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Abstract

Recently the widely used multi-view learning model,
Canonical Correlation Analysis (CCA) has been gener-
alised to the non-linear setting via deep neural networks.
Existing deep CCA models typically first decorrelate the
feature dimensions of each view before the different views
are maximally correlated in a common latent space. This
feature decorrelation is achieved by enforcing an exact
decorrelation constraint; these models are thus computa-
tionally expensive due to the matrix inversion or SVD op-
erations required for exact decorrelation at each training
iteration. Furthermore, the decorrelation step is often sep-
arated from the gradient descent based optimisation, result-
ing in sub-optimal solutions. We propose a novel deep CCA
model Soft CCA to overcome these problems. Specifically,
exact decorrelation is replaced by soft decorrelation via a
mini-batch based Stochastic Decorrelation Loss (SDL) to be
optimised jointly with the other training objectives. Exten-
sive experiments show that the proposed soft CCA is more
effective and efficient than existing deep CCA models. In
addition, our SDL loss can be applied to other deep models
beyond multi-view learning, and obtains superior perfor-
mance compared to existing decorrelation losses.

1. Introduction
Canonical Correlation Analysis (CCA) [12, 7] is widely

used for multi-view learning. These views could be camera
views, e.g., the images of a face from different view angles,
or modalities, e.g., an image and its caption. CCA aims
to learn a joint embedding space where different views of
a single data item are maximally correlated/aligned. Many
tasks can be accomplished in this space such as cross-view
recognition, retrieval and synthesis [8, 49, 14, 1, 36, 2].

A standard CCA model is linear in the sense that the pro-
jection between the feature space and the embedding space
is linear. For learning richer non-linear embeddings, Ker-
nel CCA (KCCA) [10] extended linear CCA via kernelisa-
tion. Both linear CCA and KCCA are shallow models and
the training procedure usually requires accessing the whole

batch data. As a result, KCCA has poor scalability. The
recently proposed deep CCA [1, 36, 41, 37] aims to learn
nonlinear projections with deep neural networks rather than
kernels and has been shown to be more effective than shal-
low CCA and KCCA.

However, scalability issues remain for deep CCA. This
is because existing deep CCA models [1, 36, 41, 37] aim to
implement an exact or ‘hard’ decorrelation. More precisely,
before being projected into the common embedding space,
the extracted deep feature vector for each view is decor-
related by forcing its correlation matrix over the training
batch to be an identity matrix. This decorrelation operation
is exact but computationally expensive. Either matrix in-
version [1, 36] or singular value decomposition (SVD) [37]
is required at each iteration which severely limits scalabil-
ity. Furthermore, existing deep CCA models such as [37]
typically employ two separate and independent optimisa-
tion steps: The feature representation for each data view is
first decorrelated exactly as described above. These decor-
relation operations do not directly affect the following gra-
dient computation and subsequent backpropagation. With-
out jointly optimising the decorrelation constraint and other
learning objectives, this could lead to sub-optimal solutions.

In this paper, we propose Soft CCA, a novel approach
to deep CCA. In our model, decorrelation is formulated as
a soft constraint to be jointly optimised with other train-
ing objectives. Specifically, a robust decorrelation loss,
called Stochastic Decorrelation Loss (SDL), is introduced,
which is mini-batch based and approximates the full-batch
statistics efficiently and effectively by using stochastic in-
cremental learning. SDL is a softer constraint as the loss is
only minimised rather than enforced to be zero. Comparing
with existing deep CCA models, Soft CCA has two advan-
tages: First, it is more efficient and scalable – by avoid-
ing computationally expensive operations such as SVD, its
cost is quadratic O(k2) rather than cubic O(k3) with a k-
dimensional feature input. Second, by jointly optimising
the decorrelation loss with other losses such as the distance
between views in the embedding space, more globally op-
timal solutions can be achieved resulting in more effective



correlation analysis and learning of multi-view embeddings.
While our proposed SDL is motivated by the feature

decorrelation required for deep CCA learning, it can also
be applied as an activation regularisation to any deep model
where feature decorrelation is helpful. In this work, we
demonstrate this with two widely used models including
Factorisation Autoencoder (FAE) and convolutional neural
network (CNN) based classifiers. FAE architectures aim to
disentangle latent factors of variation that correspond to dif-
ferent aspects of data items. Here we use SDL-based decor-
relation to ensure representations of distinct factors are in-
deed disentangled, and show that it provides superior dis-
entangling performance compared to prior approaches. As
for the supervised CNN classifier, it was recently shown that
decorrelation losses can be beneficial for maximizing model
capacity and reducing overfitting [5]. In this case, we show
that by whitening the computed deep features in supervised
CNN classifiers, we can train a more effective classifier for
both instance and category-level recognition benchmarks.

We conduct extensive experiments on multi-view corre-
lations analysis. The results show that the proposed soft
deep CCA is much more efficient as well as more effective
than the existing shallow or deep CCA models – and is also
simpler to implement. Moreover, we demonstrate that SDL
can be applied to a number of models for problems beyond
multi-view learning, and improves model performance be-
yond that of existing decorrelation losses.

2. Related Work

2.1. Deep CCA

Canonical Correlation Analysis (CCA) [12] and its vari-
ants including Kernel CCA [10] and multi-view CCA [8]
are one of the most popular multi-view learning approaches.
Inspired by the success of Deep Neural Network (DNNs)
in representation learning [48], Deep CCA has received
increasing interest [1, 36, 37]. A deep CCA architecture
was first proposed by Deep CCA (DCCA) [1] which di-
rectly computes the gradients of CCA objective and re-
quires both a second-order optimisation method [25] and
full-batch training inputs. It thus cannot cope with large
training data sizes. An alternative deep CCA objective and
architecture are proposed in Stochastic Deep CCA (SD-
CCA) [37] which make it suitable for mini-batch stochastic
optimisation. However, due to the exact decorrelation used,
SDCCA still requires a costly SVD operation at each train-
ing iteration. SVD’s O(k3) cost is not scalable to the large
layer sizes k (e.g., k = 1024) common in contemporary
DNNs. In fact, all existing deep CCA models [1, 36, 37]
take an exact decorrelation step, which limits their scalabil-
ity and effectiveness as mentioned earlier. Furthermore, the
exact decorrelating operations often do not directly impact
the following gradient computations and backpropagation,

which could lead to sub-optimal optimisation. In contrast,
our Soft Deep CCA decorrelates by formulating the decor-
relation constraint as a loss which is optimised end-to-end
jointly with other losses in a standard SGD procedure, mak-
ing it both more scalable and more effective.

2.2. Decorrelation Loss

Beyond multi-view learning, many other deep models
benefit from decorrelation of activations in a neural network
layer. For these models, a decorrelation loss such as the pro-
posed SDL can be employed. Two such models are studied
in this work, namely the Factorisation Autoencoder (FAE),
and convolutional neural network (CNN) based classifiers.
For each model, an alternative decorrelation loss exists.
FAE and XCov loss Recently interest has regrown in mod-
els for disentangling the underlying factors of variation in
the appearance of objects in images, for example identity
and viewpoint [49, 38, 15, 34, 16, 24, 23]. FAE achieves
semi-supervised disentangling of latent factors via a two-
branch autoencoder. Recently it has been shown in [4] that
the efficacy of FAE can be improved by adding a decor-
relation loss (termed XCov in [4]) to explicitly decorre-
late the computed latent factor representations. Like our
SDL, computing XCov is also a mini-batch operation. But
it only eliminates correlations across and not within each
factor; and it computes covariance only within each mini-
batch, while our SDL approximates full-batch statistics us-
ing stochastic incremental learning. We show in our exper-
iments (Sec. 4.1) that SDL is more effective than XCov for
helping FAE to disentangle latent factors.
CNN Classifier and DeCov loss Using CNN with a clas-
sification loss (e.g., cross entropy) for object recognition is
perhaps the most popular application of deep learning in
computer vision. CNN classifiers are used for not only
object category recognition tasks [17, 18] but also object
instance/identity recognition/verification tasks such as face
verification [28] and person re-identification [39]. When
training CNNs for classification, avoiding overfitting, satu-
ration and slow convergence are crucial [6]. These problems
are often alleviated by regularisation such as Batch Normal-
isation [13] and dropout [27]. Recently it was shown that
decorrelation losses can also be used for effective overfit-
ting reduction [5]. Compared with the existing decorrela-
tion loss DeCov [5], our SDL has the following advantages:
(1) More accurate covariance statistics due to full-batch ap-
proximation instead of the pure mini-batch statistics used in
DeCov [5]. (2) SDL uses a more robust L1 formuation in-
stead of the L2 one in DeCov [5], which encourages sparser
correlation and thus stronger decorrelation.
Our contributions are as follows: (1) We provide a new
perspective on CCA that allows its objective to be expressed
as a loss to be minimised by gradient descent rather than
as an eigen-decomposition problem. (2) We propose Soft



CCA, a novel Deep CCA model that is simple to imple-
ment, more efficient and scalable (mini-batch SGD-based
optimisation) and more effective (full batch approximation,
jointly end-to-end) than existing deep CCA models. (3) Be-
yond multi-view learning, our SDL is applicable to a variety
of tasks and models, and is superior to alternative decorre-
lation losses including XCov and DeCov.

3. Soft CCA
3.1. Deep CCA

Deep CCA extends linear CCA model by projecting
views of the same item (here we consider images of the
same objects) from different views to a common latent
space using a DNN with multiple branches, each corre-
sponding to one view (see Fig. 1).

We consider a two-view case for simplicity of notation,
but the multi-view extension is straightforward. Assume
we have 2N images consisting of two views for each of
N objects. They are then organised into mini-batches of
M image pairs and fed into the two DNN branches. The
training images in the two views are denoted as X1 and X2

respectively. The DNN branches aim to learn functions that
project paired input images into a shared latent space where
they are maximally correlated. Denote the DNN projec-
tion function for view i, i = {1, 2} as Pθi : Xi → Zi, or
Pθi(Xi) = Zi where Zi ∈ RM×k is the projected feature
matrix for M data items for view i in the k-D CCA embed-
ding space and θi are the DNN parameters.

Following [7], CCA can be formulated in multiple ways
and the most relevant one here is:

argmax
θ1,θ2

Tr(PTθ1(X1)Pθ2(X2)),

s.t. PTθ1(X1)Pθ1(X1) = PTθ2(X2)Pθ2(X2) = I,
(1)

where I indicates the identity matrix. The constraints en-
force decorrelation within each of the two input signals.
Eq. 1 can be written into an equivalent form:

arg min
θ1,θ2

1

2
||Pθ1(X1)− Pθ2(X2)||2F ,

s.t. PTθ1(X1)Pθ1(X1) = PTθ2(X2)Pθ2(X2) = I,

(2)

where || · ||F is the Frobenius norm of a matrix. It shows
that the goal of maximising correlation between Pθ1(X1)
andPθ2(X2) can be achieved by minimising theL2 distance
between the decorrelated signals.

The key idea of our approach is to convert the hard con-
straint in Eq. 2 into a soft cost to be optimised by SGD.

3.2. Stochastic Decorrelation Loss (SDL)

We denote the representations from one branch of a deep
CCA network over a mini-batch as Z ∈ Rm×k, where

X1

DNN   DNN   

X2

Z1 Z2

SDLSDL L2 Loss

Figure 1: Schematic of implementing Soft CCA with SDL.

m is the mini-batch size and k indicates the number of
neurons/feature channels. We further assume that Z has
been batch-normalised, i.e., each activation over the mini-
batch has zero mean and unit variance. This can be easily
achieved by adding a Batch Normalisation (BN) [13] layer.

The mini-batch covariance matrix Ctmini for the t-th
training step then is given as:

Ctmini =
1

m− 1
ZTZ. (3)

However, full-batch statistics are required by CCA ob-
jective for decorrelation. Therefore, we approximate the
full-batch covariance matrix Cfull by accumulating statis-
tics collected from each mini-batch. This is achieved by
stochastic incremental learning. More specifically, we first
compute an accumulative covariance matrix:

Ctaccu = αCt−1accu + Ctmini, (4)

where α ∈ [0, 1) is a forgetting/decay rate and C0
accu is

initialised with an all-zero matrix. A normalising factor is
also computed accumulatively as ct = αct−1 + 1 (c0 = 0
initially). The final full-batch covariance matrix approxi-
mation is then computed as:

Ctappx =
Ctaccu
ct

. (5)

If we were to follow an exact decorrelation strategy as in
[1, 36, 37], we need to force the off-diagonal elements of
Ctappx to zero. However, that has implications on the com-
putational cost and scalability which we shall detail later.
Instead, we follow a soft decorrelation procedure and for-
mulate the decorrelation constraint as a loss. Specifically,
SDL is an L1 loss on the off-diagonal element of Ctappx:

LSDL =
k∑
i=1

k∑
j 6=i

|φtij |, (6)

where φtij is the element in Ctappx at (i, j). L1 loss is used
here to encourage sparsity in the off-diagonal elements.
SDL is soft because it only penalises the correlation across



activations instead of enforcing exact decorrelation. It will
be jointly optimised with any other losses the model may
have.
Gradients and Optimisation The gradient of LSDL
w.r.t. zni (the element in Z at (n, i)) can be computed as

∂LSDL
∂zni

=
1

ct
1

m− 1

k∑
j

S(i, j)znj ,

S(i, j) =


1, φtij > 0
0, i = j or φtij = 0
−1, φtij < 0

(7)

with the sign matrix S ∈ Rk×k and i, j = 1, ..., k. Eq. 7
can be written in a matrix form:

∂LSDL
∂Z

=
1

ct
1

m− 1
Z · S, (8)

where · indicates matrix multiplication.
Once the SDL gradients are computed, they are passed

through the network during back-propagation and opti-
mised along with other losses in end-to-end training.

3.3. Computational Complexity

Eq. 6 shows that to compute the SDL in a forward pass,
we need matrix multiplication (as in Eq. 3), matrix addi-
tion (as in Eq. 4) and matrix element-wise summation (as in
Eq. 6). Therefore, the forward pass computation complex-
ity of SDL is O(mk2). The gradient computation during
the backward pass is in Eq. 8. It is also a matrix multiplica-
tion and therefore the complexity is O(mk2). The overall
computational complexity of one training iteration is thus
O(mk2). In contrast, existing exact decorrelation computa-
tion [1, 37] has a complexity ofO(mk2+k3) due to the use
of SVD. Note that in large scale vision problems, the num-
ber of activations in an FC layer can easily be thousands,
meaning that the alternative hard decorrelation models are
prohibitively expensive.

3.4. SDL for Soft CCA

With the proposed SDL, the constrained optimisation
problem in Eq. 2 can be reformulated as the following un-
constrained objective:

arg min
θ1,θ2

Ldist(Pθ1(X1), Pθ2(X2))

+ λ(LSDL(Pθ1(X1)) + LSDL(Pθ2(X2))),
(9)

where Ldist(Pθ1(X1), Pθ2(X2)) is the L2 distance and λ
weights the alignment versus decorrelation losses. The Soft
CCA architecture is also illustrated in Fig. 1. Note that both
SDL and L2 loss are mini-batch based losses. Therefore,
Soft CCA (deep CCA model with SDL) can be realised us-
ing standard SGD optimisation for end-to-end learning.

Encoder DNN

[y, z]
z

y Decoder 
DNNDNN  X

Lcla

Lrec

SDL

Figure 2: Architecture of FAE with SDL.

4. Applications of SDL to other deep models
4.1. Factorisation Autoencoder with SDL

We describe a two-factor case although the model gen-
eralises to an arbitrary number of factors. The two-factor
FAE model is illustrated in Fig. 2. Its encoder (a deep neu-
ral network) takes image x as input and projects it into an
embedding space/latent code which has two parts: y and
z. We assume y is a factor that is annotated in the train-
ing data, e.g., class label. The other unspecified factors are
thus captured by z. Both y and z are used as input to the
decoder (e.g., a deconvolutional network) which produces
a reconstruction of x, denoted as x̂. The goal is not only
to accurately reconstruct the input x, but also to represent
distinct factors of variation in y and z (e.g., class and style
respectively).

Assume the FAE model is parameterised by θ. Given a
training set D containing images X and their labels Ŷ for
the known factor, the learning objective of FAE is:

argmin
θ
Lrec(X, X̂) + λLcla(Y, Ŷ ), (10)

where Lrec(X, X̂) is the reconstruction loss, which we use
pixel L2 loss here, and Lcla(Y, Ŷ ) is the classification loss,
i.e., cross-entropy loss here. If there is no constraint on the
relation between y and z, they would not necessarily rep-
resent distinct aspects of the input signal. To disentangle
them, we introduce our SDL to the objective:

argmin
θ
Lrec(X, X̂) + λ1Lcla(Y, Ŷ ) + λ2LSDL([Y, Z]).

(11)
As shown in Fig. 2, this means we decorrelate the elements
of the concatenated code [y, z] which decorrelates the two
code parts (factors), as well as the signal within the factors.

4.2. CNN Classifier with SDL

Since decorrelation loss encourages a layer’s activations
to be decorrelated, it reduces activation co-adaptation and
maximises the model’s capacity. Therefore, SDL can be
applied to each layer of a CNN classifier to boost the model
performance. In our experiments, we add SDL to different
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Figure 3: Cross-view digit recognition results on MNIST.
Note that CCA is not scalable to a common space dimen-
sion that is greater than the total dimension of 784. More-
over, DCCA, DCCAE and SDCCA are also intractable with
our GPU resources when the common space dimension be-
comes 1000.

CNN classifiers for different recognition tasks to demon-
strate its general applicability.

5. Experiments

5.1. Soft CCA

Datasets and settings We evaluate the proposed Soft
CCA and alternative deep CCA models on two widely used
datasets. MNIST [19] consists of handwritten digit im-
ages with an image size of 28 × 28. It contains 60,000
training and 10,000 testing images respectively. We follow
the experimental setting in [2] for cross-view recognition.
Deep CCA models are trained on the left and right halves
of a 10,000 sized subset of training images and we do 5-
fold cross validation on the provided test set for recogni-
tion. Multi-PIE [9] is a face dataset composed of 750,000
images of 337 people with various factors contributing to
appearance variation including viewpoint, illumination and
facial expression. We use a subset containing 6,200 images
of all 337 identities in neutral expression and lighting. Con-
structing an analogous experiment to the cross-view recog-
nition benchmark, these images are separated into the left
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Figure 4: Cross-view face recognition results on Multi-
PIE. Accuracy (%). Note that SDCCA is intractable with
our GPU resources when the common space dimension be-
comes 1000.

and right view groups according to their viewing angle.
Left-right view angle pairs are then formed exhaustively for
the same identities to train the deep CCA models. We use
half of the images in both views for deep CCA training and
also do 5-fold cross validation for recognition on the rest of
the data.

Implementation details For MNIST cross-view recogni-
tion, the network architecture of each view branch is iden-
tical to that in [2] for fair comparison. Concretely, there are
three hidden layer containing 500, 300, k units/activations
respectively, where the k units are used as the common rep-
resentation (CCA embedding layer). ReLU is applied on
the hidden layers’ activations (except the embedding layer).
Once the CCA model is trained, on the test set, features
from one view (e.g., right) are exacted, embedded with deep
CCA, and then fed to a Linear SVM [3] classifier which is
trained to recognise the images. Finally, the model is evalu-
ated based on features from the other view (e.g., left) being
projected into the shared embedding space, and recognised
by the SVM. Clearly, the performance of the SVM on this
cross-view recognition task depends on the efficacy of the
CCA embedding. An analogous cross-view recognition set-
ting is used for the Multi-PIE dataset. The DNN architec-
ture for Multi-PIE also has three hidden layers: 1024, 512,



50D 100D 200D 500D 1000D
Upper Bound 50 100 200 500 1000

CCA [12] 28.3 34.2 48.7 74.0 -
DCCA [1] 29.5 44.9 59.0 84.7 -

DCCAE [35] 29.3 44.2 58.1 84.4 -
SDCCA [37] 46.4 89.5 166.1 307.4 -

Soft CCA 45.5 87.0 166.3 356.8 437.7

Table 1: Correlation strength on MNIST. ‘-’ indicates that
the result is not obtainable due to the corresponding model
being intractible with our available hardware.

k units, the k units are used as the CCA embedding layer.
ReLU is applied on the hidden layers’ activations (except
the embedding layer).

Competitors For shallow CCA, we compare the stan-
dard linear CCA [12] and its nonlinear kernelised variant,
KCCA [10]. The KCCA results are obtained from [2].
For the deep CCA models, we compare with CorrNet [2],
DCCA [1], DCCAE [35] and SDCCA [37]. CorrNet [2]
combines correlation maximisation with cross-view autoen-
coder loss and uses Batch Normalisation. Without access
to their code, we can only use the reported result in [2]
which was obtained only on MNIST with k = 50. As far as
we know, SDCCA [37] is the most efficient state-of-the-art
deep CCA model to date.

Results on cross-view recognition Figures 3 and 4 show
the results for cross-view digit and face recognition. We
make the following observations: (1) The deep models
achieve better performance than the shallow ones. (2) Our
Soft CCA achieves the best results on both datasets with all
CCA space dimensions. (3) Increasing the common space
dimension k benefits SDCCA very little and even harms the
performance of other competitors (e.g. CCA). In contrast,
our Soft CCA clearly benefits from larger CCA space di-
mensions.

Results on cross-view correlation Another way to eval-
uate CCA models is to measure the average correlation
strength of each matching pair of data when they are pro-
jected into the common CCA space [37]. We follow the
experimental setting and network architecture of [37] (SD-
CCA) for a fair comparison. The results of MNIST and
Multi-PIE are shown in Table 1 and Table 2 respectively.
We can conclude from the results that: (1) Again the deep
models achieve higher correlation values indicating that
they align the two views much better than the linear CCA
model. (2) For the easier digit classification task in MNIST,
our model is slightly inferior to SDCCA at 50D and 100D,
but better after 200D. For the more challenging face recog-
nition problem in Multi-PIE, Soft CCA consistently outper-
forms SDCCA and the gap increases with the dimension.

50D 100D 200D 500D 1000D
Upper Bound 50 100 200 500 1000

CCA [12] 12.8 23.9 53.4 140.6 207.1
SDCCA [37] 25.7 51.5 151.2 228.3 -

Soft CCA 29.2 60.5 163.2 257.7 283.9

Table 2: Correlation strength on Multi-PIE.

500 1000 1500 2000 2500 3000 3500 4000
0

10

20

30

40

Dimensions

s/
ite

r

 

 

SDCCA
Soft CCA (SDL)

Figure 5: Comparing training time (seconds/iteration) on
MNIST given different CCA space dimensions.

These results suggest that our model is more effective with
higher dimensional embedding space, which is required for
more challenging computer vision tasks.

Evaluation on scalability We compare the training time
for our model and that for the most efficient deep CCA
model proposed to date, SDCCA [37]. Figure 5 shows that
our soft CCA is always more efficient than SDCCA even at
the low dimensions1. Importantly, when the CCA embed-
ding space dimension approaches 4,000 (roughly the same
as the final FC layer size of popular DNNs like AlexNet and
VGGNet), our model is clearly much more efficient to train.
This is due to the O(k2) vs. O(k3) computational complex-
ity difference.

5.2. FAE with SDL

Dataset and settings We use MNIST [19], and follow
the same experimental setting as [4]. The network architec-
ture is 784-1000-1000-{y+z}-1000-1000-784, where 784 is
the dimension of the vectorised image. ReLU is applied on
the hidden layers’ activations (except y, z). As shown in
Fig. 2, among the two factors to be disentangled, y is the
digit class which is annotated with the training data. The
other factor z corresponds to aspects of appearance besides
class – i.e., the unannotated writing style. In our experi-
ments, the dimension of y is fixed to 10 corresponding to
the 10 digit classes and the dimension of z is also set to
10. We compare the performance of a vanilla FAE (basic
network with only reconstruction and classification loss),

1The speedup is significant even under low dimensions; it is just not
very salient in Fig. 5 due to the scaling problem. E.g, at 50D and 100D,
Soft CCA is 2 and 5 time faster to train respectively.
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Figure 6: Qualitative results of handwriting style transfer with different FAE models. (a) FAE; (b) FAE + XCov [4] ; (c) FAE
+ SDL. The dimension of z is set to 10.

FAE XCov [4] DeCov [5] SDL
z (↓) 43.44 14.51 15.42 11.35
y (↑) 97.23 95.72 97.09 97.33

Table 3: Disentanglement efficacy. Classification accuracy
(%) using representation of each branch in MNIST FAE.

FAE+XCov [4], FAE+DeCov [5] and our FAE+SDL.

Evaluation on disentanglement In the ideal case, the
two factors will be completed disentangled in y and z, i.e.,
y contains no information about the style and z contains
nothing about the class. To quantify this, we compare the
digit classification performance with the inferred y and z
on the test set. Classification based on y is given by the
prediction scores from the FAE classification branch. The
inferred z requires an additional classification model and
we train a linear SVM using z from the training set and test
it on the test set. Predictions based on y and z should thus
ideally give perfect and random chance accuracies respec-
tively. Table 3 shows that with SDL, the style feature z’s
classification performance is close to random guess (10%),
and better (closer to random) than that of XCov and De-
Cov, whilst using with the vanilla FAE with no decorrela-
tion loss, it still contains extensive class information. Mean-
while, the disentangled y provides the highest classification
accuracy using our FAE+SDL. The results suggest that our
model is more effective than the alternative XCov and De-
Cov in disentangling latent factors. This is because our SDL
does a stochastic approximation of the full-batch statistics,
whilst both XCov and DeCov only use information from
each mini-batch.

Qualitative results With the style factor disentangled
from the class factor, we can use the FAE to transfer styles
to a new digit. Given an input image containing a certain

Accuracy
Baseline [11] 91.12

DeCov [5] 91.62
SDL 92.44

Table 4: CIFAR10 classification results (%)

digit with certain handwriting style, we can keep the in-
ferred z and change the value y manually to a different digit
class. After feeding both the original z and the modified y
to the decoder, we can synthesise a new digit with the same
style as the input image. Qualitative results are shown in
Fig. 6. We see the better disentanglement efficacy of our
model in terms of clearer digit reconstruction with clearer
style transfer.

5.3. CNN Classifier with SDL

Experiments on object recognition We use CI-
FAR10 [17] which consists of 60,000 32 × 32 colour im-
ages in 10 categories, with 6000 images per category. We
follow the standard experimental setting in [17]. The DNN
baseline model used is a 20-layer ResNet [11]. We com-
pares SDL with existing decorrelation loss DeCov [5] and
the baseline (with BN but without any decorrelation loss) in
Table 4. The proposed SDL leads to a 1.32% performance
improvement over the baseline model and also outperforms
the alternative DeCov loss by 0.82%.

Person re-identification In this experiment, a CNN clas-
sifier is applied to solve a more challenging recognition
problem. The person re-identification (Re-ID) problem
aims to match pedestrians captured by non-overlapping
CCTV cameras2. We use one of the biggest and most popu-

2Note that although Re-ID can be interpreted as a multi-view learn-
ing problem, state-of-the-art approaches treat it as an identity-supervised
single-view identity classification problem. [39]; we thus follow this



S-Query M-Query
Method mAP R1 mAP R1

LDEHL [31] – 59.47 – –
Siamese LSTM [33] – – 35.3 61.6
Gated S-CNN [32] 39.55 65.88 48.45 76.04

CNN Embedding [45] 59.87 79.51 70.33 85.84
Spindle [42] - 76.9 - -
HP-net [22] - 76.9 - -
OIM [40] - 82.1 - -

Re-rank [47] 63.6 77.1 - -
DPA [43] 63.4 81.0 - -

SVDNet [29] 62.1 82.3 - -
ACRN [26] 62.6 83.6 - -
Context [20] 57.5 80.3 66.7 86.8
JLML [21] 64.4 83.9 74.5 89.7
LSRO [46] 66.1 84.0 76.1 88.4
DGDNet∗ 64.55 85.06 73.30 89.40

DGDNet+DeCov [5] 65.74 85.86 74.72 90.53
DGDNet+SDL 67.67 86.75 75.77 91.06

Table 5: Market-1501 Results. S-Query means Single
Query, and M-Query means Multiple Query. ‘–’ indi-
cates no reported result. DGDNet∗ refers to the basic net-
work used in DGD [39], but trained from scratch only on
Market-1501, without multi-task learning through the Do-
main Guided Dropout layer using six auxiliary datasets for
fair comparison with the state-of-the-art.

CIFAR 10 Market-1501
DeCov [5] 91.62 85.86
DeCovGC 91.86 86.28
DeCovL1 91.90 86.01

SDL 92.44 86.75

Table 6: Ablation study on the advantage of SDL over De-
Cov. The CIFAR10 classification results are in classifica-
tion accuracy (%) and the Market-1501 results are in R1
accuracy (%) under the single query setting.

lar Re-ID benchmarks. Market-1501 [44] is collected from
6 different cameras. It has 32,668 bounding boxes of 1,501
identities obtained using a Deformable Part Model (DPM)
person detector. Following the standards split [44], we use
751 identities with 12,936 images for training and the rest
750 identities with 19,732 images for testing. Experiments
are conducted under both the single-query and multi-query
evaluation settings. The Rank-1 accuracy is computed to
evaluate all the methods. We also calculate the mean av-
erage precision (mAP) [44]. For the base model, we use
one of the state-of-the-art deep Re-ID models, DGDNet
[39], which is built on Inception modules [30]. Our model

single-view approach.

(DGDNet+SDL) adds SDL on the output of each BN layer
in DGDNet during training.

The results are shown in Table 5, along with some recent
high performing state-of-the-art alternatives. We can see
that: (1) Our model (DGDNet+SDL) outperforms a num-
ber of state-of-the-art alternatives. (2) Compared to the
base model (DGDNet without decorrelation loss), adding
our SDL boosts the performance by a clear margin. (3)
When the alternative DeCov loss is added to the base model,
its performance is also improved, but by a smaller margin.
This result thus indicates that the proposed SDL is more ef-
fective than DeCov.

Ablation study Note that SDL differs from DeCov in
two aspects: (i) SDL approximates the global covariance
by accumulating mini-batch covariance statistics; and (ii)
SDL exploits an L1 instead of L2 formulation as in De-
Cov for robustness and correlation sparsity. In order to gain
some insight on what contribute to SDL’s superior perfor-
mance, we consider two variants of DeCov [5], called De-
CovGC and DeCovL1. DeCovGC is DeCov with added ac-
cumulating covariance statistic only while DeCovL1 adopts
a L1 formulation as in SDL. As shown in Table 6, both De-
Cov variants have better results than DeCov [5] while SDL
(with both accumulating covariance statistic and L1 loss)
achieves the highest performance among them. It suggests
that both differences contribute to the effectiveness of SDL.

6. Conclusions

We have proposed a novel deep CCA model, termed Soft
CCA, which provides an efficient and effective solution to
deep CCA optimisation by introducing a soft decorrelation
loss. Extensive experiments show that the proposed Soft
CCA is more effective and scalable than existing CCA vari-
ants. Compared to exact whitening solutions, Soft CCA is
easy to implement in contemporary learning frameworks,
and therefore is promising for enabling practical use of
CCA techniques in the deep learning community. More-
over, we demonstrated that as a by-product, the developed
SDL loss can be applied beyond CCA as a general purpose
decorrelation loss – to any deep learning task where feature
decorrelation is required. As case studies, SDL was shown
to outperform alternative decorrelation losses in FAE latent
factor disentanglement and CNN object and instance recog-
nition.
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