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Abstract

Most image captioning models focus on one-line (sin-
gle image) captioning, where the correlations like relevance
and diversity among group images (e.g., within the same al-
bum or event) are simply neglected, resulting in less accu-
rate and diverse captions. Recent works mainly consider
imposing the diversity during the online inference only,
which neglect the correlation among visual structures in of-
fline training. In this paper, we propose a novel group-based
image captioning scheme (termed GroupCap), which jointly
models the structured relevance and diversity among group
images towards an optimal collaborative captioning. In
particular, we first propose a visual tree parser (VP-Tree) to
construct the structured semantic correlations within indi-
vidual images. Then, the relevance and diversity among im-
ages are well modeled by exploiting the correlations among
their tree structures. Finally, such correlations are mod-
eled as constraints and sent into the LSTM-based caption-
ing generator. We adopt an end-to-end formulation to train
the visual tree parser, the structured relevance and diversity
constraints, as well as the LSTM based captioning model
jointly. To facilitate quantitative evaluation, we further re-
lease two group captioning datasets derived from the MS-
COCO benchmark, serving as the first of their kind. Quanti-
tative results show that the proposed GroupCap model out-
performs the state-of-the-art and alternative approaches.

1. Introduction

Automatic description of an image, a.k.a. image cap-
tioning, has recently attracted extensive research attention
[1, 2, 3, 4, 5]. Typically, these methods train the image cap-
tioning models under a one-line paradigm, without regard-
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Ground Truth: A group of school children gathered around  a birthday cake.

A group of people standing around  a pizza.

Generated caption: A group of children standing around  a birthday cake.
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Figure 1. In one-line captioning, existing methods tend to generate less
accurate and less discriminative captions compared to the ground truth (the
top caption is generated by the state-of-the-art [5]). We focus on captur-
ing the relevance and diversity among a group of images to reinforce and
diversify the image captions (the bottom one, which is generated by the
proposed GroupCap).

ing the correlations (i.e., relevance and diversity) among
group images. However, in many real-world applications
like captioning photo albums or events, the images are not
suitable to be captioned alone. In such situations, it would
benefit the generated results by capturing the relevance and
diversity among these group images as shown in Fig.1.

As far as we know, there is no existing work in the liter-
ature that addresses the task of group-based image caption-
ing. On the one hand, there is no related work addressing
the issue of modeling relevance. To this end, one should
the model image relevance by maximizing the visual sim-
ilarity of the inner-group images comparing to that of the
inter-group images. On the other hand, there are two works
[6, 7] that refer to modeling the image diversity, both of
which however only focus on online inference. Sadovnik
et al. [6] proposed a context-aware scheme to capture the
particular items (entities, relations, and etc.) of the tar-
get image to diversify its description from the other inner-
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Figure 2. The examples of VP-Trees and structured relevance/diversity
matrices among an image triplet. The second row presents the subtrees
of the VP-Trees, where the value in each node denotes the probability of
the corresponding entity/relation (“ PREP” means the preposition follow-
ing verb). The third row presents the relevance and diversity sub-matrices
(R and D, where t, p, and n denote the target, the positive, and the neg-
ative images, respectively), where the value of each element in the matrix
denotes the relevance/diversity score.

group images. However, the scheme in [6] only conducts
a coarse-grained online inference by using a simple tem-
plate matching for discriminative caption generation. Upon
the off-the-shelf LSTM model, Vedantam et al. [7] pro-
posed a fine-grained context-aware scheme to generate the
discriminative caption given the specific distractor image,
which exploits pairwise (i.e., target-distractor) textual con-
tents in online inference. However, the scheme in [7] only
considers the diversity between words in the corresponding
positions of the pairwise captions, while ignoring the struc-
tured alignment of semantic items, as well as the their visual
correlation among images.

In this paper, we argue that the fundamental issue of
group-based captioning among group images lies in model-
ing their relevance and diversity from the visual perspective
in an offline manner. On the one hand, the visual struc-
tured correlation can accurately model the fine-grained di-
versity among inner-group images in the offline training pe-
riod, which is different from the existing methods of coarse-
grained template matching [6] or the rough alignment on
words [7]. On the other hand, learning such visual struc-
tured correlation offline can better capture and accurately
interpret relevance among the inter-group images, which is
left unexploited in all existing works [4, 5, 8].

Driven by the above insights, we propose a novel group-
based image captioning model, termed as GroupCap, based
on offline learning with structured relevance and diversity
constraints. Our main innovations lie in two aspects. Firstly,
we introduce a visual parsing tree to extract the structured
semantic relations in each image, and the examples are
given in the second row of Fig.2. Secondly, we model
the structured relevance and diversity upon the VP-Trees
of group images, which are formulated as constraints to the
unified image captioning model, the examples of which are
given in the third row of Fig.2. In particular, taking an im-

age triplet (including the target, the positive and the negative
images) as the input for training, we firstly parse key enti-
ties and their relations of each image and organize them into
a tree structure, which is trained by the supervision of the
textual parsing trees. Then, based on parsing trees of these
images, we design a structured relevance constraint among
the image triplets by maximizing the similarity of the struc-
tured trees between the inner-group images, relative to that
between the inter-group images. To measure the similar-
ity among parsing trees, we further present an algorithm
to align and compare between pairwise tree nodes, leading
to an adaptive yet efficient calculation of structured rele-
vance and diversity between image pairs. Finally, we em-
bed such structured constraints into the decoder (an LSTM-
based captioning model) for the caption generation. Note
that, the parsing tree, the structured constraints, and the cap-
tioning model are integrated into an end-to-end joint train-
ing. In the online inference, we parse each image into a tree
structure, which is fed into the LSTM-based decoder for the
final caption generation.

The contributions of this paper are as follows: (1) We
investigate a new problem, termed group based image cap-
tioning. (2) We are the first to model both relevance and
diversity among image contents in the group based image
captioning. (3) We propose an end-to-end offline training
scheme towards generating very distinguished captioning
among group images. (4) We release two group-based im-
age captioning datasets to facilitate the subsequent research.
Quantitative comparisons to the state-of-the-art and alterna-
tive schemes demonstrate our merits.

2. Related Work
Most existing methods for image captioning are based

on Convolutional Neural Network + Recurrent Neural Net-
work (CNN-RNN) [1, 2, 9, 10], where the visual features
are extracted from CNN, and then fed into RNN to output
word sequences as captions. The recent advances mainly
focus on revising the above CNN-RNN architecture. For
example, You et al. [4] proposed a semantic attention model
to select semantic concepts detected from the image, which
were embedded into the caption generation procedure. Lu
et al. [11] introduced an adaptive attention encoder-decoder
model, which relies on visual signals to decide when to
compensate the language model. Liu et al. [12] proposed
a semantically regularised CNN-RNN model to solve the
vanishing gradients during backpropagation. Recently, Gan
et al. [5] utilized a semantic compositional network to com-
pose the semantic meaning of individual tags for image cap-
tioning. However, all above methods are based on one-line
scheme that operates for individual images, without consid-
ering the correlations among group images to reinforce and
diversify each other.

Recent works in image captioning also pay attention to
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Figure 3. The framework overview of the proposed GroupCap model for
group-based image captioning. The deep visual features of the given triplet
images (the target (t), the positive (p), and the negative (n) images) are first
extracted from a pre-trained CNN model, which are then sent to train a vi-
sual parsing tree (VP-Tree) model. Meanwhile, the structured relevance
and diversity constraints are modeled based on these VP-Trees by mini-
mizing the triplet loss and classification loss among the relevance (R) and
diversity (D) matrices. Finally, the VP-Tree model, the structured rele-
vance and diversity constraints, and the LSTM based captioning model are
jointly trained in an end-to-end formulation.

exploiting the discriminability of caption generations, such
as personalized image captioning [13, 14], stylistic image
captioning [15], and context-aware discriminative image
captioning [6, 7]. Specifically, context-aware schemes [6, 7]
were proposed to capture the diversity among images dur-
ing the online captioning. In addition to our advance de-
scribed in Sec.1, we are dedicated to making the caption-
ing more discriminative, i.e., to describe specific concepts
and their structured correlations, rather than only capturing
their diversities as done in [6, 7]. For example, people tend
to specify the general concepts, e.g., they can easily name
the object with policeman, player, or fire man, rather than
generally naming man. This can be also verified by the an-
notating schemes that are commonly used in the datasets
like COCO [16].

In terms of context-aware image captioning, our work is
also related to the Referring Expression Generation (REG).
REG aims to uniquely compose an expression for a spec-
ified object in comparison to other objects in an image,
which can be regarded as a task of intra image contextual
image captioning [17, 18, 19, 20, 21, 22, 23]. For example,
Mao et al. [18] proposed to add a Maximum Mutual Infor-
mation (MMI) constraint, which encourages the generated
expression to describe the target object unambiguously rel-
ative to the others in the image. Luo et al. [23] proposed a
generate-and-rerank pipeline to identify the target regions
for unambiguous captions. Different from the above REG
task, our image captioning scheme is based on the correla-
tion (both relevance and diversity) among group images.

3. GroupCap

The framework of proposed group-based image cap-
tioning (GroupCap) scheme is presented in Fig.3, which
aims at embedding both relevance and diversity among
group images into the caption generation. It consists of
four stages, i.e., deep visual feature extraction, visual tree
parsing, structured relevance and diversity modeling, and
encoder-decoder based caption generating. In particular,
we first employ a pre-trained CNN model to extract visual
features from every given image. We then train a visual
parsing tree model to extract visual entities and their rela-
tions for these images, as detailed in Sec.3.1. Then, we
present our scheme to quantify tree-based correlations to
model image-to-image correlations (both relevance and di-
versity) in Sec.3.2. Finally, we depict the joint training of
the entire model in Sec.3.3.

3.1. Visual Parsing Tree

Visual parsing tree model (VP-Tree) is first designed in
[24] to extract semantic entities and model their relations
from an image. It is a fixed-structure of a three-layer com-
plete binary tree, where each node represents a semantic
item, i.e., an entity or a relation (specifically, a subject, an
object, a sub-relation or a main relation). We advance the
VP-Tree by changing binary tree to ternary tree and adding
the mapping for the relation from visual feature to the node
feature as shown in Fig.3, where the information of rela-
tion can be strengthened. Given an image-caption pair, a
deep visual feature G is first extracted from the last fully-
connected layer of a pretrained CNN [25]. Then, the deep
visual feature is mapped to the feature representations of en-
tities/relations in the corresponding nodes, which is named
as Semantic mapping. According to the structure of the tree,
we combine the features of entities or relations and map
them to the higher-level feature representations of relations.
The operation is named as Combination. Meanwhile, the
feature of each node is mapped to a category (entity or rela-
tion) space. And we name it as Classification. It’s noted that
the caption is parsed into a textual parsing tree denoted as
T t by the standard textual parser [26], which is employed as
the supervision for the corresponding entity/relation classi-
fication during training. Finally, the whole VP-Tree can be
generated with the parameters of the three operations.

To construct our VP-Tree, we first define it formally as
Tv = {hl

jl ∈ Rdn |l ∈ {1, 2, 3}, j1 ∈ {1, . . . , 7}, j2 ∈
{1, 2}, j3 ∈ {1}}, where h, l, and dn denote the node fea-
ture, the tree layer, and the dimensionality of the node fea-
ture, respectively. jl denotes the index of node in the l-th
layer. For example, h1

j1=1, h1
j1=7, and h2

j2=2 represents the
features of the first subject node (dog), the second object
node (grass), and the second sub-relation node (null, i.e.,
no specific relation) respectively in the VP-Tree as shown



in Fig.3. During Semantic mapping, the deep visual feature
G can be mapped into the feature h1

j1 as following:
h1

j1 = F sem(G;W sem
j1 ), (1)

where F sem is the linear mapping function, which trans-
forms the visual feature to the semantic items (entities and
relations). W sem

j1 denotes the parameter for the j1-th node
in the first/leaf layer. We then combine the features of the
children nodes in the lower layer and feed them into their
parent nodes in the higher layer. Formally, we obtain the
features of the parent nodes in the second/middle layer and
the third/root layer respectively by:

h2
j2=1 = F com([h1

j1=1,h
1
j1=2,h

1
j1=3];W

com
j2=1), (2)

h2
j2=2 = F com([h1

j1=5,h
1
j1=6,h

1
j1=7];W

com
j2=2), (3)

h3
j3=1 = F com([h2

j2=1,h
1
j1=4,h

2
j2=2];W

com
j3=1), (4)

where [·, ·, ·] denotes the concatenation operation. F com

and W com denote the linear mapping function and its
parameter. Finally, each node is classified into the en-
tity/relation category by the Softmax classifier as following:

yn
j1 = σ

(
F cat(h1

j1 ;W
cat
<e>)

)
, j1 ∈ {1, 3, 5, 7}, (5)

yn
j2,3 = σ

(
F cat(h

(3)

j2,3
;W cat

<r>)
)
, j2 ∈ {1, 2}, j3 ∈ {1}, (6)

where yn denotes the predicted probability vectors of the
entity or relation categories according to the entity dictio-
nary or relation dictionary [24]. F cat is a linear mapping
function. W cat

<e> and W cat
<r> denote the mapping parame-

ters for the entity and the relation categories, respectively.
The parameter set of VP-Tree can be denoted as ΘT =

{W sem,W com,W cat
<e>,W

cat
<r>}. We minimize the loss of

the category classification to optimize the whole tree model.
And the offline training for VP-Tree is integrated into the
overall training, as detailed in Subsec.3.3.

3.2. Structured Relevance and Diversity Constraint

We build a structured relevance and diversity constraints
into the proposed GroupCap model, as illustrated in Fig.3.
Our main ideas are: 1) The inner-group similarity is ex-
pected to be larger than that of inter-group, which is re-
flected during the training of VP-Tree model; 2) The diver-
sity in two corresponding nodes of VP-Trees is expected to
be classified accurately (i.e., whether the nodes are diverse).

Given an image triplet, i.e., the target (the i-th), the pos-
itive (the j-th), and the negative (the k-th) images, we esti-
mate the relevance and diversity of pairwise images based
on the features matrices of their leaf nodes, i.e., T v

i , T v
j ,

and T v
k ∈ RK×dn (K = 7 here, which denotes the number

of the leaf nodes). Taking the target and the positive images
for example, we have:

R(i,j) = ϕ(T v
i UR(T

v
j )

T ), (7)

D(i,j) = ϕ(T v
i UD(T v

j )
T ), (8)

where R(i,j) and D(i,j) denote the K×K relevance and the
K×K diversity matrices that align the visual tree nodes be-
tween the i-th and the j-th images. UR and UD are dn×dn
factor matrices, which are the parameters of the relevance
and diversity matrices, respectively. ϕ denotes a Sigmoid
function. Then, we compare the similarities between inner-
group and inter-group images as:

dR(T v
i ,T

v
j ,T

v
k ;UR,Θ

T ) =
K∑
p,q

(R(i,k)
p,q −R(i,j)

p,q ), (9)

where Ri,j
p,q denotes the relevance score between the p-th

and the q-th nodes of the i-th and the j-th images. ΘT de-
notes parameters of VP-Tree. Suppose there are N image
triplets, we employ the triplet loss to maximize the inner-
group similarity and minimize the inter-group similarity,
leading to:

LR(UR,Θ
T ) =

1

N

N∑
<i,j,k>

max(dR(T v
i ,T

v
j ,T

v
k ;UR,Θ

T ), τ),

(10)
where τ denotes the predefined margin of the triplet loss. To
align the relevance of every two nodes in two VP-Trees, we
introduce an alignment-wise logistic regression to compute
the classification loss. Taking the i-th and the j-th images
in the same group as example, we have:

LR
c (UR,Θ

T ) = − 1

K2

K∑
p,q=1

logP (yR
p,q = 1|T v

i ,T
v
j ;UR),

(11)
where yR

p,q denotes the estimation of the relevance between

the p-th and the q-th nodes in R
(i,j)
p,q . If they are relevant,

yR
p,q = 1, otherwise yR

p,q = 0. Similarly, to align diversity
of every two nodes in two VP-Trees (specially for the node
pairs in inner-group images, i.e., the target and the positive
images), we also adopt alignment-wise logistic regression
to compute the classification loss:

LD
c (UD,ΘT ) = − 1

K2

K∑
p,q=1

logP (yD
p,q = 1|T v

i ,T
v
j ;UD),

(12)
where yD

p,q denotes the estimation of the diversity between

the p-th and the q-th nodes in D
(i,j)
p,q . To get the ground-

truth relevance and diversity of two nodes, we use the tex-
tual parsing trees to decide if two nodes of different trees
are relevant or diverse, the details of which will be provided
in Sec.4. It’s noted that the relevance and diversity are em-
bedded as constraints only in the training period to refine
the VP-Tree model.

3.3. Joint Learning

The training data for each image consist of deep visual
feature G and caption words sequence {yt}. Our goal is to
jointly learn all the visual parser parameters ΘT , relevance



and diversity constraint parameters ΘC = {UR,UD}, to-
gether with the LSTM parameters ΘL by minimizing a loss
function over the training set. Given the deep visual feature
set S = {Gi|i = 1, 2, 3} of an image triplet, the joint loss
of the GroupCap model is defined as:

L(ΘT ,ΘC ,ΘL) =

|S|∑
i

( T∑
t

logP (yi
t|yi

0:t−1, Gi;Θ
L)

+
K∑
j

logP (yn,i
j |Gi;Θ

T )
)

+LR(UR,Θ
T ) + LR

c (UR,Θ
T ) + LD

c (UD,ΘT ),

(13)

where T and K denote the length of the sequence output
and the number of tree nodes, respectively. yi

t and yn,i
j de-

note the word output in the t-th state and the entity/relation
categories in the j-th node for the i-th sample, respectively.

We pre-train the VP-Tree model separately at the first
time and the VP-Tree model with the caption generation
model at the second time. Then, we use Adam algorithm
[27] with learning rate 1 × 10−4 to optimize Eq.13, where
the gradient is back-propagated over the caption genera-
tion model, the visual tree parser, and the structured rele-
vance/diversity constraint. To avoid overfitting, we employ
a dropout operation with a ratio of 0.5. Finally, the iteration
ends until the cost of the final word prediction converges.

4. Experiments
In this section, we perform extensive experiments to

evaluate the proposed GroupCap model. We first describe
the datasets and experimental settings. Next, we quanti-
tatively compare the results of our proposed model to the
state-of-the-art methods on image captioning. Finally, we
qualitatively analyze our merits in details.

Preprocessing on Textual Parsing Trees. Due to the ir-
relevant words and noise configurations generated by Stan-
ford Parser [26], we whiten the source sentences by using
the pos-tag tool and the lemmatizer tool in NTLK [28] si-
multaneously. After that, we convert the dynamic parsing
tree to a fixed-structured, three-layer binary tree, which only
contains nouns (or noun pair, adjective-noun pair), verbs,
coverbs, prepositions, and conjunctions. Only nouns are re-
garded as entities and used as leaf nodes in the subsequent
training. We select the frequent words and manually merge
words with similar meaning to obtain the entity dictionary
and the relation dictionary with size 748 and 246, respec-
tively. For the judgment of relevance, we leave the noun
pair and the adjective-noun pair out of leaf nodes. For the
judgment of diversity, we keep two kinds of leaf nodes: leaf
nodes with and without the noun pair and the adjective-noun
pair1. Assuming there are K nodes in the fixed-structured

1The judgment of diversity needs the coarse-categories and fine-
categories simultaneously. For examples, as Fig.1 shows, the condition
of diversity between children and adults is that they both belong to people.

Table 1. Performance comparisons to the state-of-the-art methods and
baselines on FG-dataset. “-g” means using the grouped data (FG-dataset)
from MS-COCO. The numbers in bold face are the best known results and
(-) indicates unknown scores. All values are in %.

Methods B1 B2 B3 B4 M
BRNN [2] 62.5 45.0 32.1 23.0 19.5
LRCN [29] 62.8 44.2 30.4 21.0 -
Google NIC [1] 66.6 45.1 30.4 20.3 -
Toronto [3] 71.8 50.4 35.7 25.0 23.0
ATT [4] 70.9 53.7 40.2 30.4 24.3
SCA-CNN [8] 71.9 54.8 41.1 31.1 25.0
StructCap [24] 72.6 56.3 43.0 32.9 25.4
SCN [5] 72.8 56.6 43.3 33.0 25.7
NIC-g 68.1 46.3 31.5 21.4 21.8
StructCap-g 73.1 56.8 43.1 32.8 25.7
SCN-g 73.4 57.0 43.4 33.0 25.7
GroupCap-T 73.4 57.0 43.3 32.9 25.8
GroupCap-T-SRC 73.7 57.3 43.5 33.0 25.9
GroupCap-T-SDC 73.6 57.2 43.2 32.8 25.8
GroupCap (w/o ensemble) 73.9 57.4 43.5 33.0 26.0
GroupCap (w/ ensemble) 74.4 58.1 44.3 33.8 26.2

tree, there would be K2 alignments between two trees, each
of which reflects whether each alignment in the relevance
alignment matrix is relevant, as well as whether each align-
ment in the diversity alignment matrix is diverse.

Datasets and Evaluation Protocols. MS-COCO is a
widely-used dataset for image captioning. There are over
123,000 images in MS-COCO, which has been split pub-
licly into training, testing and validating sets2. We build
two group captioning datasets3 from MS-COCO to evalu-
ate the performance of our models, where the images in the
training set are grouped into two kinds of groups:
1) Frequency-based Group Captioning Dataset (FG-
dataset). This dataset evaluates the accuracy and discrim-
inability of the generated captions. To construct this dataset,
we firstly filter and collect the top-784 entities and the top-
246 relations with high frequencies in the textual parsing
tree. Then, we combine the entities and the relations, and
then keep the top-39, 766 semantic combinations with high
frequencies in the textual parsing tree. Finally, we divide the
MS-COCO image-caption pairs into 39, 766 image groups
corresponding to the semantic combinations. We get the
FG-dataset with totally 1, 432, 076 training images among
39, 766 training groups, 5,000 valuation images, and 5,000
testing images (The valuation and testing sets are the same
as MS-COCO). Note that all groups are unable to cover
all semantic combinations, and any each group is unable
to cover all the semantic items. However, by such high-
frequency based sampling, the dataset is adequate to evalu-
ate the performance of group-based models on accuracy and
discriminability. To form the triplet, we randomly select the
positive and negative images from the same and different

2https://github.com/karpathy/neuraltalk
3Datasets are available at mac.xmu.edu.cn/Data_cvpr18.html



Table 2. Performance comparisons to the state-of-the-art methods and
baselines on ES-dataset. “-g” means using the grouped data (ES-dataset)
from MS-COCO. The numbers in bold face are the best known results and
(-) indicates unknown scores. All values are in %.

Methods B1 B2 B3 B4 M
StructCap-g [24] 72.0 55.7 41.4 31.3 25.7
SCN-g [5] 72.1 55.2 41.6 31.9 25.7
GroupCap-T 72.3 56.0 41.9 31.1 25.6
GroupCap-T-SRC 72.6 56.3 42.3 31.5 25.8
GroupCap-T-SDC 72.3 56.0 42.1 31.2 25.7
GroupCap 72.9 56.5 42.5 31.6 25.9

groups respectively for each target image.
2) Entity-specific Group Captioning Dataset (ES-dataset).
This dataset evaluates the accuracy and discriminability of
the specific entities in the generated captions. We firstly
collect the specific entities that are frequently missed in
the generated captions by the state-of-the-art method [5].
We then filter and keep the images with the specific entity4

from FG-dataset. Finally, we get the ES-dataset with totally
449, 190 training images among 28, 937 training groups,
5,000 valuation images, and 5,000 testing images (The val-
uation and testing sets are the same as MS-COCO). We fur-
ther select the target and positive images in the Missing Sub-
set and out of Missing Subset, respectively. The negative
image is selected out of the group in the same way as that
of FG-dataset.

Quantitative performance of all methods are evaluated by
using microsoft COCO caption evaluation tool5, including
BLEU, METEOR, ROUGE-L[16]. We also evaluate our
model by using accuracy and recall.

Baselines and State-of-the-Arts. We compare the pro-
posed GroupCap with six baselines: 1) StructCap: A
structured semantic embedding model for image caption-
ing based on binary VP-Tree model [24]. 2) GroupCap-
T: The mutated version of GroupCap without structured
relevance and diversity constraints. 3) GroupCap-T-SRC:
The mutated version of GroupCap, where the structured di-
versity constraint is removed. We compare our model to
GroupCap-T-SRC to evaluate the effectiveness of the diver-
sity constraint. 4) GroupCap-T-SDC: The mutated version
of GroupCap, where the structured relevance constraint is
removed. We compare our model to GroupCap-T-SDC to
evaluate the effectiveness of the relevance constraint. We
also compare the state-of-the-art methods, i.e., ATT [4],
SCA-CNN [8] and SCN [5].

Performance on FG-dataset. We compare GroupCap
to the state-of-the-art and baseline methods on FG-dataset
as shown in Tab.1. GroupCap, especially the one with en-

4We choose the specific entity in each group with high frequency in
the ground-truth captions. And the images with this entity that the state-
of-the-art method missed (We call it Missing Subset in each group) must
be 40%-60% of all the images with this entity to guarantee the sample
balance.

5https://github.com/tylin/coco-caption

Table 3. The performance comparisons of parsing models (Par. M.) on
FG-dataset. “CNN-F”, “CNN-sVP” and “CNN-gVP” denote the fully-
connected layer, the original VP-Tree [24], and our VP-Tree respectively
with the output of CNN. “Acc.(E.)” and “Acc.(R.)” denote the metrics of
the correct classification (top-3) on entities and relations, respectively. All
values are in %.

Caption Generation Classification
Par. M. B4 M R C Acc.(E.) Acc.(R.)
CNN-F 32.5 25.0 53.2 98.3 - -
CNN-sVP 32.8 25.7 54.2 100.6 72.1 70.5
CNN-gVP 32.9 25.8 54.5 101.9 74.7 73.0

Ground Truth:  A single elephant standing in a large grassy field.

on:20.2%

in:14.7%

unknown:9.3%

null:64.6%

stand:2.2%

on:1.8%

null:57.9%

on:28.1%

unknown:2.2%

elephant:34.2%

person:16.3%

material:10.1%

null:66.4%

grass:10.4%

elephant:9.1%

null:93.2%

unknown:0.8%

grass:0.1%

grass:23.1%

null:17.9%

land:14.0%

stand_PREP:19.1%

null:18.5%

unknown:10.9%

null:76.4%

unknown:4.7%

stand:3.8%

null:29.3%

in:10.7%

on:9.0%

elephant:38.0%

baby:15.7%

unknown:11.4%

null:59.8%

unknown:17.3%

grass:11.4%

null:96.6%

grass:0.5%

head:0.0%

land:24.6%

null:18.0%

grass:17.0%

Ground Truth:  A black and white dog sleeps in front of a blue door.
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Figure 4. VP-Trees constructed by the proposed GroupCap compared to
StructCap. The three columns are the source images, the generated VP-
Trees by the model [24], the generated VP-Trees by our model, respec-
tively. Red font means the correct semantic items according to the textual
parsing trees.

semble scheme (4 models), achieves the best performance
under all metrics, which reflects that considering the rele-
vance and diversity can reinforce and diversify the caption
generation (The generated results will be further analyzed in
the part of Evaluation for Caption Generation). Moreover,
GroupCap outperforms GroupCap-T-SRC and GroupCap-
T-SDC, which reveals that our relevance and diversity con-
straints do contribute to the overall performance. In addi-
tion, GroupCap-T outperforms NIC-g, which indicates the
effectiveness of our VP-Tree.

Performance on ES-dataset. Tab.2 shows the compar-
ing between GroupCap and state-of-the-art methods on ES-
dataset. GroupCap achieves the best performance under
all metrics. Since the specific entities are collected where
the state-of-the-art method (SCN) fails, the superior per-
formance reflects that GroupCap can refine the generated
caption on the accuracy and discriminability. GroupCap
also outperforms all the baselines on ES-dataset, such as
GroupCap-T-SRC and GroupCap-T-SDC, which indicates
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Figure 5. Visualization of the relevance matrices. Darker color means
more relevant between two semantic items (entities or relations).

that considering relevance and diversity do contribute to the
overall performance.

Evaluation for VP-Tree Construction. To evaluate the
advanced VP-Tree, we compare it with the visual parser
proposed in [24].6 The qualitative results are shown in
Fig.4. The proposed VP-Trees are more identical to the
ground-truth captions compared to the ones generated by
sVP. Also, the semantic items (entities or relations) in each
VP-Tree generated by gVP are more accurate, which is due
to more information of the relation from images.

Further, we estimate the performances of caption gen-
eration and classification (classify each node into an en-
tity/relation category) by using sVP and gVP models in
Tab.3. CNN-gVP outperforms the CNN-F and CNN-sVP,
which indicates the effectiveness and superiority of our pro-
posed gVP model. Additionally, the entity/relation classifi-
cation of CNN-gVP is more accurate than that of CNN-sVP,
which further manifests the rationality of the proposed gVP
structure.

Evaluation for Relevance. We propose relevance con-
straint to make the generated captions more accurate. To
evaluate the effect of this relevance constraint, we col-
lect the specific entities where the state-of-the-art method
(SCN) fails (as described in the part of Datasets and Eval-
uation Protocols), based on which we find whether Group-
Cap can predict such difficult cases and refine the generated

6For distinction, we call our VP-Tree and the original visual parser [24]
as gVP and sVP, respectively
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Figure 6. Visualization of the diversity matrices. Darker color means
more diverse between two semantic items (entities or relations).

captions. We estimate the occurrence recall (Occ. Recall)
of specific entities (S. E.) in the generated captions in Tab.4,
where the occurrence recall of a specific entity can be com-
puted as:

Occ. Recall =
No. of Correct Occ. of S. E.

No. of Ground Truths with S. E.
, (14)

where we count Ground Truths with S. E. when S. E. si-
multaneously occurs in all the ground-truth captions of an
image. From Tab.4, we find that GroupCap can describe the
captions more accurately compared to the StructCap [24]
and SCN [5], which validates the effect of the structured
relevance constraint.

We further explore the relevance captured by the pro-
posed model. We visualize the relevance matrices of some
examples with high relevance scores in Fig.5. The value of
each element in the relevance matrix means the confidence
score of the relevance between two corresponding seman-
tic items (entities and relations) in two VP-Trees. We can
find that the alignments of relevant semantic items appear
darker color, and the gradation distribution of color is gen-
erally consistent to node alignments of the textual parsing
trees (green boxes Fig.5). It reflects that the structured rel-
evance among semantic items is well captured by the pro-
posed relevance constraint.

Evaluation for Diversity. We further evaluate the qual-
ity of diversity captured by the proposed model. We vi-
sualize the diversity matrices of some examples with high



Table 4. Occurrence recalls (Values in %) of specific entities (with top-10 frequencies in ES-dataset) in generated captions.

road table person food ball ski phone water dog track
StructCap 8.0 81.8 100.0 70.0 20.0 75.0 73.3 57.1 76.9 90.0
SCN 6.0 84.8 75.0 70.0 20.0 75.0 73.3 42.9 76.0 70.0
GroupCap 14.0 90.9 100.0 80.0 30.0 87.5 80.0 85.7 77.7 90.0
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S: a young child is brushing her teeth.

G: a little girl sitting at a sink with a toothbrush.

GT: a little kid cleaning their toothbrush in the sink.
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S: a couple of people sitting on top of a grass field.

G: a couple of kids are sitting in a park eating food.

GT: Two young boys in shorts at park with hands raised.
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Figure 7. Visualization of the constructed VP-Trees and generated captions on FG-dataset. We compare the captions generated by the proposed GroupCap
model to that of the state-of-the-art model (SCN) [5]. “S”, “G”, and “GT” denote SCN, GroupCap, ground truth, respectively.

diversity scores/probabilities in Fig.6. Different from rel-
evance matrix, the value of each element in the diversity
matrix represents the confidence score on whether two cor-
responding semantic items in two VP-Trees are first rele-
vant and then diverse. We can find that the alignment of
the diverse semantic items appears darker color, e.g., the
alignment of black-jacket and gray-jacket in the first ex-
ample is with higher score compared to others. Moreover,
the gradation distribution of color is generally consistent to
node alignments of the textual parsing trees (green boxes in
Fig.6), which reflects that the proposed diversity constraint
can well capture the diversity among semantic items.

Evaluation for Caption Generation. Finally, we qual-
itatively evaluate our proposed GroupCap model in Fig.7.
As we can see, the generated captions by GroupCap are
more accurate and more discriminative compared to the
state-of-the-art, which are also consistent with the ground
truths. Moreover, the VP-Tree is mostly consistent with the
image and the generated caption, which reveals the effect of
the proposed joint training in Subsec.3.3.

5. Conclusion
In this paper, we propose a novel group-based image

captioning model (GroupCap) by modeling relevance and
diversity among group images for discriminative caption
generation. Specifically, we first propose a visual parsing

(VP) model to extract visual semantic items (entities and
relations) and model their correlations, forming a tree struc-
ture. Then, we model the structured relevance and diversity
among images via comparing between such tree structures.
Finally, we embed the VP-Tree into the LSTM-based cap-
tioning model for the caption generation. In offline opti-
mization, we further give an end-to-end formulation, which
jointly trains the visual tree parser, the structured relevance
and diversity constraints, and the LSTM based captioning
model. Two group captioning datasets derived from MS-
COCO are further released, serving as the first of its kind.
Extensive experimental evaluations show that our model
achieves state-of-the-art performance under several stan-
dard evaluation metrics.
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