Bidirectional Attentive Fusion with Context Gating for Dense Video Captioning

Jingwen Wang'*  Wenhao Jiang*®

{jaywongjaywong, cswhjiang,

wliu@ee.columbia.edu

Abstract

Dense video captioning is a newly emerging task that
aims at both localizing and describing all events in a video.
We identify and tackle two challenges on this task, namely,
(1) how to utilize both past and future contexts for accurate
event proposal predictions, and (2) how to construct infor-
mative input to the decoder for generating natural event de-
scriptions. First, previous works predominantly generate
temporal event proposals in the forward direction, which
neglects future video context. We propose a bidirectional
proposal method that effectively exploits both past and fu-
ture contexts to make proposal predictions. Second, dif-
ferent events ending at (nearly) the same time are indis-
tinguishable in the previous works, resulting in the same
captions. We solve this problem by representing each event
with an attentive fusion of hidden states from the proposal
module and video contents (e.g., C3D features). We fur-
ther propose a novel context gating mechanism to balance
the contributions from the current event and its surrounding
contexts dynamically. We empirically show that our atten-
tively fused event representation is superior to the proposal
hidden states or video contents alone. By coupling proposal
and captioning modules into one unified framework, our
model outperforms the state-of-the-arts on the ActivityNet
Captions dataset with a relative gain of over 100% (Meteor
score increases from 4.82 to 9.65).

1. Introduction

With the rapid growing of videos on the Internet, it be-
comes much more important to automatically classify and
retrieve these videos. While images and short videos have
attracted extensive attentions from vision research commu-
nity [43, 25, 40, 30, 15, 9, 31, 6, 24], understanding long
untrimmed videos remains an open question. To help fur-
ther understand videos and bridge them with human lan-
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Figure 1. Two main challenges in dense video captioning.
First, previous works, e.g., SST [3], process a video sequence
in the forward direction. Future video context (c) express-
ing “The man begins to mold his hair” is not con-
sidered, which presents close relationship with current proposal
(b) expressing “The man blow drys his hair”. Second,
previous work only uses the proposal hidden state h; at time step ¢
to represent the detected proposal, which cannot distinguish events
(e.g., P1, P2) that end at the same time step.

guage, a new task of dense video captioning is proposed
[20]. The goal is to automatically localize events in videos
and describe each one with a sentence. The capability of lo-
calizing and describing events in videos will benefit a broad
range of applications, such as video summarization [23, 29],
video retrieval [35, 44], video object detection [48], video
segment localization with language query [, | 1], and so on.

Compared to video captioning, which targets at de-
scribing a short video clip (e.g., 20s long in MSR-VTT
dataset [41]), dense video captioning requires analyzing a
much longer and complicated video sequence (e.g., 120s
long in ActivityNet Captions [20]). Since long videos usu-
ally involve multiple events, dense video captioning re-
quires simultaneously performing temporal localization and



captioning, which issues the following two challenges.

First, generating video action proposals requires local-
izing all possible events that occur in a video. To do so, one
simple way would be to use sliding windows to iterate over
a video and classify every window to either an action or
background. However, this kind of methods can only pro-
duce short proposals that are no longer than the predefined
sliding window. To overcome this problem, Buch et al. [3]
proposes Single Stream Temporal Action Proposals (SST)
to eliminate the need to divide long video sequences into
clips or overlapped temporal windows. As shown in Fig. 1,
SST runs through a video only once and densely makes pro-
posal predictions ending at that time step, with k different
offsets. Krishna et al. [20] uses a similar proposal method
as SST. While promising results were achieved, these meth-
ods simply ignore future event context and only encode past
context and current event information to make predictions.
Since events happening in a video are usually highly cor-
related, it is non-preferable to discard valuable future in-
formation. For example, in Fig. 1, when making proposal
prediction at the end of event (b), SST has run over both
past context (a) and current event content, but not future
video context (c). Event (b) highly correlates with event
(c). Recognizing and localizing event (b) will help local-
ize event (¢) more accurately, and vice versa. In this paper,
we propose a straightforward yet effective solution, namely,
Bidirectional SST, towards efficiently encoding both past,
current, and future video information. Specifically, in the
forward pass we learn k binary classifiers corresponding
to k anchors densely at each time step; in backward pass
we reverse both video sequence input and predict proposals
backwards. This means that the forward pass encodes past
context and current event information, while the backward
pass encodes future context and current event information.
Finally we merge proposal scores for the same predictions
from the two passes and output final proposals. Technical
details can be found in Section 3.

Once proposals are obtained, another important ques-
tion is how to represent these proposals in order to gener-
ate language descriptions. In [20], the LSTM hidden state
in proposal module is reused to represent a detected pro-
posal. However, the discrimination property of event rep-
resentation is overlooked. As shown in Fig. 1, k propos-
als (anchors) end at same time step, but only one LSTM
hidden state h; at that time step is returned. For example,
P1 and P2 will be both represented with h;. To construct
more discriminative proposal representation, we propose to
fuse proposal state information and detected video content
(e.g. C3D sequences). The intuition behind that is involving
detected clips help discriminate highly overlapped events,
since the detected temporal regions are different. Based on
this idea, we further explore several ways for fusing these
two kinds of information to boost dense captioning perfor-

mance.

To output more confident results, we further propose
joint ranking technique to select high-confidence proposal-
caption pairs by taking both proposal score and caption con-
fidence into consideration.

To summarize, the contributions of this paper are
three-fold. First, we present Bidirectional SST for better
temporal action proposals with both past, current, and fu-
ture contexts encoded. Second, for captioning module, we
explore different ways to attentively fuse proposal state in-
formation and detected video content to effectively discrim-
inate highly overlapped events. Third, we further present
joint ranking at inference time to select proposal-caption
pairs with high confidence.

2. Related Work

Dense video captioning requires both temporally local-
ization and descriptions for all events happening in a video.
These two tasks can be handled as pipelines or coupled to-
gether for end-to-end processing. We review related works
on the above two tasks.

2.1. Temporal Action Proposals

Analogous to region proposals in image domain, tem-
poral action proposals are candidate temporal windows
that possibly contain actions. Sparse-prop [4] applies dic-
tionary learning for generating class-independent propos-
als. S-CNN [34] uses 3D convolutional neural networks
(CNNs) [36] to generate multi-scale segments (proposals).
TURN TAP [12] uses clip pyramid features in theri model,
and it predicts proposals and refines temporal boundaries
jointly. DAPs [8] first applies Long Short-Term Memory
(LSTM) [14] to encoding video content in a sliding window
and then predicts proposals covered by the window. Built
on [8], SST [3] further takes long sequence training prob-
lem into consideration and generates proposals in a single
pass. However, all these methods either fail to produce long
proposals or do not exploit future context. In contrast, our
model for temporal proposal tackles these two problems si-
multaneously.

2.2. Video Captioning

Video captioning with one single sentence. There are
a large body of works on this topic. Earlier works
are template-based [13, 33], which replace POS (part-of-
speech) tags with detected objects, attributes, and places.
[13] learns semantic hierarchies from video data in order to
choose an appropriate level of sentence descriptions. [33]
first formulates video captioning as a machine translation
problem and uses CRF to model semantic relationship be-
tween visual components. Recent approaches are neural-
based, in an encoder-decoder fashion [19, 38, 26, 45, 49,

, 10, 7, 22]. Venugopalan et al. models both video
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Figure 2. The main framework of our proposed method. (a) A video input is first encoded as a sequence of visual features (e.g., C3D). (b)
The visual features are then fed into our bidirectional sequence encoder (e.g., LSTM). (c¢) Each hidden state from the forward/backward
seq. encoder will be fed into the proposal module. The forward/backward seq. encoders are jointly learned to make proposal predictions.

—
(d) Hidden states at boundary of a detected event (h,,, h,,,) will be served as context vectors for the event. The context vectors and detected
event clip features are then fused together and served as visual information input. We detail the fusion methods in Section 3.2.2. (e) The

decoder LSTM translates visual input into a sentence.

and language as sequences using recurrent neural networks
[38]. To strengthen the semantic relationships between a
video and corresponding generated sentence, Pan et al. pro-
posed to learn a translation and a common embedding space
shared by video and language jointly [26]. Some subse-
quent methods further explore attention models in video
context. Inspired by the soft attention mechanism [42] in
image captioning, Yao et al. proposed to generate temporal
attention over video frames when predicting next word [45].
Zhang et al. proposed to learn a task-driven fusion model
by dynamically fusing complementary features from multi-
ple channels (appearance, motion) [49]. Some other works
[27, 10, 46] exploit attributes or concepts (objects, actions,
etc.) to improve video captioning performance. Chen et
al. further considered different topics from web videos and
generating topic-guided descriptions [7].

Video captioning with a paragraph. While aforemen-
tioned captioning methods generate only one sentence for
the input video, video paragraph generation focuses on pro-
ducing multiple semantics-fluent sentences. Rohrbach et al.
adapted statistical machine translation (SMT) [33] to gener-
ate semantic consistent sentences with desired level of de-
tails [32]. Yu et al. proposed a hierarchical RNN to model
both cross-sentence dependency and word dependency [47].

Dense video captioning. Video paragraph generation relies
on alignment from ground-truth event intervals at test time.

To relieve this constraint, dense video captioning generates
multiple sentences and grounds them with time locations
automatically, which is thus much more challenging. To
the best of our knowledge, [20] is the only published work
on this topic. In [20], the task of dense-captioning events
in video together with a new dataset: ActivityNet Captions'
were introduced. The model in [20] is composed of an event
proposal module and a captioning module. The event pro-
posal module detects events with a multi-scale version of
DAPs [8] and represents them with LSTM hidden states.
The captioning module is responsible for describing each
detected proposal. Compared to [20], our method enjoys
the following advantages. First, our bidirectional proposal
module encodes both past and future contexts while [20]
only utilizes past context for proposal prediction. Second,
our model is able to distinguish and describe highly over-
lapped events while [20] cannot.

3. Method

In this section we introduce our main framework for
densely describing events in videos, as shown in Fig. 2. We
will first introduce our bidirectional proposal module, then
our captioning module. Note that these two modules couple
together and thus can be trained in an end-to-end manner.

Uhttp://cs.stanford.edu/people/ranjaykrishna/densevid/



3.1. Proposal Module

The goal of the proposal module is to generate a set
of temporal regions that possibly contain actions or events.
Formally, assume that we have a video sequence X =
{1, 22, ...,z } with L frames. Following [20], each video
frame is encoded by the 3D CNN [36], which was pre-
trained on Sports-1M video dataset [17]. The extracted
C3D features are of temporal resolution § = 16 frames, dis-
cretizing the input stream into 7' = L/J time steps. We
perform PCA to reduce the feature dimensionality (from
4096 to 500). The generated visual stream is thus V =
{Vl, Vo, ..., VT}.

Forward Pass. We use LSTM to sequentially encode the
visual stream. The sequence encoder processes visual se-
quences and accumulates Visual clues across time. The

output LSTM hidden state ht € {h } _, at time step ¢
thus encodes visual information for the passed time steps
{1,2,...,t}. The hidden state will be fed into K indepen-

dent binary classifiers and produces K confidence scores
— t

t
¢, ={a }._y j indicating the probability of K pro-

1111 —t t t
posals specified by S = {Ez | s; denotes a
video clip with end time as ¢ and start time as ¢ — l;, where
{I;}X | is the lengths of the predefined K proposal anchors.

—t
Please note that all the K proposals in S share the same
it

end time ¢. The proposal scores Cp is calculated by a fully
connected layer:

—t

— —
Cp, =o(W.hy +b,), (1)

—
where o denotes sigmoid nonlinearity. W, b, are shared
across all time steps.

Backward Pass. Our proposed bidirectional proposal mod-
ule also involves a backward pass. The aim of such a proce-
dure is to capture future context, in addition to current event
clue for better event proposals. We feed the input sequence
V in a reverse order to the backward sequence encoder. It
is expected to predict proposals with high scores at the orig-
inal start time of proposals. Similarly, at each time step, we

with K confidence

«—t ot
obtain K proposals S = {si }izl K

«— t ot . —
scores C, = {ci }izl K and a hidden state h;.

Fusion. After the two passes, we obtain N proposals col-
lected from all time steps of both directions. In order to
select proposals with high confidence, we fuse the two sets
of scores for the same proposals, yielding the final scores:

Cp={eix &}, @

Many fusing strategies can be adopted. In this paper, we
simply use the multiplication to fuse proposals from the two

passes together. Proposals with scores larger than a thresh-
old 7 will be finally selected for further captioning. We do
not perform non-maximum suppression since events hap-
pening in a video are usually highly overlapped, the same
as what has been adopted in [20].

3.2. Captioning Module

Following the encoder-decoder framework, a recurrent
neural network, specifically LSTM, is leveraged in our cap-
tioning module to translate visual input into a sentence. In
this section, we first recap LSTM. Then we describe a novel
dynamic fusion method.

3.2.1 Decoder: Long Short-Term Memory

LSTM [14] is used as our basic building block, con-
sidering its excellent ability for modeling sequences. An
LSTM unit consists of an input cell g;, an input gate 7, a
forget gate f;, and an output gate o; and they can be com-
puted by:

¢ g Et

fl= 2w m . 3
‘ H; 1

Gt tanh

where E; is the embedding of input word at time step ¢, F';
is representation at ¢ that will be described later, H;_; is
the previous LSTM hidden state and W is a transformation
matrix to be learned. The memory cell ¢; and hidden state
H; are updated by:

¢t = fit Oci—1 +1 O gy, “4)
H; = 0; ® tanh(cy), (5)

where © denotes element-wise multiplication operator. At
each time step, a linear projection and softmax operation
are performed on the hidden state to generate probability
distribution over all possible words.

3.2.2 Dynamic Attentive Fusion with Context Gating

To caption a detected proposal, previous work just
takes the proposal hidden state as input to the LSTM [20].
In this paper we propose to fuse the proposal states from the
forward and backward passes, which capture both past and
future contexts, together with the encoded visual features
of the detected proposal. Formally, the visual input to the
decoder is:

Fi(si) =

f(hn»hma {vl}z m7Ht 1) (6)

where m and n denote the start and end time stamp for the
detected event s;. V' denotes the clip features, specifically



C3D for the proposal s;. }:; and htn are the proposal hid-
den states, encoding the past and future context information
of the detected proposal, which are simply named context
vectors. H;_; is the previous LSTM hidden state. And f
is a mapping to output a compact vector, which is to be fed
into LSTM unit using Eq. (3).

The most straightforward way is to simply concatenate

17, th and htn together without considering H;_;. How-
ever, it is implausible, as the dimension of 1% depends on
the length of a detected event. Another simple way is to
use the mean of V and concatenate it with proposal hidden
states. However, mean pooling does not explicitly explore
relationship between an event and surrounding contexts.

Temporal Dynamic Attention. As demonstrated in [42,

], dynamically attending on image sub-regions and video
frames at each time step when decoding can effectively im-
prove captioning performance. Therefore, in our dense cap-

tioning model, we also design a dynamic attention mecha-
—

nism to fuse visual features V and context vectors h,, h,,.
At each time step ¢, the relevance score z! for vy, is
obtained by:

—
2t = WEtanh(WyVigm_1+Whalhy,, hy, ]+ WeH; 1 +b),

)
where H;_1 is the hidden states of decoder at the t — 1
time step. [, ] denotes vector concatenation. The weights

of v;1m—1 can be obtained by a softmax normalization:

P
of = exp(2f)/ Y exp(2}), ®)
k=1

where p = n —m + 1 denotes the length of a proposal. The
attended visual feature is generated by a weighted sum:

P

St t

v = E O Vigm—1. ©)]
i=1

We expect the model can better locate “key frames” and
produce more semantic correlated words by involving con-
text vectors for calculating the attention as in Eq. (7). The
final input to LSTM unit could be expressed as:

F(s:) = [7', by, By, (10)

Context Gating. Inspired by the gating mechanisms in
LSTM, we propose to explicitly model the relative contribu-
tions of the attentive event feature and contexts when gen-
erating a word. Specifically, once obtain the attended visual
feature v', instead of directly concatenating it with context
vectors, we learn a “context gate” function to balance them.
In our context gating mechanism, the first step is to project
the event feature and context vectors into the same space:

vt = tanh(Wv?), (1)

—
h = tanh(We[hy, hyn), (12)

where W and W, are the projection matrices. The context
gate is then calculated by a nonlinear layer:

etw = (W, [¥', b, E, Hy 1)), 13)

where E; is word embedding vector, H;_; is previous
LSTM state. The context gate explicitly measures the con-
tribution for surrounding context information (h) at current
decoding stage (given E;, H;_1). We then use the con-
text gate to fuse the event feature and the context vector
together:

F(sz) = [(1 - gctz) O] vt7gctx O] h] (14)

With this mechanism, we expect the network to learn how
much context should be used when generating next word.

3.3. Training

Our complete dense video captioning model, as illus-
trated in Fig. 2, couples the proposal and captioning module
together. Therefore, two types of loss functions are consid-
ered in our model, specifically, the proposal loss and cap-
tioning loss.

Proposal Loss. We collect lengths of all ground-truth pro-
posals and group them into K'=128 clusters (anchors). Each
training example V = {v;}7_ is associated with ground-
truth labels {y;}7 ;. Each y; is a K-dim vectors with bi-
nary entries. y7 is set to 1 if the corresponding proposal
interval has a temporal Intersection-over-Union (tloU) with
the ground-truth larger than 0.5 and set to 0 otherwise. We
adopt weighted multi-label cross entropy as proposal loss
L, following [3] to balance positive and negative propos-
als. For a given video X € X at time step ¢:

K
Lp(e,t, X,y) ==Y whylloge] +w](1—y])log(1—cl),
j=1

- (1)
where w}, w] are determined based on the numbers of pos-
itive and negative proposal samples. c{ is the prediction
score for the j-th proposal at time ¢. We calculate forward
and backward loss in the same way. We add them together
and jointly train the forward and backward proposal mod-
ule. £, is obtained by averaged along time steps and for all
videos.

Captioning Loss. We only feed proposals of high tloU (>
0.8) with ground-truths to train captioning module. Follow-
ing [39], we define captioning loss L. as sum of negative
log likelihood of correct word in a sentence with M words:

M
L.(P) = —Zlog(p(wi)x (16)



where w; is the i-th word in a ground truth sentence. L. is
obtained by averaging all £.(P) for all proposals P.

Total Loss. By considering both proposal localization and
captioning, the total loss is given by:

L=X\XL,+ L, (17)

where A balances the contributions between proposal local-
ization and captioning, which is simply set to 0.5. A two-
layer LSTM is used to encode a video stream and densely
predict K proposals at each time step. Without loss of gen-
erality, we do not use multiple strides but with only stride
of 64 frames (2 seconds). This gives a reasonable number
of unfolding LSTM steps (60 on average) to learn tempo-
ral dependency. We do not perform stream sampling and
only take the whole video as a single stream, to make sure
all ground truth proposals are included. For fair compari-
son, we initialize our bidirectional sequence encoder with a
single layer LSTM for each direction (the baseline method
adopts a two-layer LSTM). We use a two-layer LSTM for
decoding stage (caption generation). We first train the pro-
posal module (about 5 epochs) to ensure a good initializa-
tion and then train the whole model in an end-to-end man-
ner. The Adam [ 18] optimization algorithm with base learn-
ing rate of 0.001 and batch size of 1 is used. Please note that
the above hyper parameters are the same for our method
and all baselines.

3.4. Inference by Joint Ranking

As illustrated in Fig. 2, dense captioning involves the
two aforementioned modules. As such, to affectively de-
scribe each event, two conditions need to be satisfied: (1)
the localization yielded by proposal module is of high score;
(2) the produced caption is of high confidence. To this end,
we propose a novel joint ranking approach for dense cap-
tioning during the inference stage. We use Eq. (2) to mea-
sure the proposal score C),. For a generated caption of a
proposal consisting of M words {w; } M, we define its con-
fidence by summing all log probabilities of predicted words:

M
Ce = Zlog(p(wi)). (18)
i=1

Larger p(w;) indicates higher confidence score. Let C. =

{cg)}i\; denotes confidence scores of all sentences. We
merge the two scores with a weighted sum strategy by
simultaneously considering proposal localization and cap-
tioning:

C=vxCp+C,, 19)
where + is a trade-off parameter to control the contributions
from localization and captioning. As C), is of smaller scale,
~ is empirically set as 10 in this paper. Based on the ob-
tained C, Top K proposals together with their captions are
selected for further evaluation.

4. Experiment

To detail our contributions, we conduct experiments on
the two tasks: event localization and dense event captioning.
The former evaluates how good the generated proposals are,
and the latter measures the performance of our whole dense
captioning system. We begin by describing the benchmark
dataset: ActivityNet Captions [20].

Dataset. ActivityNet Captions [20] is built on ActivityNet
v1.3 [5] which includes 20k YouTube untrimmed videos
from real life. The videos are 120 seconds long on aver-
age. Most of the videos contain over 3 annotated events
with corresponding start/end time and human-written sen-
tences, which contain 13.5 words on average. The number
of videos in train/validation/test split is 10024/4926/5044,
respectively. Ground truth annotations from the test split
are withheld for competition. Therefore, we first compare
our model with baseline methods on validation set, then we
report our final result returned from the test server.

4.1. Event Localization

Metric. We use Precision@ 1000 and Recall@1000 aver-
aged at different tloU thresholds {0.3, 0.5, 0.7, 0.9} as met-
rics. The evaluation toolkit we used is provided by [20]. We
also use F1 score to simultaneously consider precision and
recall, arguing that F1 is a more reasonable metric for event
localization, by showing experimental evidences.

Compared Methods. We compare the following methods:

e Random: Both start time and end time are chosen ran-
domly.

e Forward SST: The method used in [3].

e Backward SST: Similar as Forward SST, except that
the video sequence is fed in a reverse order.

e Bidirectional SST: Our proposed method. We combine
Forward SST and Backward SST and jointly inference
by fusing scores for the same predicted proposals.

Results. As shown in Fig. 3, Random proposal method
gives the highest recall rate among all compared methods.
The reason is that most ground truth proposals are pretty
long (30% compared to total video length on average, while
only 2% for THUMOS-14 [16] action dataset), and thus
randomly sampling can possibly cover all ground truth pro-
posals. However, random sampling gives very low pre-
cision. A low-precision proposal method will cause per-
formance degeneration for dense captioning system which
simply describes all proposals. This is different from ac-
tion detection, which involves a classification module to fur-
ther filter out background proposals. Therefore, we mainly
refer to F1 score which combines both precision and re-
call to measure how good the generated proposals are. We
compare our bidirectional proposal module with baseline
methods using F1 against different tloU thresholds with
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Table 1. Performance of different methods on ActivityNet Captions validation set. All values are reported in percentage (%). No validation

result is provided by [

]. H: context vectors, E: event features, TDA: temporal dynamic attention, CG: context gate.

Method | BLEU-1 | BLEU-2 [ BLEU-3 [ BLEU-4 | Meteor | Rouge-L | CIDEr-D
SST+H | 1678 | 594 | 222 [ 08 [ 787 | 1675 | 817
Bi-SST + H 17.25 6.48 2.68 1.20 8.35 17.56 8.49
Bi-SST +E 17.51 7.17 3.08 1.32 8.36 17.96 9.13
Bi-SST+E+H 17.50 6.95 2.94 1.28 8.78 17.68 9.10
Bi-SST + E + H + TDA 18.70 8.17 3.63 1.59 9.00 18.64 10.02
Bi-SST + E + H + TDA + CG 19.37 8.69 4.03 1.89 9.19 19.29 11.03
Bi-SST + E + H + TDA + CG + Ranking | 18.99 8.84 441 2.30 9.60 19.10 12.68

Table 2. Comparison with the state-of-art method on ActivityNet
Captions test set. The test server returns only Meteor score (in
percentage (%)).

e Bi-SST + H: We apply our bidirectional proposal
method to generating proposals. The hidden states
from both direction are concatenated to represent an

e Bi-SST + E: Mean pooled event feature is used to rep-

Method | Meteor event.
Krishna et al. [20] 4.82
Ours 9.65

ground truth proposals. Our method surpasses SST with
clear margins as shown in Fig. 3. This confirms that bidi-
rectional prediction with encoded future context indeed im-
proves proposal quality, compared to single direction pre-
diction model.

4.2. Dense Event Captioning

Metric. We mainly refer to Meteor [2] to measure the
similarity between two sentences as it is reported to be
most correlated to human judgments when a small num-
ber of sentence references are given [37]. To measure the
whole dense captioning system, we average Meteor scores
at tloU thresholds of 0.3, 0.5, 0.7, and 0.9 when describ-
ing top 1000 proposals for each video. The same strategy
has been adopted in [20]. For validation split, we also pro-
vide BLEU [28], Rouge-L [21], and CIDEr-D [37] scores
for complete comparison. For test split, we report Meteor
score, since the test server only returns Meteor result.

Compared Methods. We denote “H” as context vectors,
“E” as event clip features, “TDA” as temporal dynamic at-
tention fusion, and “CG” as context gate, respectively. We
compare the following methods:

e SST + H: This method utilizes SST [3] to generate
proposals and represents them with corresponding hid-
den states for generating descriptions. This approach
is served as our baseline.

resent the detected event.

e Bi-SST + E + H: Mean pooled event feature and hidden
states are concatenated for representation.

e Bi-SST + E + H + TDA: Temporal dynamic attention
(TDA) is used to dynamically construct visual input to
the decoder.

e Bi-SST + E + H + TDA + CG: Context gate is used to
balance the attended event feature and contexts.

e Bi-SST + E + H + TDA + CG + Ranking: Joint ranking
is further applied in inference time.

Results. The reuslts of our methods and the baseline ap-
proach on the ActivityNet Captions validation split are pro-
vided in Tab. 1. We can see that, our 6 variants all outper-
form the baseline method with large margins.

Compared to the baseline SST + H, our bidirectional
model (Bi-SST + H) gives better performance when cap-
tioning 1000 proposals. This verifies that considering both
past and future event context also help improve describing
an event.

Combining both event clip features and context vec-
tors (Bi-SST+E+H) is better than event clip features (Bi-
SST+E) or context vectors (Bi-SST+H) alone. We mainly
refer to Meteor score for comparison, as it shows better con-
sistency with human judgments with a small number of ref-
erence sentences (in our case, only one reference sentence).
We notice there is slight inconsistency for other metrics,
which has also been observed by [45, 20]. This is caused
by the imperfection of sentence similarity measurement.
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Figure 4. Qualitative dense-captioning analysis for model without

or with event clip fusion. Note that we only show proposals with

maximum tloU with the ground truths. (Best viewed in color)

the camera captures his and surfing with a surf
movements board

Based on the results of Bi-SST+E+H+TDA, applying
attention mechanism instead of mean pooling to dynami-
cally fuse event clip features and context vectors further im-
proves all scores. This variant performs better as it can gen-
erates more semantic related word by attending on video
features at each decoding step. Combining context gating
function further boosts the performance with clear margins.
This supports that explicitly modeling the relative contri-
bution from event features and contexts in decoding time
help better describe the event. Using joint ranking at in-
ference time further improve the whole system, as it gives
more confident predictions on both event proposals and cor-
responding descriptions.

In Tab. 2, comparsion of our system with the state-of-
the-art method [20] is presented. Note that our approach
uses only C3D features and does not involve any extra data.
While totally comparable to Krishna ez al. [20], our method
surpasses [20] with 100% performance gain. This strongly
supports the effectiveness of our proposed model.

Qualitative Analysis. For intuitively analyzing the effec-
tiveness of fusing event clip for dense captioning, we show
some cases in Fig. 4. The fusion mechanism allows the sys-
tem to pay more “attention” to current event while simulta-
neously referring to contexts, and thus can generate more
semantic-related sentences. In contrast, the system with-
out event clip fusion generally tends to make more seman-
tic mistakes, either incorrect (Fig. 4 (a) and (b)) or seman-

13 m— SST+H
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12 —Bi-SST + H
== Bi-SST + E + H
11 == Bi-SST + E + H + TDA
= Bi-SST + E + H + TDA + CG
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— 10
5 \—/
2 S
o 9 =
=
8
7
6
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Figure 5. Meteor scores vs event proposal lengths.

tic ambiguous (Fig. 4 (c)). For example, when describing
video (c), by incorporating event clip features, the system is
more confident to say “The man is surfing with a surf board”
instead of simply saying “riding down the river.”

Fig. 5 shows how Meteor scores change as proposal
lengths vary from a few seconds to several minutes. We
can see that the performances of all methods degenerate
when describing very long proposals (> 60s). This sug-
gests that understanding long events and describing them
is still a challenging problem, as long events are usually
more complicated. Bi-SST+H works better than SST-H as
we combine both past and future context information. We
note that SST+H and Bi-SST+H both go down steeply as
proposals become longer. The reason is that it is still very
hard for LSTM to learn long-term dependency. Using only
hidden states to represent an event is thus quite suboptimal.
In contrast, fusing event features compensates such infor-
mation loss. All methods using “E” (event features) show
much better performance than their counterparts. Besides,
our model with joint ranking further improves the perfor-
mance of the whole system with large margins.

5. Conclusion

In this paper we identified and handled two challenges
on the task of dense video captioning, which are context
fusion and event representation. We proposed a novel bidi-
rectional proposal framework, namely, Bidirectional SST,
to encode both past and future contexts, with the motivation
that both past and future contexts help better localize the
current event. Building on this proposal module, we further
reused the proposal hidden states as context vectors and dy-
namically fused with event clip features to generate the vi-
sual representation. The extensive quantitative and qualita-
tive experimental results demonstrate the superiority of our
model in both localizing events and describing them.
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