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Abstract

Defocus blur detection (DBD) is the separation of in-
focus and out-of-focus regions in an image. This process
has been paid considerable attention because of its remark-
able potential applications. Accurate differentiation of ho-
mogeneous regions and detection of low-contrast focal re-
gions, as well as suppression of background clutter, are
challenges associated with DBD. To address these issues,
we propose a multi-stream bottom-top-bottom fully convo-
lutional network (BTBNet), which is the first attempt to de-
velop an end-to-end deep network for DBD. First, we de-
velop a fully convolutional BTBNet to integrate low-level
cues and high-level semantic information. Then, consid-
ering that the degree of defocus blur is sensitive to scales,
we propose multi-stream BTBNets that handle input images
with different scales to improve the performance of DBD.
Finally, we design a fusion and recurrent reconstruction
network to recurrently refine the preceding blur detection
maps. To promote further study and evaluation of the DBD
models, we construct a new database of 500 challenging im-
ages and their pixel-wise defocus blur annotations. Experi-
mental results on the existing and our new datasets demon-
strate that the proposed method achieves significantly better
performance than other state-of-the-art algorithms.

1. Introduction
Defocus blur is caused by a wide aperture that prevents

light rays converging when the scene point is not at the
camera’s focus distance. This effect is extremely common
in images captured using optical imaging systems. Defo-
cus blur detection (DBD) is performed to separate blurred
and non-blurred regions for a given image. Accurate de-
tection of blurred or non-blurred regions is important and
practical in many applications, including salient object de-
tection [10], blur region segmentation [12], defocus magni-
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Figure 1. A challenging example for defocus blur detection (DB-
D). (a)-(f): source image, magnified rectangular regions (MRRs),
ground truth (GT), DBDF [20], DHCF [17], and our DBD map.

fication [2], image restoration [34], to name a few.
Based on the adopted image features, the DBD meth-

ods can be generally divided into two categories: methods
based on hand-crafted features; and methods based on deep
learning features. The former one exploits low-level defo-
cus blur cues, such as gradient and frequency. Gradient-
based methods [18, 16, 36, 38, 23, 15] are motivated by the
fact that blur directly suppresses image gradients. Thus, the
gradient distribution in a clear region tends to include more
heavy-tail components. From the perspective of frequen-
cy [17, 27, 20, 35, 28, 37], blur attenuates high frequency
components. These methods are often effective in simple
DBD scenarios, however, they cannot well handle the fol-
lowing challenging cases.

First, low-level defocus blur cues are difficult to use in
differentiating homogeneous regions where the in-focus s-
mooth regions and blurred smooth regions do not contain
structural information (e.g., edges and textures). Examples
are shown in the orange rectangular regions of Figure 1
(a) and the enlarged regions are illustrated in Figure 1 (b).
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Figure 2. An example of multi-scale blur perception. This figure
illustrates that the blur confidence is highly related to scales. A
clear image patch (e.g., scale 1) can be regarded as blurry depend-
ing on the size of the patch (e.g., scale 3), and vice versa.

Methods based on hand-crafted features cannot effectively
capture semantic contexts hidden in an in-focus smooth re-
gion, causing erroneous detection in the homogeneous focal
region (shown in the green bounding box in Figure 1 (d)).

Second, these cues can hardly detect low-contrast focal
regions and suppress the background clutter. This limita-
tion is due to the local measurement of hand-crafted features
without considering global semantic information.

Deep convolutional neural networks (CNNs) have suc-
cessfully overcome the limitations of traditional hand-
crafted features in various computer vision tasks, such as
object detection [11], image classification [29], image de-
noising [32], image super-resolution [6], saliency detec-
tion [13, 33] and object tracking [14, 24]. In [17], Park
et al. propose a CNN-based patch-level method to solve
the DBD problem. However, this method cannot accu-
rately distinguish low-contrast focal regions and suppress
the background clutter (shown in the red bounding box in
Figure 1 (e)) since multiple stages of spatial pooling and
convolutional layers progressively downsample the initial
image patch, thereby resulting in losing much of the fine
image structure. In this work, we develop a novel pixel-
level multi-stream bottom-top-bottom fully convolutional
network for DBD. Our pixel-level method needs to be run
once on the input image to produce a complete DBD map
with the same pixel resolution as the input image, providing
a basic condition to achieve accurate DBD.

Accurate separation of in-focus and out-of-focus image
regions requires the simultaneous extraction and combi-
nation of high-level semantic information with low-level
image details. High-level semantic information should be
transformed to bottom layers to assist in the better location
of the defocus region. Meanwhile, bottom layers can learn
rich low-level features that help refine the sparse and irreg-
ular detection maps from top layers. Therefore, we propose
a bottom-top-bottom network (BTBNet) by facilitating the
flow back of the network information stream. BTBNet ef-
fectively merges high-level semantic knowledge encoded in

the bottom-top stream with the spatially rich information of
low-level features encoded in the top-bottom stream step by
step. Based on the observation that the image scale great-
ly influences the clarity of an image (Figure 2), we use a
multi-stream BTBNet to obtain blur detection maps from
different scales. Then, we develop a fusion and recursive
reconstruction network (FRRNet) to recursively refine the
preceding blur detection maps. The proposed method can
accurately distinguish homogeneous regions and suppress
the background clutter (Figure 1 (f)).

The major contributions of this paper can be summarized
as follows:

• A new multi-stream bottom-top-bottom fully convolu-
tional network is proposed to infer a pixel-level defo-
cus blur detection map directly from the raw input im-
age. To our knowledge, this work is the first attempt to
exploit an end-to-end deep network in dealing with the
DBD problem. The proposed model integrates multi-
scale and multi-level features to accurately differenti-
ate homogeneous regions and detect low-contrast focal
regions as well as suppress the background clutter.

• A BTBNet is proposed to effectively merge high-
level semantic knowledge encoded in the bottom-top
stream with low-level features encoded in the top-
bottom stream step by step. Moreover, a FRRNet is
designed to gradually refine the multi-scale blur detec-
tion maps and successfully output a final DBD map.

• A new challenging dataset is constructed for further s-
tudy and evaluation of DBD. The proposed method has
been successfully validated using both new and exist-
ing datasets. We will make our dataset publicly avail-
able, which promotes further research and evaluation.

2. Related Work
DBD has been widely investigated in computer vision.

Previous related works on DBD can be roughly summa-
rized into two categories based on adopted features, namely,
hand-crafted features and deep learning features for DBD.

2.1. Hand-crafted Features for DBD

DBD methods with hand-crafted features usually utilize
gradient and frequency features. More strong gradients are
usually found in a clear image patch than in a blurry one.
The ratio of strong gradient components in an image patch
can be used to measure the sharpness of the image [7, 25].
For instance, Pang et al. [16] develop a kernel-specific fea-
ture for blur detection, which involves the multiplication of
the variance of filtered kernels and that of filtered patch gra-
dients. Su et al. [23] design a blur metric based on singu-
lar value distributions and combine the gradient distribution
pattern of the alpha channel to detect the blurred region.



Frequency-based methods exploit the fact that an in-
focus image has more high-frequency components than an
out-of-focus image, thus, the ratio of high-frequency com-
ponents in an image patch can measure the sharpness of this
image. Golestaneh et al. [8] propose a spatially-varying
blur detection method based on a high-frequency multi-
scale fusion and sort transform of gradient magnitudes to
determine the level of blur at each location. Tang et al. [27]
present a blur metric based on the log averaged spectrum
residual to obtain a coarse blur map. Shi et al. [20] utilize
the Fourier domain descriptors with other local distributions
and filters as image features to conduct blur detection.

Several other hand-crafted feature-based methods are al-
so available [31, 21, 4, 26]. Yi et al. [31] propose a sharp-
ness metric based on the distribution of uniform local bi-
nary patterns in blurred and non-blurred image regions for
defocus blur segmentation. Shi et al. [21] exploit sparse
representation and image decomposition to directly estab-
lish correspondence between sparse edge representation and
blur strength estimation. Couzinie-Devy et al. [4] present
a multilabel energy minimization framework to model the
local blur estimators and their smoothness. Although the
hand-crafted methods have been demonstrated to be effec-
tive in some cases, these methods are not robust enough in
complex scenes. Therefore, it is necessary to consider high-
level image information and context for DBD.

2.2. Deep Learning Features for DBD

Deep CNNs have recently set new standard on a number
of visual recognition tasks. However, a limited number of
deep learning methods can handle the DBD problem. Park
et al. [17] combine hand-crafted and deep features to obtain
a defocus map of a scene, in which a CNN-based model is
used to extract high-dimensional deep features from image
patches. Then, all features are concatenated to construct a
defocus feature vector and fed into a fully connected neural
network classifier to determine the degree of defocus. This
method measures defocus blur at the patch level where C-
NNs are run thousands of times to obtain the blur score of
every patch. Thus this process is very time consuming.

In this work, we utilize a fully convolutional network for
dense DBD. Low-level cues and high-level semantic infor-
mation are integrated at the pixel level. In addition, we con-
sider the important influence of scales on defocus blur (Fig-
ure 2) to actualize the multi-stream BTBNet for obtaining
the multi-scale DBD map. Moreover, we design an FRRNet
to gradually refine the preceding blur detection maps. The
experimental results demonstrate that the proposed method
performs better than the other state-of-the-art approaches.
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Figure 3. The pipeline of our DBD algorithm. Each colorful box
is considered as a feature block. The arrows between blocks indi-
cate the information stream. Given an input image, its multi-scale
versions generated by the resize operation are first encoded in the
bottom-top stream by a modified VGG16 model [22], respective-
ly. Then, the integration of bottom-top and top-bottom streams
is performed by feedback and forward information combination
modules (FFICs). After that, the resize operation is employed to
ensure generated DBD maps with the same resolution as the origi-
nal input image. Finally, FRRNet consisting of the fusion network
(FNet) and recursion reconstruction network (RRNet) is used to
refine the predicted DBD maps, generating the final DBD map.

3. Multi-Stream Bottom-Top-Bottom Fully
Convolutional Network

In this work, we exploit an end-to-end fully convolution-
al network to extract and integrate multi-level multi-scale
features for DBD. The entire architecture of our method is
illustrated in Figure 3. The construction of the bottom-top-
bottom fully convolutional network (BTBNet) is presented
in Section 3.1. Then, the fusion and recurrent reconstruction
network (FFRNet) is described in Section 3.2. The process
of model training is introduced in Section 3.3.

3.1. BTBNet

We aim to design an end-to-end BTBNet that can be
viewed as a regression network mapping an input image to a
pixel-level blur detection map. Several concepts have been
considered to conceive such architecture. First, the network
should be deep enough to produce a big receptive field to
detect defocus blur at different levels. Second, the network
requires low-level cues as well as high-level semantic in-
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Figure 4. The architecture of BTBNet. Information of an input im-
age In passes from the bottom layer to the top layer with a series
of feature blocks, thereby resulting in high-level semantic infor-
mation. Then, high-level semantic information passes from the top
layers down and is integrated with high-resolution low-level cues
by the FFIC module, ultimately producing the DBD map Mn. ⊕
stands for the element-wise addition.

formation to improve the accuracy of DBD. Finally, fine-
tuning an existing deep model is greatly preferred, as the
labeled defocus blur images are not sufficient to train such
a deep network from scratch.

Basic BTBNet. We choose the VGG16 model [22] as
our pre-trained network and modify it to meet our require-
ments. VGG16 has delivered remarkable performance in
many recognition tasks. However, it has obvious limita-
tions in dealing with DBD. Multiple stages of spatial pool-
ing progressively downsample the initial image, resulting
in considerable loss of the fine image structure. This pro-
cess is beneficial for the classification task which does not
need spatial information but presents challenges for dense-
ly separating in-focus and out-of-focus image regions. To
transform the original VGG16 model into a fully convolu-
tional network, which serves as our bottom-top backbone
network, we delete the top three fully connected layers of
VGG16. We also delete the five pooling layers to increase
the density of the bottom-top DBD map. Thus, the out-
put resolution of the transformed VGG network is the same
with the original input resolution, as shown in Figure 4.

To augment the backbone network with a top-bottom re-
finement stream, we design a step-wise feedback process
(Figure 4). Between each block of the bottom-top back-
bone network, the feedback information is combined with
forward information step by step. The integration of feed-
back and forward information is achieved by element-wise
addition. Before the information integration in each step,
we attach a extra convolutional (Conv) with rectified lin-
ear unite (ReLU) layer on both bottom-top and top-bottom
streams. The extra layers have 3 × 3 kernels and 256, 128,
64, and 1 channels, respectively. The final output is a DBD
map with the same resolution as the original input image.

Multi-Stream BTBNet. Considering that defocus blur is
sensitive to scales, we replicate the designed BTBNet re-
peatedly, with one replicate for one scale. Specifically, an
input image is resized to multiple different scales. Each s-
cale In (n = 1, 2, ..., N ) of the input image passes through
one of these replicated BTBNets, and a DBD map Mn in
the same resolution of scale In is produced. Then, these
DBD maps are resized to the same resolution as the raw
input image using bilinear interpolation (see Figure 3).

3.2. FRRNet

Our FRRNet consists of two sub-networks, namely, fu-
sion network (FNet) and recurrent reconstruction network
(RRNet). FNet merges the DBD maps generated by the
multi-stream BTBNet, yielding a DBD map Mf with im-
proved spatial coherence. Then, RRNet gradually recur-
sively refines the DBD map Mf to obtain a final DBD map
Mfinal. The detailed network structures of FNet and RR-
Net are shown in Figure 5 (a) and Figure 5 (b), respectively.
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Figure 5. The architecture of FNet and RRNet models.



FNet. For fusing multi-stream probability maps, Chen
et al. [3] propose an effective soft weight-based model,

where the final output M̂f is produced by the weighted sum
of probability maps across all the scales,

M̂f =

N∑
n=1

wn ·Mn, (1)

where wn denotes the weight of the DBD result Mn gener-
ated from the n-stream BTBNet, and N is the total number
of DBD maps. This model only assigns linear weights to the
multi-stream DBD maps. Thus, it cannot effectively recon-
struct the incomplete foreground information and suppress
the background clutter, as shown in Figure 6 (c).

In this work, we propose a simple but effective FNet.
As shown in Figure 5 (a), in addition to multi-stream DBD
maps, we exploit dense spatial information of source image
to improve spatial coherence of the fused map. The multi-
stream DBD maps (M1, M2,..., MN ) and the source image
I1 are first concatenated into a single (N+3)-channel feature
map F0. Then, this map is fed to a series of Conv and ReLU
layers. The Conv layers have 3× 3 kernels and 64, 128, 64,
and 1 channels, respectively. The final output after Conv is a

fused DBD map M̂f with the same resolution as the source
image. The formula of our FNet can be written as follows:

F0 = cat(M1,M2, ...,MN , I1), (2)

Ft = max(0,Wt ∗ Ft−1 + bt), (3)

M̂f = WT ∗ FT−1 + bT , (4)

where Wt and bt denote the convolution filter and bias of t-
th (t = 1, 2, ..., T ) Conv layer, respectively. Ft is the multi-
channel feature generated from the t-th Conv layer. The
FNet nonlinearly integrates the multi-stream DBD maps
and exploits the dense spatial information of the source im-
age. Figure 6 (d) demonstrates that the proposed FNet can
generate smoother results with the pixel-wise accuracy.

RRNet. Although FNet improves the spatial coherence of
the fused DBD map, noise inevitably occurs when the in-
put image has low-contrast foreground or cluttered back-
ground, shown in Figure 7 (c). Thus, we introduce a re-
current reconstruction network (RRNet) for the subsequent
refinement. Figure 5 (b) illustrates the network structure of
RRNet, which has the same architecture as FNet but with d-
ifferent parameters. In each iteration, we feed forward both
the source image and the input DBD map through the RR-
Net to obtain the refined DBD map, which in turn serves as
the input DBD map in the next iteration. The input DBD

map is initialized as the preceding fused DBD map M̂f .

(a) Source (b) GT (c) SWNet (d) FNet

Figure 6. Comparison of multi-stream DBD map fusion results.
(a)-(d): source image, ground truth (GT), soft weight-based net-
work (SWNet) [3], and our FNet method.

(a) Source (b) GT (c) w/o RRNet (d) with RRNet

Figure 7. Comparison of DBD results generated from the proposed
method without (w/o) and with RRNet.

Let R denote the function modeled by a recursion, the
final DBD map Mfinal can be obtained as follows:

Mfinal = (R •R • · · ·•)R(M̂f ;Wr, br), (5)

where the operator • denotes a function composition. Wr

and br denote the convolution filter and bias of RRNet. The
proposed RRNet can refine the DBD map by correcting its
previous mistakes until the final DBD map in the last itera-
tion is produced. In practice, it is enough to use three recur-
rent steps for achieving satisfactory performance. Figure 7
(d) illustrates that DBD maps generated from our method
with RRNet can reconstruct lost information in the fore-
ground and suppress unexpected noise in the background.

3.3. Model Training

The network parameters are determined using training
images annotated at the pixel level. The multi-stream BTB-
Net and FRRNet are jointly trained, and their parameter-
s are optimized using standard stochastic gradient descent.
We first initialize the bottom-top backbone network with a
VGG16 network pretrained on ImageNet [5] and the top-
bottom stream and FRRNet with random values. After that,
we jointly fine-tune the multi-stream BTBNet and FRRNet.



Given the training set {T = (Xd,Gd)}Dd=1 containing
both training image Xd and its pixel-wise DBD annotation
Gd, where D is the number of training patches. The pixel-
wise loss function between the network output Md and the
ground truth Gd is defined as follows:

L(Θ) = −
∑
T

∑
i,j

{Gd
i,j logp(Md

i,j | Θ)

+(1−Gd
i,j)log(1− p(Md

i,j | Θ))},
(6)

where p(Md
i,j | ·) = (1 + e−Md

i,j )−1, Md
i,j and Gd

i,j indi-
cate the d-th network output and ground truth of pixel (i, j),
respectively. Θ is the parameter set of all network layers.

To boost the performance of our model, we apply an aux-
iliary loss at the output of each stream BTBNet. Both main
and auxiliary loss functions facilitate optimizing the learn-
ing process. Thus, our final loss function combining main
and auxiliary losses can be written as follows:

Lfinal(Θ) = Lmain(Θ) +

N∑
n=1

αnL
n
aux(Θ), (7)

where N is the number of streams for BTBNet, and αn is a
trade-off parameter that is taken as 1 to balance all losses.

4. Experiments
4.1. Experimental Setup

Datasets. To the best of our knowledge, only one public
blurred image dataset [20] (Shi’s dataset) is available. This
dataset consists of 704 partially defocus blurred images and
manually annotated ground truths to study and evaluate DB-
D models. We divide the Shi’s dataset into two parts, that is,
604 for training and the remaining 100 images for testing.
Then, we perform data augmentation similar to that in [30].
Specifically, the training set is enlarged to 9664 images by
horizontal flipping at each orientation and rotating to 8 dif-
ferent orientations.

In addition, to facilitate the study and evaluation of defo-
cus blur detection (DBD) methods, we construct a new DB-
D dataset consisting of 500 images with pixel-wise annota-
tions. We note that the proposed dataset is very challenging
since numerous images contain homogeneous regions, low-
contrast focal regions and background clutter. We will make
our dataset publicly available for further DBD researches.

Implementation. Our network has been implemented on
the basis of Caffe [9]. The training process is conducted by
optimizing the classification objective using the mini-batch
gradient descent method with a batch size of 1.

First, we initialize the bottom-top backbone network
with the VGG16 model trained on ImageNet [22], and the
top-bottom stream and FRRNet with random values.

Second, we fine-tune our model by pre-training it on a
simulated image dataset. Specifically, we collect 2000 clear
images from the Berkeley segmentation dataset [1] and un-
compressed colour image dataset [19]. We adopt a Gaussian
filter for each image to smooth half of the image as the out-
of-focus blur region, and the remaining half as the in-focus
region. Then, four blurred versions can be obtained by s-
moothing regions of different positions (up, down, left and
right) for each image. For each blurred version, we use a
Gaussian filter with a standard deviation of 2 and a window
of 7 × 7 to repeatedly blur the image five times. There-
fore, for each image, we can obtain 20 simulated images
(four blurred versions and five different blurring levels for
each version). Thus, with the data augmentation above,the
adopted pre-trained image dataset contains 640K images.

Finally, we fine-tune our model on the Shi’s training
dataset. We set the initial learning rate to 0.0001 for the
backbone network and 0.001 for newly added layers. The
momentum parameter is 0.9 and the weight decay is 0.0005.

The proposed model is trained on a workstation with an
Intel 3.4GHz CPU with 32G memory and a GTX1080Ti
GPU with 11G memory, and training is completed after ap-
proximately 5 days. Approximately 25s is needed to gener-
ate the DBD map for a testing image with 320×320 pixels.

4.2. Evaluation criteria

First, we use the precision-recall (PR) curve [8, 17, 20] to
evaluate different methods. All DBD maps are binarized at
every integer threshold in the range of [0, 255]. Compared
with the binary ground-truth masks, pairs of precision and
recall values are computed to report all PR curves.

Second, we compute the average precision, recall and F-
measure values, where every DBD map is binarized with an
adaptive threshold. The threshold is determined to be 1.5
times the mean value of the DBD map. The F-measure is
an overall performance measurement calculated as follow:

F =
(1 + ζ2) · Precision ·Recall
ζ2 · Precision+Recall

, (8)

where ζ2 is 0.3. A larger F value means a better result.
Third, we report the mean absolute error (MAE) which is

calculated as the average pixel-wise absolute difference be-
tween the binary ground truth G and the DBD map Mfinal,

MAE =
1

W ×H

W∑
x=1

H∑
y=1

|G(x, y)−Mfinal(x, y)| , (9)

where x, y stand for pixel coordinates. W andH denote the
width and height of the DBD map Mfinal, respectively. A
smaller MAE value usually means a more accurate result.

4.3. Comparison with state-of-the-art methods

We compare our method with six state-of-the-art meth-
ods, including discriminative blur detection features (DBD-
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Figure 8. Visual comparison of DBD maps generated from the proposed method and other state-of-the-art ones. The ground truth is shown
in the last column. The first four sources are selected from the Shi’s dataset. The last four sources are chosen from our dataset. It can be
seen from that our method consistently produces DBD maps closest to the ground truth.
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Figure 9. Comparison of precision-recall curves of seven state-of-
the-art methods using (a) Shi’s dataset and (b) our dataset. The
proposed method outperforms other methods on both datasets.

F) [20], spectral and spatial approach (SS) [27], deep and
hand-crafted features (DHCF) [17], kernel-specific feature
vector (KSFV) [16], local binary patterns (LBP) [31] and
high-frequency multi-scale fusion and sort transform of gra-
dient magnitudes (HiFST) [8]. We use the original imple-
mentation of these methods with recommended parameters.
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Figure 10. Comparison of precision, recall and F-measure us-
ing (a) Shi’s dataset and (b) our dataset. The proposed method
achieves the highest F-measure on both datasets.

Qualitative Evaluation. A visual comparison is provided
in Figure 8. The proposed method performs well in various
challenging cases (e.g., homogeneous regions, low-contrast
in-focus regions, and cluttered background), yielding DBD
maps closest to the ground truth maps.

Quantitative Evaluation. PR curves and F-measure val-
ues are reported in Figures 9 and 10, from which we can



Table 1. Quantitative comparison of F-measure and MAE scores. The best two results are shown in red and blue colors, respectively.

Dataset Metric DBDF [20] SS [27] DHCF [17] KSFV [16] LBP [31] HiFST [8] Ours

Shi’s dataset
F-measure 0.675 0.734 0.477 0.480 0.787 0.772 0.867

MAE 0.290 0.229 0.372 0.357 0.136 0.219 0.107

Our dataset
F-measure 0.558 0.695 0.468 0.560 0.719 0.687 0.761

MAE 0.381 0.291 0.410 0.275 0.193 0.248 0.194

Table 2. Ablation analysis using F-measure and MAE values. The
best two results are shown in red and blue colors, respectively.
‘Ours’ stands for the final model, i.e., BTBNet(3S)+FNet+RRNet.

Method Shi’s dataset Our dataset
F-measure MAE F-measure MAE

VGGNet(FC) 0.797 0.222 0.643 0.273
BTBNet(1S) 0.853 0.144 0.730 0.237

BTBNet(2S)+FNet 0.853 0.130 0.731 0.233
BTBNet(3S)+FNet 0.854 0.130 0.732 0.230
BTBNet(4S)+FNet 0.853 0.135 0.731 0.231

Ours 0.867 0.107 0.761 0.194

see that the proposed method achieves the top performance
over both datasets and all evaluation metrics. In addition,
we compare our method with other competing ones in terms
of F-measure and MAE values, and the results are shown in
Table 1. Especially for the F-measure metric, our method
improves the second best one (LBP [31]) by 10.2% and
5.8% over the Shi’s dataset and our dataset, respectively.

4.4. Ablation Studies

Effectiveness of BTBNet. To demonstrate the superiori-
ty of BTBNet, we train a VGG16-based fully convolution-
al network denoted as VGGNet(FC) for comparison. To
be specific, we remove the top three fully connected lay-
ers of VGG16 and five pooling layers to make the output
resolution be same as the input resolution. VGGNet(FC)
is trained using the same setting as BTBNet. We compare
the implemented VGGNet(FC) with one-stream BTBNet,
named as BTBNet(1S). The quantitative results are report-
ed in the first two rows in Table 2. Using F-measure val-
ues, our BTBNet(1S) improves the VGGNet(FC) method
by 7.0% and 13.5% over the Shi’s dataset and our dataset,
respectively. Moreover, our BTBNet(1S) lowers the MAE
scores significantly on both datasets.

Effectiveness of multi-stream BTBNet. As described in
Section 3.1, a multi-stream BTBNet is utilized to detect de-
focus blur from multi-scale input images. Here, we train
four models for comparison to analyze the relative contri-
butions of the different BTBNet streams. These model-
s are as follows: one-stream BTBNet with input image s-
cale s1 = {1}, BTBNet(1S); two-stream BTBNet with in-
put image scale s2 = {1, 0.8}, BTBNet(2S); three-stream
BTBNet with input image scale s3 = {1, 0.8, 0.6}, BTB-

Net(3S); and four-stream BTBNet with input image scale
s4 = {1, 0.8, 0.6, 0.4}. A detailed comparison of their per-
formance using F-measure and MAE values are reported in
Table 2. It can be seen from this table that the multi-stream
mechanism effectively improves the detection performance
and three-stream BTBNet achieves the best performance.

Effectiveness of RRNet. By comparing the last two rows
in Table 2, we can see that our model with RRNet performs
much better than that without RRNet on both datasets. The
underlying reason is that RRNet is able to further suppress
foreground noise and background clutter (see Section 3.2).

5. Conclusions
In this paper, we propose a novel end-to-end defocus blur

detection (DBD) method based on multi-stream bottom-
top-bottom (BTB) fully convolutional network. First, BTB-
Net effectively combines high-level semantics with low-
level image features to produce high-resolution DBD map-
s. Second, the multi-stream mechanism allows our network
to take advantage of different scale information. In addi-
tion, RRNet can further recursively refine the DBD map to
achieve more accurate results. The extensive experimen-
tal results illustrate that the proposed algorithm achieves
significantly better performance than other state-of-the-art
approaches, especially in the presence of homogeneous re-
gions, low-contrast focal regions and background clutter. In
addition, we construct a new dataset including 500 chal-
lenging images associated with their pixel-wise blur detec-
tion annotations. We believe that this dataset will promote
further research and evaluation of DBD models.
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