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Abstract

We focus on the one-shot learning for video-based

person re-Identification (re-ID). Unlabeled tracklets for

the person re-ID tasks can be easily obtained by pre-

processing, such as pedestrian detection and tracking. In

this paper, we propose an approach to exploiting unla-

beled tracklets by gradually but steadily improving the dis-

criminative capability of the Convolutional Neural Network

(CNN) feature representation via stepwise learning. We first

initialize a CNN model using one labeled tracklet for each

identity. Then we update the CNN model by the following

two steps iteratively: 1. sample a few candidates with most

reliable pseudo labels from unlabeled tracklets; 2. update

the CNN model according to the selected data. Instead

of the static sampling strategy applied in existing works,

we propose a progressive sampling method to increase the

number of the selected pseudo-labeled candidates step by

step. We systematically investigate the way how we should

select pseudo-labeled tracklets into the training set to make

the best use of them. Notably, the rank-1 accuracy of our

method outperforms the state-of-the-art method by 21.46

points (absolute, i.e., 62.67% vs. 41.21%) on the MARS

dataset, and 16.53 points on the DukeMTMC-VideoReID

dataset

1
.

1. Introduction
Person re-identification (re-ID) aims at spotting the

person-of-interest from different cameras. In recent years,
person re-ID on the large-scale video data, such as surveil-
lance videos, has attracted significant attention [10, 20, 28,
32, 35]. Most proposed approaches rely on the fully anno-
tated data, i.e., the identity labels of all the tracklets from
multiple cross-view cameras. However, it is impractical
to annotate very large-scale surveillance videos due to the
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Figure 1. An illustration of the unlabeled data sampling procedure
in the feature space. The hollow point and solid point denote the
labeled tracklet and unlabeled tracklet, respectively. The pseudo
label of each unlabeled tracklet is assigned by its nearest labeled
neighbor (indicated by the colored line). Different colors represent
different identities. Samples in the shade will be incorporated into
training. We adopt the easy and reliable pseudo-labeled tracklets
for updating at the beginning and difficult ones in subsequence.

dramatically increasing cost. Therefore, semi-supervised
methods [21, 34] are of particular interest. This work
mainly focuses on the one-shot setting, in which only one
tracklet is labeled for each identity.

The key challenge for the one-shot video-based person
re-ID is the label estimation for the abundant unlabeled
tracklets [7, 34]. A typical approach is to generate the
pseudo labels for the unlabeled data at first. The initial la-
beled data and some selected pseudo-labeled data are con-
sidered as an enlarged training set. Lastly, this new training
set is adopted to train the re-ID model.

Most existing methods employ a static strategy to deter-
mine the quantity of selected pseudo-labeled data for fur-
ther training. For example, Fan et al. [7] and Ye et al. [34]
compare the prediction confidences of pseudo-labeled sam-
ples with a pre-defined threshold. The samples with higher
confidence over the fixed threshold are then selected for the
subsequent training. During iterations, these algorithms se-



lect a fixed and large number of pseudo-labeled data from
beginning to end. However, it is inappropriate to keep the
threshold fixed in the one-shot setting. In this case, the ini-
tial model may be not robust due to the very few training
samples. Only a few of pseudo-label predictions are reli-
able and accurate at the initial stage. If one still selects the
same number of data as that in the later stages, it will in-
evitably involve many unreliable predictions. Updating the
model with excessive not-yet-reliable data would hinder the
subsequent improvement of the model.

In this paper, to better exploit the unlabeled data in one-
shot video-based person re-ID, we propose the stepwise
learning method EUG (Exploit the Unknown Gradually).
Initially, a CNN model is trained on the one-shot labeled
tracklet. EUG then iteratively updates the CNN by two
steps, the label estimation step and the model update step.
In the first step, EUG generates the pseudo labels for unla-
beled tracklets, and selects some of pseudo-labeled tracklets
for training according to the prediction reliability. The se-
lected subset is continuously enlarged during iterations ac-
cording to a sampling strategy. In the second step, EUG
re-trains the CNN model on both the labeled data and the
sampled pseudo-labeled subset. Particularly, as illustrated
in Figure 1, EUG starts with a small-size subset of pseudo-
labeled tracklets, which includes only the most reliable and
easiest ones. In the subsequent stages, it gradually selects
a growing number of pseudo-labeled tracklets to incorpo-
rate more difficult and diverse data. This is different from
existing methods [21, 34].

To characterize the proposed progressive approach in
one-shot person re-ID, we intensively investigate two sig-
nificant aspects, i.e., how the progressive sampling strategy
benefits the label estimation and which sampling criterion
is effective for the confidence estimation in person re-ID.
For the first aspect, we find that if we enlarge the sam-
pled subset of pseudo-labeled data in a more conservative
way (at a slower speed), the model achieves a better per-
formance. If we enlarge the subset in a more aggressive
way (at a faster speed), the model achieves a worse perfor-
mance. Note that the previous static sampling strategy can
be viewed as an extremely aggressive manner. For the sec-
ond aspect, we investigate the gap between the classifica-
tion measures and retrieval evaluation metrics. We find that
the sampling criteria highly affect the performance of the
proposed method. Instead of the classification measures, a
distance-based sampling criterion for the reliability estima-
tion may yield promising performance in person re-ID.

Our contributions are summarized as follows:

• We propose a progressive method for one-shot video-
based person re-ID to better exploit the unlabeled
tracklets. This method adopts a dynamic sampling
strategy to uncover the unlabeled data. We start with
reliable samples and gradually include diverse ones,

which significantly makes the model robust.

• We apply a distance-based sampling criterion for la-
bel estimation and candidates selection to remarkably
improve the performance of label estimation.

• Our method achieves surprisingly superior perfor-
mance on the one-shot setting, outperforming the state-
of-the-art by 21.46 points (absolute) on MARS and
16.53 points (absolute) on DukeMTMC-VideoReID.

2. Related Works

Extensive works have been reported to address the video-
based person re-ID problem. One simple solution is using
image-based re-ID methods, and obtaining video represen-
tations by pooling the frame features [10, 16, 20].

Supervised Video-based Person Re-ID. Recently, a
number of deep learning methods are developed [24, 29, 32,
35, 39, 40]. The typical architecture is to combine CNN and
RNN to learn a video representation or the similarity score.
In [40], temporal attention information and spatial recur-
rent information are used to explore contextual representa-
tion. Another commonly used architecture is the Siamese
network architecture [18, 29, 32], which also achieve rea-
sonably good performance.

Semi-Supervised Video-based Person Re-ID. Most
works of semi-supervised person re-ID are based on image
[1, 8, 19, 22]. The approaches of these works include dic-
tionary learning, graph matching, metric learning, etc. To
the best of our knowledge, there are three works aiming at
solving the semi-supervised video-based re-ID task. Zhu et

al. [41] proposed a semi-supervised cross-view projection-
based dictionary learning (SCPDL) approach. A limitation
is that this approach is only suitable for datasets that only
captured by two cameras.

There are two recent works designed for one-shot video
re-ID task [21, 34]. Although [21, 34] claim them as un-

supervised methods, they are one-shot methods in experi-
ments, as they require at least one labeled tracklet for each
identity. They assume that the tracklets are obtained by
tracking, and this process is automatic and unsupervised.
Different tracklets from one camera with a long-time inter-
val are assumed representing different identities. However,
to conduct experiments in existing datasets, both methods
require the annotation of at least a sample for each iden-
tity. To be more rigorous, we take this problem as a one-
shot task. Ye et al. [34] propose a dynamic graph matching
(DGM) method, which iteratively updates the image graph
and the label estimation to learn a better feature space with
intermediate estimated labels. Liu et al. [21] update the
classifier with K-reciprocal Nearest Neighbors (KNN) in
the gallery set, and refine the nearest neighbors by apply
negative sample mining with KNN in the query set. While



graph-based semi-supervised learning [33] could possibly
be adopted for one-shot person Re-ID, it is time-consuming
to solve a linear system for each query.

Progressive Paradigm. Curriculum Learning (CL) is
proposed in [2], which progressively obtains knowledge
from easy to hard samples in a pre-defined scheme. Ku-
mar et al. [15] propose Self-Paced Learning (SPL) which
takes curriculum learning as a regularization term to up-
date the model automatically. The self-paced paradigm is
theoretically analyzed in [13, 23]. Some works manage
to apply the progressive paradigm in the computer vision
area [5, 6, 27]. We are inspired by these progressive al-
gorithms. Compared with the existing SPL and CL algo-
rithms, we incorporated the retrieval measures (the distance
in feature space) into the learning mechanism, which well
fits the evaluation metric for person re-ID. Moreover, most
previous SPL and CL works mainly focus on the supervised
and semi-supervised task. Few are used in the one-shot
learning setting.

3. The Progressive Model
3.1. Preliminaries

We first introduce the necessary notations. Let L =
{(x1, y1), ..., (xnl

, y

nl
)} be the labeled dataset, and U =

{(x
nl+1), ..., (xnl+nu

)} be the unlabeled dataset, where x

i

and y

i

denotes the i-th tracklet data and its identity label, re-
spectively. We thus have |L| = n

l

and |U| = n

u

where |·| is
the cardinality of a set. Following recent works [7, 17, 38],
we take the training process as an identity classification
task. For training on the labeled dataset, we have the fol-
lowing objective function:

min
✓,w

nlX

i=1

`(f(w;φ(✓;x
i

)), y
i

), (1)

where φ is an embedding function, parameterized by ✓, to
extract the feature from the data x

i

. CNN models [3, 4,
9, 11, 30, 31] are usually used as the function φ. f is a
function, parameterized by w, to classifier the embedded
feature φ(✓;x

i

) into a k-dimension confidence estimation,
in which k is the number of identities. ` denotes the suffered
loss on the label prediction f(w;φ(✓;x

i

)) and its ground
truth identity label y

i

.
To exploit abundant unlabeled tracklets with pseudo la-

bels, we consider the following objective function in the
one-shot re-ID problem:

min
✓,w,si,ŷi

nlX

i=1

`(f(w;φ(✓;x
i

), y
i

))+

nl+nuX

i=nl+1

s

i

`(f(w;φ(✓;x
i

), ŷ
i

)),

(2)

where ŷ

i

denotes the machine generated pseudo labels for
the i-th unlabeled data. s

i

2 {0, 1} is the selection indicator
for the unlabeled sample x

i

, which determine whether the
suffered loss of pseudo-labeled data (x

i

, ŷ

i

) is adopted in
optimizing. We use s to indicate the vertical concatenation
of all s

i

.
In the evaluation stage, for both of query data and gallery

data, we only use φ(✓; ·) to embed each tracklet into the fea-
ture space. The query result is the ranking list of all gallery
data according to the Euclidean Distance between the query
data and each gallery data, i.e., ||φ(✓;x

q

)− φ(✓;x
g

)||2,
where x

q

and x

g

denote the query tracklet and the gallery
tracklet, respectively.

3.2. Framework Overview

In this work, we propose a stepwise learning method to
exploit the unlabeled data gradually and steadily. We adopt
an alternative algorithm to solve the Eq. (2). Specifically,
we first optimize ✓ and w, and then optimize ŷ and s, i.e.,
the model updating and the label estimating.

Let S denote the set of selected pseudo-labeled candi-
dates. We can obtain S by:

S = {(x
i

, ŷ

i

)|s
i

= 1, n
l

+ 1  i  n

l

+ n

u

}. (3)

Our approach first trains an initial model on the labeled data
L, and then the initial model is applied to predict pseudo la-
bels ŷ on the unlabeled data. In subsequence, according to
a label reliability evaluation criterion, we generate the se-
lection indicators s in order to obtain the candidates set S
via Eq. (3). In the model update step, the set S along with
the initial labeled set L is regarded as the new training set
D, i.e., D = L [ S . The set D will be utilized to re-train
the model so as to make the model more robust. During
training iterations, the candidates set S in each step is en-
larged continuously. In this way, we can progressively learn
a more stable model.

To be specific, for our progressive strategy EUG, we
adopt an end-to-end CNN model with temporal average
pooling (ETAP-Net) as the feature embedding function φ.
The ETAP-Net is an adaption of ResNet-50 architecture for
video inputs, where we add a fully-connected layer and
a temporal average pooling layer before the classification
layer. As shown in Figure 2, for each tracklet, all frames
are processed to obtain frame-level feature embedding. The
frame features within a tracklet are then element-wise aver-
aged as the tracklet feature representation by the temporal
average pooling layer. In the label estimation step, for each
unlabeled video tracklet, the pseudo label is assigned by the
identity label of its nearest labeled neighbor in the tracklet
feature space. The distance between them is considered as
the dissimilarity cost, which is used to measure the reliabil-
ity of its pseudo label.
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Figure 2. Overview of the framework. Different colors represent different identity samples. The CNN model is initially trained on the
labeled one-shot data. For each iteration, we (1) select the unlabeled samples with reliable pseudo labels according to the distance in
feature space and (2) update the CNN model by the labeled data and the selected candidates. We gradually enlarge the candidates set
to incorporating more difficult and diverse tracklets. For a tracklet, each frame feature is first extracted by the CNN model and then
temporally averaged as the tracklet feature. We take the training process as an identity classification task, and regard the evaluation as a
retrieval problem on the features of the test tracklets.

3.3. Progressive and Effective Sampling Strategy

It is crucial to obtain the appropriately selected candi-
dates S to exploit the unlabeled data. In this procedure,
two significant aspects are mainly considered: First, how to
ensure the reliability of selected pseudo-labeled samples?
Second, what is an effective sampling criterion on the unla-
beled data for one-shot person re-ID?

Discussion on Sampling Strategy. The reliability of
pseudo labels originates from two main challenges in the
one-shot learning setting. (1) the initial labeled data are too
few to depict the detailed underlying distribution. (2) learn-
ing a CNN model on a not-yet-reliable training set may not
improve the re-ID performance. The interplay of these two
factors hinders the further performance improving. There-
fore, it is irrational to incorporate excessive pseudo-labeled
data into training at the initial iteration.

Discussion on Sampling Criterion. The previous works
sample the unlabeled data from confident to uncertain ones
according to the classification loss [5, 6, 27]. However, the
loss from classification prediction does not well fit the re-
trieval evaluation. Moreover, it is far away to train a robust
identity classifier in the one-shot setting, where each class
has only one sample for training. The classifier may eas-
ily over-fit the one-shot labeled data and may not learn the
intrinsic distinction in classification. Therefore, the classifi-
cation prediction may be not reliable on an unseen sample.

Our Stepwise Solution. To address aforementioned
two problems, we propose (1) a dynamic sampling scheme,
which progressively increases the number of selected
pseudo-labeled samples; (2) an effective sampling criterion,
which takes the distance in the feature space as a measure
of reliability.

The proposed dynamic sampling scheme steadily in-
creases the size of selected candidates set |S| during iter-
ations. It starts with a small proportion of pseudo-labeled
data at the beginning stages, and then incorporates more di-
verse samples in the following stages. As the training iter-
ation goes, the reliability of pseudo labels grows steadily,
because the re-ID model becomes more robust and discrim-
inative. Therefore, more pseudo-labeled candidates can be
adopted into training.

For sampling criterion, instead of classification predic-
tion, we adopt the Nearest Neighbors (NN) classifier for the
label estimation. For the one-shot setting, the NN classi-
fier in the feature space may be a better choice, since sim-
ilar input data always have similar feature representations.
The NN classifier assigned the label of each unlabeled data
by its nearest labeled neighbor in feature space. We define
the confidence of label estimation as the distance between
the unlabeled data and its nearest labeled neighbor. For the
candidates selection, we select some of top reliable pseudo-
labeled data according to their label estimation confidence.



Algorithm 1 Exploit the Unknown Gradually
Input: Labeled data L, unlabeled data U , enlarging factor

p 2 (0, 1), initialized CNN model ✓0.
Output: The best CNN model ✓⇤.
1: Initialize the selected pseudo-labeled data S0  ;,

sampling size m1  p · n
u

, iteration step t  0, best
validation performance V

⇤  0
2: while m

t+1  |U| do
3: t  t+ 1
4: Update training set: D

t

 L[ S
t−1

5: Train the CNN model (✓
t

,w
t

) based on D
t

.
6: Generate the selection indicators s

t

via Eq. (5)
7: Update S

t

based on s
t

via Eq. (3)
8: Update the sampling number: m

t+1  m

t

+ p · n
u

9: end while
10: for i  1 to T do
11: Evaluate ✓

i

on the validation set ! performance V

i

12: if V
i

> V

⇤ then
13: V

⇤
,✓⇤  V

i

,✓
i

14: end if
15: end for

More formally, we define the dissimilarity cost for each
unlabeled data x

i

2 U as:

d(✓;x
i

) = min
xl2L

||φ(✓;x
i

)− φ(✓;x
l

)||2, (4)

The cost is the minimum l2 distance between the unlabeled
data x

i

and an arbitrary labeled data x

l

2 L in the fea-
ture space parameterized by ✓. The dissimilarity cost is
considered as the criterion for measuring the confidence of
pseudo-labeled data. For the candidates selection, at the it-
eration step t, we sample the pseudo-labeled candidates into
training by setting the selection indicator s

t

as follows:

s
t

= arg min
||s||0=mt

nl+nuX

i=nl+1

s

i

d(✓;x
i

), (5)

where the m

t

denotes the size of selected pseudo-labeled
set. As the iteration step t increases, we enlarge the size of
sampled pseudo-labeled data by set m

t

= m

t−1 + p · n
u

.
p 2 (0, 1) is the enlarging factor which indicates the speed
of enlarging the candidates set during iterations. Eq. (5) se-
lects the top m

t

nearest unlabeled data for all the labeled
data at the iteration step t. As described in Algorithm 1, we
evaluate the model φ(✓

t

; ·) on the validation set at each iter-
ation step and output the best model. In the one-shot experi-
ment, we take another video-based person re-ID training set
as the validation set.

How to find a proper enlarging factor p? An aggres-

sive choice is to set p to a very large value, which urges m
t

to increase rapidly. As a result, the sampled pseudo-labeled
candidates may not be reliable enough to train a robust CNN
model. A conservative option is to set p to a very small

value, which means m
t

progressively enlarges with a small
change in each step. This option tends to result in a very
stable increase in the performance and a promising perfor-
mance in the end. The disadvantage is that it may require
an excessive number of stages to touch great performance.

4. Experiments

4.1. Datasets and Settings

The MARS dataset [36] is the largest video dataset
for the person re-identification task captured in a univer-
sity campus. The dataset contains 17,503 tracklets for 1,261
identities and 3,248 distractor tracklets, which are captured
by six cameras. This dataset is split into 625 identities
for training and 636 identities for testing. Every identity
in the training set has 13 video tracklets on average and
816 frames on average. The bounding boxes are detected
and tracked using the Deformable Part Model (DPM) and
GMMCP tracker.

The DukeMTMC dataset [26] is a large-scale dataset
aiming for multi-camera tracking. This dataset was cap-
tured in outdoor scenes with noisy background and suffers
from illumination, pose, and viewpoint change and occlu-
sions. To conduct our experiment, here we use a subset
of DukeMTMC as the DukeMTMC-VideoReID 2 dataset
specially for video-based re-ID. Since this dataset is man-
ual annotated, each identity only has one tracklet under a
camera. We crop pedestrian images from the videos for 12
frames every second to generate a tracklet. The dataset is
split following the protocol in [37], i.e., 702 identities for
training, 702 identities for testing, and 408 identities as the
distractors. Totally, we generate 369,656 frames of 2,196
tracklets for training, and 445,764 frames of 2,636 tracklets
for testing and distractors.

Evaluation Metrics. We use the Cumulative Matching
Characteristic (CMC) curve and the mean average precision
(mAP) to evaluate the performance of each method. For
each query, its average precision (AP) is computed from its
precision-recall curve. The mAP is calculated as the mean
value of average precisions across all queries. We report
the Rank-1, Rank-5, Rank-20 scores to represent the CMC
curve. These CMC scores reflect the retrieval precision,
while the mAP reflects the recall.

Experiment Setting. For one-shot experiments, we use
the same protocol as [21]. In both datasets, we randomly
choose one tracklet in camera 1 for each identity as initial-
ization. If there is no tracklet recorded by camera 1 for one
identity, we randomly select one tracklet in the next camera
to make sure each identity has one video tracklet for initial-
ization. Note that as discussed in Section 2, [21, 34] are the
same one-shot setting in experiments.

2DukeMTMC-VideoReID is available at https://yu-wu.net



Methods MARS DukeMTMC-VideoReID
rank-1 rank-5 rank-20 mAP rank-1 rank-5 rank-20 mAP

Baseline (one-shot) 36.16 50.20 61.86 15.45 39.60 56.84 66.95 33.27
DGM+IDE[34] 36.81 54.01 68.51 16.87 42.36 57.92 69.31 33.62
Stepwise[21] 41.21 55.55 66.76 19.65 56.26 70.37 79.20 46.76
EUG (p = 0.30) 42.77 56.51 67.17 21.12 63.82 78.64 87.04 54.57
EUG (p = 0.20) 48.68 63.38 72.57 26.55 68.95 81.05 89.46 59.50
EUG (p = 0.15) 52.32 64.29 73.08 29.56 69.08 81.19 88.88 59.21
EUG (p = 0.10) 57.62 69.64 78.08 34.68 70.79 83.61 89.60 61.76
EUG (p = 0.05) 62.67 74.94 82.57 42.45 72.79 84.18 91.45 63.23
Baseline (supervised) 80.75 92.07 96.11 67.39 83.62 94.59 97.58 78.34

Table 1. Comparison with the state-of-the-art methods on MARS and DukeMTMC-VideoReID. All the methods are conducted based on
the same backbone model ETAP-Net. Baseline (one-shot) is the initial model trained on one-shot labeled data. p is the enlarging factor
that indicates the enlarging speed of the sampled subset. At the bottom we provide the Baseline (supervised) result as a upper bound where
100% training data are labeled.

Implementation Details. We use PyTorch [25] for all
experiments. As discussed in Section 3.2, we take ETAP-
Net as our basic CNN model for training on video-based
re-ID. In experiments, we take ImageNet [14] pre-trained
ResNet-50 model with last classification layer removed as
the initialization of ETAP-Net. For training as a classifi-
cation task for each identity, an additional fully-connected
layer with batch normalization [12] and a classification
layer are appended at the end of the model. The parame-
ters of the first three residual blocks of ResNet-50 are kept
fixed in training to save GPU memory and boost iterations.
In training, we randomly sample 16 frames as the input for
each tracklet. In label estimation and evaluation steps, all
the frames are processed by the CNN model to get the rep-
resentations for each tracklet, which are further l2 normal-
ized and used to calculate the Euclidean distance. We adopt
the stochastic gradient descent (SGD) with momentum 0.5
and weight decay 0.0005 to optimize the parameters for 70
epochs with batch size 16 in each iteration. The overall
learning rate is initialized to 0.1 and changed to 0.01 in the
last 15 epochs.

4.2. Comparison with the State-of-the-Art Methods

We compare our method to DGM [34] and Stepwise [21]
on the one-shot task. Note that although [21, 34] claim
them as unsupervised methods, they are actually one-shot

methods in experiments, because they require at least one
labeled tracklet for each identity. Since the performances of
both works were reported based on hand-crafted features,
to make a fair comparison, we reproduce their methods us-
ing the same backbone model ETAP-Net (ResNet-50) as
ours. The re-ID performance on MARS and DukeMTMC-
VideoRe-ID are summarized in Table 1. On the MARS
dataset, we achieve surprising result with rank-1 accuracy
62.67%, mAP 42.45% with enlarging factor 0.05, which
greatly outperform the state-of-the-art result by 21.46 points

and 22.8 points (absolute), respectively. The great perfor-
mance gap between [21, 34] and ours is due to the excessive
not-yet-reliable pseudo-labeled data incorporated at the first
iteration. The estimation errors are accumulated during it-
erations and thus limit the further enhancement.

Moreover, Baseline (one-shot) and Baseline (supervised)
are our initial model and the upper bound model, respec-
tively. Baseline (one-shot) takes only the one-shot labeled
data as the training set and do not exploit the unlabeled
data. Baseline (supervised) is conducted on the fully super-
vised setting that all tracklets in the dataset are labeled and
adopted in training. Specifically, we achieve 26.51 points
and 33.19 points rank-1 improvements over the Baseline
(one-shot) on MARS and DukeMTMC-VideoReID, respec-
tively.

4.3. Algorithm Analysis

Analysis on the sampling criteria. As mentioned in
Section 3.3, some previous works such as SPL take the
classification loss as the criterion. The label estimation and
evaluation performances of sampling by classification loss
and by dissimilarity cost are illustrated in Figure 3 and Table
2. From the figure, we observe the huge performance gaps
for both label estimation and evaluation. The label estima-
tions of both criteria achieve similar and high precision at
the beginning stage. However, the label estimation accuracy
gap between two criteria gradually enlarges. As a result,
the performance of the classification loss criterion is only
enhanced to a limited extent and drops quickly in the sub-
sequence. Table 2 shows the evaluation performance dif-
ferences of the two criteria with different enlarging factors.
With the same enlarging factor, the criterion of sampling by
dissimilarity cost always leads to the superior performance.
When the enlarging factor is set to 0.05, the best rank-1 ac-
curacy on evaluation for classification loss and dissimilarity
cost is 48.33% and 62.67%, respectively.
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Figure 3. Comparison with two sampling criteria on MARS when the Enlarging Factor p = 0.1. (a) and (b): Precision and recall of
the pseudo label prediction of selected pseudo-labeled candidates during iterations with different sampling criteria. (c) and (d): Rank-
1 accuracy and mAP of person re-ID on the evaluation set during iterations with different sampling criteria. The x-axis stands for the
percentage of selected data from entire unlabeled data for updating. Each solid point indicates an iteration step.

Enlarging Factor Criteria rank-1 rank-5 mAP

p = 0.05
Classification 48.33 62.67 25.35
Dissimilarity 62.67 74.94 42.45

p = 0.10
Classification 46.86 60.25 24.23
Dissimilarity 57.62 69.64 34.68

p = 0.15
Classification 46.53 60.12 24.03
Dissimilarity 52.32 64.29 29.56

p = 0.20
Classification 45.91 59.95 23.56
Dissimilarity 48.68 63.38 26.55

p = 0.30
Classification 41.86 56.01 20.24
Dissimilarity 42.77 56.51 21.12

Table 2. Comparison of the two criteria on MARS. The ”Classi-
fication” and ”Dissimilarity” denotes the EUG methods with the
classification loss criterion and the dissimilarity cost criterion, re-
spectively. Note for that with the same enlarging factors, the dis-
similarity cost criterion always lead to a superior performance.

Analysis over iterations. Figure 4 illustrates the label
estimation performance and evaluation performance over
iterations. At the initial iteration, the precision of pseudo
label for the selected subset (blue line) is relatively high,
since EUG only adopts a few of most reliable samples. In
later stages, as EUG gradually incorporates more difficult
and diverse samples, the precision drops along with the re-
call (red line) rising. In spite of the descending of preci-
sion, the F-score of label estimation (green line) continuous
increases. Throughout iterations, the precision of pseudo
label estimation for all the unlabeled data (orange line) con-
stantly increases from 29.8% to 54.96%, which indicates
the model grows robust steadily. At the last few iterations,
the evaluation performance stops to increase, because the
gain of adding new samples is offset by the loss of exces-
sive pseudo label errors.

Analysis on the enlarging factor. For the iteration t,
t ⇤ p percent of unlabeled tracklets with reliable pseudo la-
bels are sampled for updating the model. The effectiveness
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Figure 4. The label estimation performance with the enlarging fac-
tor = 0.1 over iterations on MARS. ”Prec-S”, ”Recall-S” and ”F-
Score” denote the label estimation precision, recall and F-score
for the selected pseudo-labeled candidates. ”Prec-All” denotes
the overall label estimation precision for all the unlabeled data.
”mAP-Eval” represents the mAP performance of the evaluation
on the test set. Note that on all the unlabeled data the overall label
estimation accuracy is constantly increasing, which indicates the
model learns much information throughout iterations.

of enlarging factor p is shown in Figure 5. Two conclu-
sions can be inferred: First, the model always achieves a
better performance if we enlarge the selected set at a slower
speed. The huge gaps among the five curves show that the
great impact of the enlarging factor. Second, we observe
that the gaps among the five curves are relatively small in
the first several iterations and gradually enlarge in the later
iterations. It shows the estimation errors are accumulated
during iterations. This is because that the performance of
the trained CNN model highly depends on the reliability of
the training set. As a result, the evaluation performances
appear obvious different in the last few iterations.
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Figure 5. Comparison with different value of enlarging factor on MARS. (a) and (b) : Precision and recall of the pseudo label prediction
of selected candidates with different enlarging factors. (c) and (d) : Rank-1 and mAP of person re-ID on the evaluation set with different
enlarging factors. ”EF” denotes the enlarging factor. The x-axis stands for the ratio of selected data from entire unlabeled data for updating.
Each solid point indicates an iteration step. Note for that the lower enlarging factor is beneficial for improving performance.
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Iter 0

Iter 1

Iter 2

Iter 5

Iter 6

Iter 7

Figure 6. The selected pseudo-labeled tracklets for an identity ex-
ample on MARS with the enlarging factor p = 0.1. Error esti-
mated samples are in red rectangles. All the tracklets incorporated
in the former iterations are naturally selected by later ones. For
this identity, one tracklet is missed, and four false samples are se-
lected. Observe that the tracklet selected is easy and reliable at the
beginning stage and difficult and diverse in the later stage.

4.4. Visualization

We visualize the selected samples for an identity dur-
ing iterations in Figure 6. Since the initial tracklets is cap-
tured from the side view of the pedestrian, the two unlabeled
tracklets captured from the same side are easily selected in
iteration 0. In iteration 1 and 2, some tracklets in the be-
hind or front view of the pedestrian are selected. The above
tracklets are relatively easier for sampling. Further, in it-

eration 5 and 6, video tracklets suffering from obstructing
and color variance are sampled. In iteration 7, samples with
pedestrian of small size and dark background are selected.
It’s clear that the samples are selected from easy to hard,
from similar to diverse. Note that there is no tracklet se-
lected for this identity in iteration 3 and 4, which indicates
the huge difficulty gap. There are also four mismatches in
iteration 5, 6, and 7, in which the pedestrian is very similar
to the ground truth identity, with the same pink shirt, gray
pants, and long hair.

5. Conclusion

Label estimation for unlabeled tracklets is crucial for
one-shot person re-ID. The challenge in the one-shot set-
ting is that the pseudo labels are not reliable enough, which
prevents the trained model from improving robust. To solve
this problem, we propose a dynamic sampling strategy to
start with easy and reliable unlabeled samples and gradu-
ally incorporating diverse tracklets for updating the model.
We found that if we enlarge the selected set at a slower
speed, the model achieves a better performance. In addi-
tion, we present a sampling criterion to remarkably improv-
ing the performance of label estimation. Our method sur-
passes the state-of-the-art method by 21.46 points (abso-
lute) in rank-1 accuracy on MARS, and 16.53 points (ab-
solute) on DukeMTMC-VideoReID. In sum, the proposed
method is effective in exploiting the unlabeled data and re-
ducing the annotation work load for one-shot video-based
person re-ID.
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