
FoldingNet: Point Cloud Auto-encoder via Deep Grid Deformation

Yaoqing Yang†

yyaoqing@andrew.cmu.edu

Chen Feng‡

cfeng@merl.com

Yiru Shen§

yirus@g.clemson.edu

Dong Tian‡

tian@merl.com

†Carnegie Mellon University ‡Mitsubishi Electric Research Laboratories (MERL) §Clemson University

Abstract

Recent deep networks that directly handle points in a
point set, e.g., PointNet, have been state-of-the-art for su-
pervised learning tasks on point clouds such as classifica-
tion and segmentation. In this work, a novel end-to-end
deep auto-encoder is proposed to address unsupervised le-
arning challenges on point clouds. On the encoder side,
a graph-based enhancement is enforced to promote local
structures on top of PointNet. Then, a novel folding-based
decoder deforms a canonical 2D grid onto the underlying
3D object surface of a point cloud, achieving low recon-
struction errors even for objects with delicate structures.
The proposed decoder only uses about 7% parameters of
a decoder with fully-connected neural networks, yet leads
to a more discriminative representation that achieves hig-
her linear SVM classification accuracy than the benchmark.
In addition, the proposed decoder structure is shown, in
theory, to be a generic architecture that is able to recon-
struct an arbitrary point cloud from a 2D grid. Our code
is available at http://www.merl.com/research/
license#FoldingNet

1. Introduction
3D point cloud processing and understanding are usu-

ally deemed more challenging than 2D images mainly due
to a fact that point cloud samples live on an irregular struc-
ture while 2D image samples (pixels) rely on a 2D grid in
the image plane with a regular spacing. Point cloud geo-
metry is typically represented by a set of sparse 3D points.
Such a data format makes it difficult to apply traditional
deep learning framework. E.g. for each sample, traditio-
nal convolutional neural network (CNN) requires its neig-
hboring samples to appear at some fixed spatial orientations
and distances so as to facilitate the convolution. Unfortuna-
tely, point cloud samples typically do not follow such con-
straints. One way to alleviate the problem is to voxelize
a point cloud to mimic the image representation and then
to operate on voxels. The downside is that voxelization has
to either sacrifice the representation accuracy or incurs huge
redundancies, that may pose an unnecessary cost in the sub-

Input 2D grid 1st folding 2nd folding

Table 1. Illustration of the two-step-folding decoding. Column
one contains the original point cloud samples from the ShapeNet
dataset [57]. Column two illustrates the 2D grid points to be fol-
ded during decoding. Column three contains the output after one
folding operation. Column four contains the output after two fol-
ding operations. This output is also the reconstructed point cloud.
We use a color gradient to illustrate the correspondence between
the 2D grid in column two and the reconstructed point clouds after
folding operations in the last two columns. Best viewed in color.

sequent processing, either at a compromised performance or
an rapidly increased processing complexity. Related prior-
arts will be reviewed in Section 1.1.

In this work, we focus on the emerging field of unsu-
pervised learning for point clouds. We propose an auto-
encoder (AE) that is referenced as FoldingNet. The output
from the bottleneck layer in the auto-encoder is called a co-
deword that can be used as a high-dimensional embedding
of an input point cloud. We are going to show that a 2D
grid structure is not only a sampling structure for imaging,
but can indeed be used to construct a point cloud through

http://www.merl.com/research/license#FoldingNet
http://www.merl.com/research/license#FoldingNet

n×
12

3)layer
perceptron

n×
64

2)graph
layers

n×
10

24

global
max-pooling

1×
10

24

1×
51

2

2)layer
perceptron

m×2
2D)grid)points)(fixed)

replicate
m)times

codeword

m
×

51
2

Graph-based Encoder

m
×

51
4

concatenate

3)layer
perceptron

3)layer
perceptron

m
×

3

m
×

51
5

Folding-based Decoder

1st)
folding)

2nd)
folding)

n×
3

n-
by

-9

local
covariance

concatenate

input
C

ha
m

fe
r)

D
is

ta
nc

e

m×3
intermediate)
point)cloud

output

Figure 1. FoldingNet Architecture. The graph-layers are the graph-based max-pooling layers mentioned in (2) in Section 2.1. The 1st
and the 2nd folding are both implemented by concatenating the codeword to the feature vectors followed by a 3-layer perceptron. Each
perceptron independently applies to the feature vector of a single point as in [41], i.e., applies to the rows of the m-by-k matrix.

the proposed folding operation. This is based on the obser-
vation that the 3D point clouds of our interest are obtained
from object surfaces: either discretized from boundary re-
presentations in CAD/computer graphics, or sampled from
line-of-sight sensors like LIDAR. Intuitively, any 3D object
surface could be transformed to a 2D plane through certain
operations like cutting, squeezing, and stretching. The in-
verse procedure is to glue those 2D point samples back onto
an object surface via certain folding operations, which are
initialized as 2D grid samples. As illustrated in Table 1, to
reconstruct a point cloud, successive folding operations are
joined to reproduce the surface structure. The points are co-
lorized to show the correspondence between the initial 2D
grid samples and the reconstructed 3D point samples. Using
the folding-based method, the challenges from the irregular
structure of point clouds are well addressed by directly in-
troducing such an implicit 2D grid constraint in the decoder,
which avoids the costly 3D voxelization in other works [56].
It will be demonstrated later that the folding operations can
build an arbitrary surface provided a proper codeword. No-
tice that when data are from volumetric format instead of
2D surfaces, a 3D grid may perform better.

Despite being strongly expressive in reconstructing point
clouds, the folding operation is simple: it is started by
augmenting the 2D grid points with the codeword obtai-
ned from the encoder, which is then processed through a
3-layer perceptron. The proposed decoder is simply a con-
catenation of two folding operations. This design makes
the proposed decoder much smaller in parameter size than
the fully-connected decoder proposed recently in [1]. In
Section 4.6, we show that the number of parameters of our
folding-based decoder is about 7% of the fully connected
decoder in [1]. Although the proposed decoder has a sim-

ple structure, we theoretically show in Theorem 3.2 that this
folding-based structure is universal in that one folding ope-
ration that uses only a 2-layer perceptron can already re-
produce arbitrary point-cloud structure. Therefore, it is not
surprising that our FoldingNet auto-encoder exploiting two
consecutive folding operations can produce elaborate struc-
tures.

To show the efficiency of FoldingNet auto-encoder for
unsupervised representation learning, we follow the ex-
perimental settings in [1] and test the transfer classifica-
tion accuracy from ShapeNet dataset [7] to ModelNet da-
taset [57]. The FoldingNet auto-encoder is trained using
ShapeNet dataset, and tested out by extracting codewords
from ModelNet dataset. Then, we train a linear SVM clas-
sifier to test the discrimination effectiveness of the extracted
codewords. The transfer classification accuracy is 88.4%
on the ModelNet dataset with 40 shape categories. This
classification accuracy is even close to the state-of-the-art
supervised training result [41]. To achieve the best classi-
fication performance and least reconstruction loss, we use
a graph-based encoder structure that is different from [41].
This graph-based encoder is based on the idea of local fea-
ture pooling operations and is able to retrieve and propagate
local structural information along the graph structure.

To intuitively interpret our network design: we want to
impose a “virtual force” to deform/cut/stretch a 2D grid lat-
tice onto a 3D object surface, and such a deformation force
should be influenced or regulated by interconnections in-
duced by the lattice neighborhood. Since the intermediate
folding steps in the decoder and the training process can be
illustrated by reconstructed points, the gradual change of
the folding forces can be visualized.

Now we summarize our contributions in this work:

• We train an end-to-end deep auto-encoder that consu-
mes unordered point clouds directly.
• We propose a new decoding operation called folding

and theoretically show it is universal in point cloud re-
construction, while providing orders to reconstructed
points as a unique byproduct than other methods.
• We show by experiments on major datasets that folding

can achieve higher classification accuracy than other
unsupervised methods.

1.1. Related works

Applications of learning on point clouds include shape
completion and recognition [57], unmanned autonomous
vehicles [36], 3D object detection, recognition and classi-
fication [9, 33, 40, 41, 48, 49, 53], contour detection [21],
layout inference [18], scene labeling [31], category disco-
very [60], point classification, dense labeling and segmen-
tation [3, 10, 13, 22, 25, 27, 37, 41, 54, 55, 58],

Most deep neural networks designed for 3D point clouds
are based on the idea of partitioning the 3D space into re-
gular voxels and extending 2D CNNs to voxels, such as
[4, 11, 37], including the the work on 3D generative ad-
versarial network [56]. The main problem of voxel-based
networks is the fast growth of neural-network size with the
increasing spatial resolution. Some other options include
octree-based [44] and kd-tree-based [29] neural networks.
Recently, it is shown that neural networks based on purely
3D point representations [1, 41–43] work quite efficiently
for point clouds. The point-based neural networks can re-
duce the overhead of converting point clouds into other data
formats (such as octrees and voxels), and in the meantime
avoid the information loss due to the conversion.

The only work that we are aware of on end-to-end deep
auto-encoder that directly handles point clouds is [1]. The
AE designed in [1] is for the purpose of extracting features
for generative networks. To encode, it sorts the 3D points
using the lexicographic order and applies a 1D CNN on the
point sequence. To decode, it applies a three-layer fully
connected network. This simple structure turns out to out-
perform all existing unsupervised works on representation
extraction of point clouds in terms of the transfer classifi-
cation accuracy from the ShapeNet dataset to the ModelNet
dataset [1]. Our method, which has a graph-based enco-
der and a folding-based decoder, outperforms this method
in transfer classification accuracy on the ModelNet40 da-
taset [1]. Moreover, compared to [1], our AE design is
more interpretable: the encoder learns the local shape in-
formation and combines information by max-pooling on a
nearest-neighbor graph, and the decoder learns a “force”
to fold a two-dimensional grid twice in order to warp the
grid into the shape of the point cloud, using the informa-
tion obtained by the encoder. Another closely related work
reconstructs a point set from a 2D image [17]. Although

the deconvolution network in [17] requires a 2D image as
side information, we find it useful as another implementa-
tion of our folding operation. We compare FoldingNet with
the deconvolution-based folding and show that FoldingNet
performs slightly better in reconstruction error with fewer
parameters (see Supplementary Section 9).

It is hard for purely point-based neural networks to ex-
tract local neighborhood structure around points, i.e., featu-
res of neighboring points instead of individual ones. Some
attempts for this are made in [1,42]. In this work, we exploit
local neighborhood features using a graph-based frame-
work. Deep learning on graph-structured data is not a new
idea. There are tremendous amount of works on applying
deep learning onto irregular data such as graphs and point
sets [2,5,6,12,14,15,23,24,28,32,35,38,39,43,47,52,59].
Although using graphs as a processing framework for deep
learning on point clouds is a natural idea, only several se-
minal works made attempts in this direction [5, 38, 47].
These works try to generalize the convolution operations
from 2D images to graphs. However, since it is hard to
define convolution operations on graphs, we use a simple
graph-based neural network layer that is different from pre-
vious works: we construct the K-nearest neighbor graph (K-
NNG) and repeatedly conduct the max-pooling operations
in each node’s neighborhood. It generalizes the global max-
pooling operation proposed in [41] in that the max-pooling
is only applied to each local neighborhood to generate local
data signatures. Compared to the above graph based convo-
lution networks, our design is simpler and computationally
efficient as in [41]. K-NNGs are also used in other applica-
tions of point clouds without the deep learning framework
such as surface detection, 3D object recognition, 3D object
segmentation and compression [20, 50, 51].

The folding operation that reconstructs a surface from a
2D grid essentially establishes a mapping from a 2D regu-
lar domain to a 3D point cloud. A natural question to ask
is whether we can parameterize 3D points with compatible
meshes that are not necessarily regular grids, such as cross-
parametrization [30]. From Table 2, it seems that Folding-
Net can learn to generate “cuts” on the 2D grid and generate
surfaces that are not even topologically equivalent to a 2D
grid, and hence make the 2D grid representation universal
to some extent. Nonetheless, the reconstructed points may
still have genus-wise distortions when the original surface
is too complex. For example, in Table 2, see the missing
winglets on the reconstructed plane and the missing holes
on the back of the reconstructed chair. To recover those fi-
ner details might require more input point samples and more
complex encoder/decoder networks. Another method to le-
arn the surface embedding is to learn a metric alignment
layer as in [16], which may require computationally inten-
sive internal optimization during training.

1.2. Preliminaries and Notation

We will often denote the point set by S. We use bold
lower-case letters to represent vectors, such as x, and use
bold upper-case letters to represent matrices, such as A.
The codeword is always represented by θ. We call a ma-
trix m-by-n or m× n if it has m rows and n columns.

2. FoldingNet Auto-encoder on Point Clouds

Now we propose the FoldingNet deep auto-encoder. The
structure of the auto-encoder is shown in Figure 1. The in-
put to the encoder is an n-by-3 matrix. Each row of the ma-
trix is composed of the 3D position (x, y, z). The output is
an m-by-3 matrix, representing the reconstructed point po-
sitions. The number of reconstructed points m is not neces-
sarily the same as n. Suppose the input contains the point
set S and the reconstructed point set is the set Ŝ. Then, the
reconstruction error for Ŝ is computed using a layer defined
as the (extended) Chamfer distance,

dCH(S, Ŝ) = max

{
1

|S|
∑
x∈S

min
x̂∈Ŝ
‖x− x̂‖2,

1

|Ŝ|

∑
x̂∈Ŝ

min
x∈S
‖x̂− x‖2

 .

(1)

The term minx̂∈Ŝ ‖x − x̂‖2 enforces that any 3D point x
in the original point cloud has a matching 3D point x̂ in the
reconstructed point cloud, and the term minx∈S ‖x̂ − x‖2
enforces the matching vice versa. The max operation en-
forces that the distance from S to Ŝ and the distance vice
versa have to be small simultaneously. The encoder com-
putes a representation (codeword) of each input point cloud
and the decoder reconstructs the point cloud using this co-
deword. In our experiments, the codeword length is set as
512 in accordance with [1].

2.1. Graph-based Encoder Architecture

The graph-based encoder follows a similar design in [46]
which focuses on supervised learning using point cloud
neighborhood graphs. The encoder is a concatenation
of multi-layer perceptrons (MLP) and graph-based max-
pooling layers. The graph is the K-NNG constructed from
the 3D positions of the nodes in the input point set. In expe-
riments, we choose K = 16. First, for every single point v,
we compute its local covariance matrix of size 3-by-3 and
vectorize it to size 1-by-9. The local covariance of v is com-
puted using the 3D positions of the points that are one-hop
neighbors of v (including v) in the K-NNG. We concate-
nate the matrix of point positions with size n-by-3 and the
local covariances for all points of size n-by-9 into a ma-
trix of size n-by-12 and input them to a 3-layer perceptron.

The perceptron is applied in parallel to each row of the in-
put matrix of size n-by-12. It can be viewed as a per-point
function on each 3D point. The output of the perceptron is
fed to two consecutive graph layers, where each layer ap-
plies max-pooling to the neighborhood of each node. More
specifically, suppose the K-NN graph has adjacency matrix
A and the input matrix to the graph layer is X. Then, the
output matrix is

Y = Amax(X)K, (2)

where K is a feature mapping matrix, and the (i,j)-th entry
of the matrix Amax(X) is

(Amax(X))ij = ReLU(max
k∈N (i)

xkj). (3)

The local max-pooling operation maxk∈N (i) in (3) essen-
tially computes a local signature based on the graph struc-
ture. This signature can represent the (aggregated) topology
information of the local neighborhood. Through concatena-
tions of the graph-based max-pooling layers, the network
propagates the topology information into larger areas.

2.2. Folding-based Decoder Architecture

The proposed decoder uses two consecutive 3-layer per-
ceptrons to warp a fixed 2D grid into the shape of the in-
put point cloud. The input codeword is obtained from the
graph-based encoder. Before we feed the codeword into the
decoder, we replicate it m times and concatenate the m-by-
512 matrix with an m-by-2 matrix that contains the m grid
points on a square centered at the origin. The result of the
concatenation is a matrix of size m-by-514. The matrix is
processed row-wise by a 3-layer perceptron and the output
is a matrix of size m-by-3. After that, we again concatenate
the replicated codewords to the m-by-3 output and feed it
into a 3-layer perceptron. This output is the reconstructed
point cloud. The parameter n is set as per the input point
cloud size, e.g. n = 2048 in our experiments, which is the
same as [1].We choose m grid points in a square, so m is
chosen as 2025 which is the closest square number to 2048.
Definition 1. We call the concatenation of replicated code-
words to low-dimensional grid points, followed by a point-
wise MLP a folding operation.

The folding operation essentially forms a universal 2D-
to-3D mapping. To intuitively see why this folding ope-
ration is a universal 2D-to-3D mapping, denote the input
2D grid points by the matrix U. Each row of U is a two-
dimensional grid point. Denote the i-th row of U by ui and
the codeword output from the encoder by θ. Then, after
concatenation, the i-th row of the input matrix to the MLP
is [ui,θ]. Since the MLP is applied in parallel to each row
of the input matrix, the i-th row of the output matrix can
be written as f([ui,θ]), where f indicates the function con-
ducted by the MLP. This function can be viewed as a pa-
rameterized high-dimensional function with the codeword

θ being a parameter to guide the structure of the function
(the folding operation). Since MLPs are good at approxi-
mating non-linear functions, they can perform elaborate fol-
ding operations on the 2D grids. The high-dimensional co-
deword essentially stores the force that is needed to do the
folding, which makes the folding operation more diverse.

The proposed decoder has two successive folding ope-
rations. The first one folds the 2D grid to 3D space, and
the second one folds inside the 3D space. We show the
outputs after these two folding operations in Table 1. From
column C and column D in Table 1, we can see that each fol-
ding operation conducts a relatively simple operation, and
the composition of the two folding operations can produce
quite elaborate surface shapes. Although the first folding
seems simpler than the second one, together they lead to
substantial changes in the final output. More successive
folding operations can be applied if more elaborate surface
shapes are required. More variations of the decoder inclu-
ding changes of grid dimensions and the number of folding
operations can be found in Supplementary Section 8.

3. Theoretical Analysis
Theorem 3.1. The proposed encoder structure is permuta-
tion invariant, i.e., if the rows of the input point cloud matrix
are permuted, the codeword remains unchanged.

Proof. See Supplementary Section 6.

Then, we state a theorem about the universality of the
proposed folding-based decoder. It shows the existence of a
folding-based decoder such that by changing the codeword
θ, the output can be an arbitrary point cloud.
Theorem 3.2. There exists a 2-layer perceptron that can re-
construct arbitrary point clouds from a 2-dimensional grid
using the folding operation.

More specifically, suppose the input is a matrix U of size
m-by-2 such that each row of U is the 2D position of a
point on a 2-dimensional grid of size m. Then, there exists
an explicit construction of a 2-layer perceptron (with hand-
crafted coefficients) such that for any arbitrary 3D point
cloud matrix S of size m-by-3 (where each row of S is the
(x, y, z) position of a point in the point cloud), there ex-
ists a codeword vector θ such that if we concatenate θ to
each row of U and apply the 2-layer perceptron in parallel
to each row of the matrix after concatenation, we obtain the
point cloud matrix S from the output of the perceptron.

Proof in sketch. The full proof is in Supplementary Section
7. In the proof, we show the existence by explicitly con-
structing a 2-layer perceptron that satisfies the stated pro-
perties. The main idea is to show that in the worst case, the
points in the 2D grid functions as a selective logic gate to
map the 2D points in the 2D grid to the corresponding 3D
points in the point cloud.

Notice that the above proof is just an existence-based one
to show that our decoder structure is universal. It does not
indicate what happens in reality inside the FoldingNet auto-
encoder. The theoretically constructed decoder requires 3m
hidden units while in reality, the size of the decoder that we
use is much smaller. Moreover, the construction in Theo-
rem 3.2 leads to a lossless reconstruction of the point cloud,
while the FoldingNet auto-encoder only achieves lossy re-
construction. However, the above theorem can indeed gua-
rantee that the proposed decoding operation (i.e., concate-
nating the codewords to the 2-dimensional grid points and
processing each row using a perceptron) is legitimate be-
cause in the worst case there exists a folding-based neu-
ral network with hand-crafted edge weights that can recon-
struct arbitrary point clouds. In reality, a good parameteri-
zation of the proposed decoder with suitable training leads
to better performance.

4. Experimental Results
4.1. Visualization of the Training Process

It might not be straightforward to see how the decoder
folds the 2D grid into the surface of a 3D point cloud.
Therefore, we include an illustration of the training pro-
cess to show how a random 2D manifold obtained by the
initial random folding gradually turns into a meaningful
point cloud. The auto-encoder is a single FoldingNet trai-
ned using the ShapeNet part dataset [58] which contains 16
categories of the ShapeNet dataset. We trained the Folding-
Net using ADAM with an initial learning rate 0.0001, batch
size 1, momentum 0.9, momentum2 0.999, and weight de-
cay 1e−6, for 4 × 106 iterations (i.e., 330 epochs). The
reconstructed point clouds of several models after different
numbers of training iterations are reported in Table 2. From
the training process, we see that an initial random 2D mani-
fold can be warped/cut/squeezed/stretched/attached to form
the point cloud surface in various ways.

4.2. Point Cloud Interpolation

A common method to demonstrate that the codewords
have extracted the natural representations of the input is to
see if the auto-encoder enables meaningful novel interpola-
tions between two inputs in the dataset. In Table 3, we show
both inter-class and intra-class interpolations. Note that we
used a single AE for all shape categories for this task.

4.3. Illustration of Point Cloud Clustering

We also provide an illustration of clustering 3D point
clouds using the codewords obtained from FoldingNet. We
used the ShapeNet dataset to train the AE and obtain code-
words for the ModelNet10 dataset, which we will explain
in details in Section 4.4. Then, we used T-SNE [34] to
obtain an embedding of the high-dimensional codewords in

Input 5K iters 10K iters 20K iters 40K iters 100K iters 500K iters 4M iters

Table 2. Illustration of the training process. Random 2D manifolds gradually transform into the surfaces of point clouds.

Source Interpolations Target

Table 3. Illustration of point cloud interpolation. The first 3 rows: intra-class interpolations. The last 3 rows: inter-class interpolations.

R2. The parameter “perplexity” in T-SNE was set as 50.
We show the embedding result in Figure 2. From the fi-
gure, we see that most classes are easily separable except
{dresser (violet) v.s. nightstand (pink)} and {desk (red) v.s.
table (yellow)}. We have visually checked these two pairs
of classes, and found that many pairs cannot be easily dis-
tinguished even by a human. In Table 4, we list the most
common mistakes made in classifying the ModelNet10 da-
taset.

4.4. Transfer Classification Accuracy

In this section, we show the efficiency of FoldingNet in
representation learning and feature extraction from 3D point
clouds. In particular, we follow the routine from [1, 56] to
train a linear SVM classifier on the ModelNet dataset [57]
using the codewords (latent representations) obtained from
the auto-encoder, while training the auto-encoder from the
ShapeNet dataset [7]. The train/test splits of the Model-

Figure 2. The T-SNE clustering visualization of the codewords
obtained from FoldingNet auto-encoder.

Item 1 Item 2 Number of mistakes
dresser night stand 19
table desk 15
bed bath tub 3

night stand table 3

Table 4. The first four types of mistakes made in the classification
of ModelNet10 dataset. Their images are shown in the Supple-
mentary Section 11.

Net dataset in our experiment is the same as in [41, 56].
The point-cloud-format of the ShapeNet dataset is obtai-
ned by sampling random points on the triangles from the
mesh models in the dataset. It contains 57447 models from
55 categories of man-made objects. The ModelNet datasets
are the same one used in [41], and the MN40/MN10 data-
sets respectively contain 9843/3991 models for training and
2468/909 models for testing. Each point cloud in the se-
lected datasets contains 2048 points with (x,y,z) positions
normalized into a unit sphere as in [41].

The codewords obtained from the FoldingNet auto-
encoder is of length 512, which is the same as in [1] and
smaller than 7168 in [57]. When training the auto-encoder,
we used ADAM with an initial learning rate of 0.0001 and
batch size of 1. We trained the auto-encoder for 1.6 × 107

iterations (i.e., 278 epochs) on the ShapeNet dataset. Si-
milar to [1, 41], when training the AE, we applied random
rotations to each point cloud. Unlike the random rotations
in [1, 41], we applied the rotation that is one of the 24 axis-
aligned rotations in the right-handed system. When training
the linear SVM from the codewords obtained by the AE,
we did not apply random rotations. We report our results in
Table 5. The results of [8, 19, 26, 45] are according to the
report in [1, 56]. Since the training of the AE and the trai-
ning of the SVM are based on different datasets, the expe-
riment shows the transfer robustness of the FoldingNet. We
also include a figure (see Figure 3) to show how the recon-
struction loss decreases and the linear SVM classification

0 50 100 150 200 250
Training epochs

0.75

0.8

0.85

0.9

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

R
e
c
o
n
s
tr

u
c
ti
o
n
 l
o
s
s
 (

c
h
a
m

fe
r

d
is

ta
n
c
e
)

Chamfer distance v.s. classification accuracy on ModelNet40

Figure 3. Linear SVM classification accuracy v.s. reconstruction
loss on ModelNet40 dataset. The auto-encoder is trained using
data from the ShapeNet dataset.

Method MN40 MN10
SPH [26] 68.2% 79.8%
LFD [8] 75.5% 79.9%

T-L Network [19] 74.4% -
VConv-DAE [45] 75.5% 80.5%

3D-GAN [56] 83.3% 91.0%
Latent-GAN [1] 85.7% 95.3%

FoldingNet (ours) 88.4% 94.4%
Table 5. The comparison on classification accuracy between Fol-
dingNet and other unsupervised methods. All the methods train
a linear SVM on the high-dimensional representations obtained
from unsupervised training.

accuracy increases during training. From Table 5, we can
see that FoldingNet outperforms all other methods on the
MN40 dataset. On the MN10 dataset, the auto-encoder pro-
posed in [1] performs slightly better. However, the point-
cloud format of the ModelNet10 dataset used in [1] is not
public, so the point-cloud sampling protocol of ours may be
different from the one in [1]. So it is inconclusive whet-
her [1] is better than ours on MN10 dataset.

4.5. Semi-supervised Learning: What Happens
when Labeled Data are Rare

One of the main motivations to study unsupervised clas-
sification problems is that the number of labeled data is
usually much smaller compared to the number of unlabe-
led data. In Section 4.4, the experiment is very close to this
setting: the number of data in the ShapeNet dataset is large,
which is more than 5.74 × 104, while the number of data
in the labeled ModelNet dataset is small, which is around
1.23 × 104. Since obtaining human-labeled data is usually
hard, we would like to test how the performance of Folding-
Net degrades when the number of labeled data is small. We
still used the ShapeNet dataset to train the FoldingNet auto-
encoder. Then, we trained the linear SVM using only a% of
the overall training data in the ModelNet dataset, where a
can be 1, 2, 5, 7.5, 10, 15, and 20. The test data for the linear
SVM are always all the data in the test data partition of the

10-2 10-1 100

Available Labeled Data/Overall Labeled Data

0.5

0.6

0.7

0.8

0.9

1

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Classification Accuracy v.s. Number of Labeled Data

5% 7.5%

15%
10%

2%

1%

20%

100%

Figure 4. Linear SVM classification accuracy v.s. percentage of
available labeled training data in ModelNet40 dataset.

0 100 200 300 400

Training epochs

0.75

0.8

0.85

0.9

C
la

s
s
if
ic

a
ti
o
n

 A
c
c
u
ra

c
y

0.03

0.035

0.04

0.045

0.05
R

e
c
o
n
s
tr

u
c
ti
o
n
 l
o
s
s
 (

c
h

a
m

fe
r

d
is

ta
n

c
e

)Comparing FC decoder with Folding decoder

Folding decoder

FC decoder

Figure 5. Comparison between the fully-connected (FC) decoder
in [1] and the folding decoder on ModelNet40.

ModelNet dataset. If the codewords obtained by the auto-
encoder are already linearly separable, the required number
of labeled data to train a linear SVM should be small. To
demonstrate this intuitive statement, we report the experi-
ment results in Figure 4. We can see that even if only 1% of
the labeled training data are available (98 labeled training
data, which is about 1∼3 labeled data per class), the test
accuracy is still more than 55%. When 20% of the training
data are available, the test classification accuracy is already
close to 85%, higher than most methods listed in Table 5.

4.6. Effectiveness of the Folding-Based Decoder

In this section, we show that the folding-based deco-
der performs better in extracting features than the fully-
connected decoder proposed in [1] in terms of classification
accuracy and reconstruction loss. We used the ModelNet40
dataset to train two deep auto-encoders. The first auto-
encoder uses the folding-based decoder that has the same
structure as in Section 2.2, and the second auto-encoder
uses a fully-connected three-layer perceptron as proposed
in [1]. For the fully-connected decoder, the number of in-
puts and number of outputs in the three layers are respecti-
vely {512,1024}, {1024,2048}, {2048,2048×3}, which are

the same as in [1]. The output is a 2048-by-3 matrix that
contains the three-dimensional points in the output point
cloud. The encoders of the two auto-encoders are both the
graph-based encoder mentioned in Section 2.1. When trai-
ning the AE, we used ADAM with an initial learning rate
0.0001, a batch size 1, for 4× 106 iterations (i.e., 406 epo-
chs) on the ModelNet40 training dataset.

After training, we used the encoder to process all data
in the ModelNet40 dataset to obtain a codeword for each
point cloud. Then, similar to Section 4.4, we trained a li-
near SVM using these codewords and report the classifica-
tion accuracy to see if the codewords are already linearly
separable after encoding. The results are shown in Figure 5.
During the training process, the reconstruction loss (mea-
sured in Chamfer distance) keeps decreasing, which means
the reconstructed point cloud is more and more similar to
the input point cloud. At the same time, the classification
accuracy of the linear SVM trained on the codewords is in-
creasing, which means the codeword representation beco-
mes more linearly separable.

From the figure, we can see that the folding decoder al-
most always has a higher accuracy and lower reconstruction
loss. Compared to the fully-connected decoder that relies
on the unnatural “1D order” of the reconstructed 3D points
in 3D space, the proposed decoder relies on the folding of
an inherently 2D manifold corresponding to the point cloud
inside the 3D space. As we mentioned earlier, this folding
operation is more natural than the fully-connected decoder.
Moreover, the number of parameters in the fully-connected
decoder is 1.52 × 107, while the number of parameters in
our folding decoder is 1.05× 106, which is about 7% of the
fully-connected decoder.

One may wonder if uniformly random sampled 2D
points on a plane can perform better than the 2D grid points
in reconstructing point clouds. From our experiments, 2D
grid points indeed provide reduced reconstruction loss than
random points (Table 6 in Supplementary Section 8). No-
tice that our graph-based max-pooling encoder can be vie-
wed as a generalized version of the max-pooling neural net-
work PointNet [41]. The main difference is that the pool-
ing operation in our encoder is done in a local neighbor-
hood instead of globally (see Section 2.1). In Supplemen-
tary Section 10, we show that the graph-based encoder ar-
chitecture is better than an encoder architecture without the
graph-pooling layers mentioned in Section 2.1 in terms of
robustness towards random disturbance in point positions.

5. Acknowledgment
This work is supported by MERL. The authors would

like to thank the helpful comments and suggestions from
the anonymous reviewers, Teng-Yok Lee, Ziming Zhang,
Zhiding Yu, Siheng Chen, Yuichi Taguchi, Mike Jones and
Alan Sullivan.

References
[1] P. Achlioptas, O. Diamanti, I. Mitliagkas, and L. Guibas. Re-

presentation learning and adversarial generation of 3d point
clouds. arXiv preprint arXiv:1707.02392, 2017. 2, 3, 4, 6, 7,
8

[2] J. Atwood and D. Towsley. Diffusion-convolutional neural
networks. In Advances in Neural Information Processing
Systems, pages 1993–2001, 2016. 3

[3] A. Boulch, B. L. Saux, and N. Audebert. Unstructured
point cloud semantic labeling using deep segmentation net-
works. In Eurographics Workshop on 3D Object Retrieval,
volume 2, 2017. 3

[4] A. Brock, T. Lim, J. M. Ritchie, and N. Weston. Generative
and discriminative voxel modeling with convolutional neu-
ral networks. Advances in Neural Information Processing
Systems, Workshop on 3D learning, 2017. 3

[5] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Van-
dergheynst. Geometric deep learning: going beyond eucli-
dean data. IEEE Signal Processing Magazine, 34(4):18–42,
2017. 3

[6] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral net-
works and locally connected networks on graphs. Internati-
onal Conference on Learning Representations (ICLR), 2014.
3

[7] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Hu-
ang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su, et al.
Shapenet: An information-rich 3d model repository. CoRR,
2015. 2, 6

[8] D.-Y. Chen, X.-P. Tian, Y.-T. Shen, and M. Ouhyoung.
On visual similarity based 3D model retrieval. Computer
Graphics Forum, 22(3):223–232, 2003. 7

[9] X. Chen, K. Kundu, Y. Zhu, A. G. Berneshawi, H. Ma, S. Fi-
dler, and R. Urtasun. 3D object proposals for accurate object
class detection. In Advances in Neural Information Proces-
sing Systems, pages 424–432, 2015. 3

[10] S. Christoph Stein, M. Schoeler, J. Papon, and F. Worgotter.
Object partitioning using local convexity. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Re-
cognition, pages 304–311, 2014. 3

[11] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser,
and M. Nießner. Scannet: Richly-annotated 3D reconstructi-
ons of indoor scenes. Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017. 3

[12] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolu-
tional neural networks on graphs with fast localized spectral
filtering. In Advances in Neural Information Processing Sy-
stems, pages 3844–3852, 2016. 3

[13] D. Dohan, B. Matejek, and T. Funkhouser. Learning hierar-
chical semantic segmentations of LIDAR data. In Internati-
onal Conference on 3D Vision (3DV), pages 273–281. IEEE,
2015. 3

[14] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bomba-
rell, T. Hirzel, A. Aspuru-Guzik, and R. P. Adams. Convo-
lutional networks on graphs for learning molecular finger-
prints. In Advances in neural information processing sys-
tems, pages 2224–2232, 2015. 3

[15] M. Edwards and X. Xie. Graph based convolutional neural
network. CoRR, 2016. 3

[16] D. Ezuz, J. Solomon, V. G. Kim, and M. Ben-Chen. Gwcnn:
A metric alignment layer for deep shape analysis. Computer
Graphics Forum, 36(5):49–57, 2017. 3

[17] H. Fan, H. Su, and L. Guibas. A point set generation network
for 3D object reconstruction from a single image. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017. 3, 13

[18] A. Geiger and C. Wang. Joint 3D object and layout infe-
rence from a single RGB-D image. In German Conference
on Pattern Recognition, pages 183–195. Springer, 2015. 3

[19] R. Girdhar, D. F. Fouhey, M. Rodriguez, and A. Gupta. Le-
arning a predictable and generative vector representation for
objects. In European Conference on Computer Vision, pages
484–499. Springer, 2016. 7

[20] A. Golovinskiy, V. G. Kim, and T. Funkhouser. Shape-based
recognition of 3d point clouds in urban environments. In 12th
International Conference on Computer Vision, pages 2154–
2161. IEEE, 2009. 3

[21] T. Hackel, J. D. Wegner, and K. Schindler. Contour de-
tection in unstructured 3d point clouds. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Re-
cognition, pages 1610–1618, 2016. 3

[22] T. Hackel, J. D. Wegner, and K. Schindler. Fast semantic
segmentation of 3D point clouds with strongly varying den-
sity. ISPRS Annals of Photogrammetry, Remote Sensing &
Spatial Information Sciences, 3(3), 2016. 3

[23] Y. Hechtlinger, P. Chakravarti, and J. Qin. A generalization
of convolutional neural networks to graph-structured data.
arXiv preprint arXiv:1704.08165, 2017. 3

[24] M. Henaff, J. Bruna, and Y. LeCun. Deep convolutional net-
works on graph-structured data. arXiv:1506.05163, 2015. 3

[25] J. Huang and S. You. Point cloud labeling using 3D convolu-
tional neural network. In 23rd International Conference on
Pattern Recognition (ICPR), pages 2670–2675. IEEE, 2016.
3

[26] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz. Rotation
invariant spherical harmonic representation of 3d shape des-
criptors. In Symposium on geometry processing, volume 6,
pages 156–164, 2003. 7

[27] B.-S. Kim, P. Kohli, and S. Savarese. 3D scene understan-
ding by voxel-CRF. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pages 1425–1432,
2013. 3

[28] T. N. Kipf and M. Welling. Semi-supervised classification
with graph convolutional networks. International Confe-
rence on Learning Representations (ICLR), 2017. 3

[29] R. Klokov and V. Lempitsky. Escape from cells: Deep Kd-
networks for the recognition of 3D point cloud models. In-
ternational Conference on Computer Vision (ICCV), 2017.
3

[30] V. Kraevoy and A. Sheffer. Cross-parameterization and com-
patible remeshing of 3D models. ACM Transactions on
Graphics (TOG), 23(3):861–869, 2004. 3

[31] K. Lai, L. Bo, and D. Fox. Unsupervised feature learning
for 3D scene labeling. In IEEE International Conference on

Robotics and Automation (ICRA), pages 3050–3057. IEEE,
2014. 3

[32] R. Levie, F. Monti, X. Bresson, and M. M. Bronstein. Cay-
leynets: Graph convolutional neural networks with complex
rational spectral filters. arXiv:1705.07664, 2017. 3

[33] Y. Li, S. Pirk, H. Su, C. R. Qi, and L. J. Guibas. Fpnn: Field
probing neural networks for 3D data. In Advances in Neural
Information Processing Systems, pages 307–315, 2016. 3

[34] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne.
Journal of Machine Learning Research, 9(Nov):2579–2605,
2008. 5

[35] J. Masci, D. Boscaini, M. Bronstein, and P. Vandergheynst.
Geodesic convolutional neural networks on riemannian ma-
nifolds. In Proceedings of the IEEE International conference
on computer vision workshops, pages 37–45, 2015. 3

[36] D. Maturana and S. Scherer. 3D convolutional neural net-
works for landing zone detection from LIDAR. In IEEE In-
ternational Conference on Robotics and Automation (ICRA),
pages 3471–3478. IEEE, 2015. 3

[37] D. Maturana and S. Scherer. Voxnet: A 3D convolutional
neural network for real-time object recognition. In IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), pages 922–928. IEEE, 2015. 3

[38] F. Monti, D. Boscaini, J. Masci, E. Rodolà, J. Svoboda, and
M. M. Bronstein. Geometric deep learning on graphs and
manifolds using mixture model CNNs. Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2017. 3

[39] M. Niepert, M. Ahmed, and K. Kutzkov. Learning convoluti-
onal neural networks for graphs. In International Conference
on Machine Learning, pages 2014–2023, 2016. 3

[40] G. Pang and U. Neumann. Fast and robust multi-view 3D ob-
ject recognition in point clouds. In International Conference
on 3D Vision (3DV), pages 171–179. IEEE, 2015. 3

[41] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep
learning on point sets for 3D classification and segmenta-
tion. Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2017. 2, 3, 7, 8, 13

[42] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space.
Advances in Neural Information Processing Systems, 2017.
3

[43] S. Ravanbakhsh, J. Schneider, and B. Poczos. Deep learning
with sets and point clouds. International Conference on Le-
arning Representations (ICLR), workshop track, 2017. 3

[44] G. Riegler, A. O. Ulusoys, and A. Geiger. Octnet: Learning
deep 3D representations at high resolutions. Proceedings of
the IEEE Conference on Computer Vision and Pattern Re-
cognition, 2017. 3

[45] A. Sharma, O. Grau, and M. Fritz. Vconv-DAE: Deep vo-
lumetric shape learning without object labels. In Compu-
ter Vision-ECCV 2016 Workshops, pages 236–250. Springer,
2016. 7

[46] Y. Shen, C. Feng, Y. Yang, and D. Tian. Mining point cloud
local structures by kernel correlation and graph pooling. Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018. 4

[47] M. Simonovsky and N. Komodakis. Dynamic edge-
conditioned filters in convolutional neural networks on
graphs. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017. 3

[48] R. Socher, B. Huval, B. Bath, C. D. Manning, and A. Y. Ng.
Convolutional-recursive deep learning for 3D object classifi-
cation. In Advances in Neural Information Processing Sys-
tems, pages 656–664, 2012. 3

[49] S. Song and J. Xiao. Deep sliding shapes for amodal 3D
object detection in RGB-D images. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 808–816, 2016. 3

[50] J. Strom, A. Richardson, and E. Olson. Graph-based seg-
mentation for colored 3d laser point clouds. In IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), pages 2131–2136. IEEE, 2010. 3

[51] D. Thanou, P. A. Chou, and P. Frossard. Graph-based com-
pression of dynamic 3d point cloud sequences. IEEE Tran-
sactions on Image Processing, 25(4):1765–1778, 2016. 3

[52] J.-C. Vialatte, V. Gripon, and G. Mercier. Generalizing the
convolution operator to extend cnns to irregular domains.
arXiv preprint arXiv:1606.01166, 2016. 3

[53] E. Wahl, U. Hillenbrand, and G. Hirzinger. Surflet-pair-
relation histograms: a statistical 3D-shape representation for
rapid classification. In Fourth International Conference on
3-D Digital Imaging and Modeling, pages 474–481. IEEE,
2003. 3

[54] P. Wang, Y. Gan, P. Shui, F. Yu, Y. Zhang, S. Chen, and
Z. Sun. 3d shape segmentation via shape fully convolutional
networks. Computers & Graphics, 2017. 3

[55] Y. Wang, R. Ji, and S.-F. Chang. Label propagation from
ImageNet to 3D point clouds. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 3135–3142, 2013. 3

[56] J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenenbaum.
Learning a probabilistic latent space of object shapes via 3D
generative-adversarial modeling. In Advances in Neural In-
formation Processing Systems, pages 82–90, 2016. 2, 3, 6,
7

[57] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and
J. Xiao. 3D Shapenets: A deep representation for volumetric
shapes. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1912–1920, 2015. 1,
2, 3, 6, 7

[58] L. Yi, V. G. Kim, D. Ceylan, I. Shen, M. Yan, H. Su, A. Lu,
Q. Huang, A. Sheffer, L. Guibas, et al. A scalable active fra-
mework for region annotation in 3d shape collections. ACM
Transactions on Graphics (TOG), 35(6):210, 2016. 3, 5

[59] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. Salak-
hutdinov, and A. Smola. Deep sets. Advances in Neural
Information Processing Systems, 2017. 3

[60] Q. Zhang, X. Song, X. Shao, H. Zhao, and R. Shibasaki.
Unsupervised 3D category discovery and point labeling from
a large urban environment. In IEEE International Con-
ference on Robotics and Automation (ICRA), pages 2685–
2692. IEEE, 2013. 3

