (Table 2n) than simply averaging the
local similarities of different scales (Table 2k).

Effectiveness of applying identification loss. To evaluate
the necessity of employing identification (OIM) loss over
the feature embeddings, we construct basel.(M)+group* by
removing the identification loss (Eq. (12)) in the training
stage. The gap between the results in Table 2l and Table 2n
indicates the identification loss is indispensable in the train-
ing stage, which also influences the quality of local similar-
ities and their combination.

Influence of the group composition. In each batch, the
person number NB and the per-person image number KB
together determine the composition of an image group. To
study how the composition of the group influences the per-
formance, we first show the mAP changes with NB by fix-



Methods Market-1501 DukeMTMC
mAP top-1 mAP top-1

H

BoW [49](ICCV15) 14.8 35.8 12.2 25.1
LOMO+XQDA [23] (CVPR15) 22.2 43.8 17.0 30.8
SCSP [3] (CVPR16) 26.4 51.9 - - - -
DNS [46] (CVPR16) 35.7 61.0 - - - -

D

Verif.+Identif. [51] (Arxiv16) 59.9 79.5 49.3 68.9
DCAF [19] (CVPR17) 57.5 80.3 - - - -
P2S [55] (CVPR17) 44.3 70.7 - - - -
OIM [44] (CVPR17) - - 82.1 - - 68.1
GAN [52] (ICCV17 ) 66.1 84.0 47.1 67.7
DLPAR [48] (ICCV17) 63.4 81.0 - - - -
SVDNet [37] (ICCV17) 62.1 82.3 56.8 76.7
TriNet [14] (Arxiv17) 69.1 84.9 - - - -
JLML [21] (IJCAI17) 65.5 85.1 - - - -
SVDNet+REDA [54] (Arxiv17) 71.3 87.1 62.4 79.3
DPFL [8] (ICCVW17) 73.1 88.9 60.6 79.2
Proposed approach 81.6 93.5 69.5 84.9

Table 3: Comparison with state-of-the-art methods on the Market-1501 and
DukeMTMC-reID datasets, which are separated into handcrafted feature
based methods (H) and deep learning based methods (D). Top-1 accuracies
(%) and mAP (%) are reported.

Methods Labelled Detected
top-1 top-5 top-1 top-5

H

BoW [49] (ICCV2015) 18.9 36.2 - - - -
LOMO+XQDA [23] (CVPR15) 52.2 - - 46.3 - -
GOG [28] (CVPR16) 67.3 91.0 65.5 88.4
DNS [46] (CVPR16) 62.6 90.1 54.7 84.8
SSSVM [47] (CVPR16) 57.0 84.8 51.2 81.5

D

IDLA [1] (CVPR15) 54.7 86.4 45.0 76.0
Deep Metric [34] (ECCV16) 61.3 88.5 52.1 84.0
Gated-SCNN [38] (ECCV16) - - - - 68.1 88.1
DCAF [19] (CVPR17) 74.2 94.3 68.0 91.0
OIM [44] (CVPR17) 77.7 - - - - - -
CAN [26] (TIP17) 77.6 95.2 69.2 88.5
JLML [21] (IJCAI17) 83.2 98.0 80.6 96.9
SVDNet [37] (ICCV17) - - - - 81.8 95.2
DLPAR [48] (ICCV17) 85.4 97.6 81.6 97.3
DPFL [8] (ICCVW17) 86.7 - - 82.0 - -
Proposed approach 90.2 98.5 88.8 97.2

Table 4: Comparison with state-of-the-art methods on the CUHK03
dataset, which are separated into handcrafted feature based methods (H)
and deep learning based methods (D). Top-1 and Top-5 accuracies (%) are
reported.

ing KB = 6 in Fig. 6a, where small NB leads inferior
results. It is reasonable as too few persons in the group
cannot provide sufficient and diverse pairwise relations for
the CRF to exploit, making our model hard to train. Be-
sides, we observe that incorporating too many persons in
the group also slightly decreases the performance. We also
show the influence of KB by fixing NB = 15 in Fig. 6b,
where the overall performance is relatively robust to image
number. Even withKB = 2, our approach can still generate
satisfactory results. The mAP grows as KB increases, but
maintains stable when KB ≥ 5.

4.3. Comparison with State-of-the-art Approaches

We compare the proposed approach with state-of-the-art
approaches. The presented results are not refined by any
post-processing technique such as re-ranking [53] or multi-
query fusion [49].
Market-1501 and DukeMTMC-reID. In Table 3, we com-
pare the proposed method with state-of-the-art approaches
on Market-1501 and DukeMTMC-reID. It can be seen that
deep learning approaches significantly outperform the tra-
ditional ones with handcrafted features, while our method
further improves the current deep learning approaches by a
considerable margin. The compared method DPFL [8] em-
ploys multi-scale feature embeddings, whose performance
is close to our simplified variant basel.(M)+local (Table 2j).
Thus the main gains, which have 8.5% and 8.9% mAP on
the Market-1501 dataset and the DukeMTMC-reID dataset,
are benefited from the employment of group similarity dur-
ing the training stage.
CUHK03. There are two types of person bounding boxes:
one type is manually labeled and the other one is obtained
by a pedestrian detector. We report the top-1 and top-5

accuracies in Table 4. Our approach significantly outper-
forms the compared methods, especially in top-1 accuracy.
It is noteworthy that the gap between the labeled evalua-
tion and the detected evaluation of our method is relatively
smaller than those of other methods, which indicating that
our method is more resistant to the misalignment of bound-
ing box. Besides, DLPAR [48] is 0.1% better than ours on
the top-5 accuracy for the detected bounding boxes. One
possible reason is that DLPAR adopts the part extractor that
is robust to misalignment. It is valuable to combine our ap-
proach with such pose-aligned representation for more ac-
curate estimation in the future.

5. Conclusion

We proposed a novel similarity learning approach for
person re-identification by combining the CRF model with
deep neural networks. The proposed method models rela-
tions between images in the group via a unified graphical
model, and learns multi-scale local similarities with the aid
of group similarities. As more inter-image relations are con-
sidered in our model, the learned similarity metric is robust
and consistent with images of much variations. Our abla-
tion studies show that our method can learn better feature
embeddings, local similarities and multi-scale combination.
The proposed method achieves state-of-the-art performance
on three public person Re-ID datasets.
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