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Abstract

Recent progress on salient object detection is benefi-

cial from Fully Convolutional Neural Network (FCN). The

saliency cues contained in multi-level convolutional fea-

tures are complementary for detecting salient objects. How

to integrate multi-level features becomes an open problem

in saliency detection. In this paper, we propose a novel

bi-directional message passing model to integrate multi-

level features for salient object detection. At first, we adopt

a Multi-scale Context-aware Feature Extraction Module

(MCFEM) for multi-level feature maps to capture rich con-

text information. Then a bi-directional structure is de-

signed to pass messages between multi-level features, and

a gate function is exploited to control the message passing

rate. We use the features after message passing, which si-

multaneously encode semantic information and spatial de-

tails, to predict saliency maps. Finally, the predicted results

are efficiently combined to generate the final saliency map.

Quantitative and qualitative experiments on five benchmark

datasets demonstrate that our proposed model performs fa-

vorably against the state-of-the-art methods under different

evaluation metrics.

1. Introduction

Salient object detection aims to localize the most con-

spicuous and eye-attracting regions in an image. It can

be taken as a pre-processing step in many computer vi-

sion tasks, such as scene classification [25], visual track-

ing [3, 21], person re-identification [40] and image re-

trieval [5]. Although numerous valuable models have been

proposed, it is still difficult to locate salient object accu-

rately especially in some complicated scenarios.

In recent years, the Fully Convolutional Neural Network

(FCN) has shown impressive results in dense prediction

tasks, such as semantic segmentation [19], contour detec-
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Figure 1. Visual examples of our method and RFCN [29]. From

left to right: (a) input image, (b) ground truth, (c) saliency map of

the proposed method, (d) saliency map of RFCN [29].

tion [31] and pose estimation [34]. Motivated by this, sev-

eral attempts have been performed to utilize FCN in salient

object detection [18, 38, 28, 20, 37]. Although these models

could achieve promising results, there are still two prob-

lems. Firstly, most previous FCN-based saliency detec-

tion models [29, 27, 38, 12] stack single-scale convolu-

tional and max pooling layers sequentially to generate deep

features. Due to the limited receptive fields, the learned

features might not contain rich context information to pre-

cisely detect the objects with various scales, shapes and lo-

cations (see the fourth column in Fig. 1). Secondly, early

works [29, 18, 15, 12] predict saliency maps by mainly us-

ing high-level features from deep convolutional layers. The

lack of low-level spatial details may make the saliency maps

fail to retain fine object boundaries. This motivates sev-

eral efforts [37, 8, 14] to exploit multi-level convolutional

features for saliency detection. Hou et al. [8] propose to

add short connections between multiple side output layers

to combine features of different levels. However, the short

connections are only performed from deep side output lay-

ers to shallow ones and ignore the information transmission

in the opposite direction. Thus the deep side outputs still

lack the low-level details contained in shallow side output



layers. Another work by Zhang et al. [37] aggregates multi-

level features by concatenating feature maps from both high

level and low level. However, the direct concatenation of

feature maps at all levels without weighting their impor-

tance is not the optimal way to effectively fuse them. As

the multi-level features are not always useful for every in-

put image, this aggregation method would lead to informa-

tion redundancy. More importantly, inaccurate information

at some levels would lead to a performance degradation or

even wrong prediction. In consequence, it is of great impor-

tance to design a mechanism to filter the undesired features

and let the beneficial ones at each level adaptively fuse with

other levels.

In this paper, we propose a novel bi-directional message

passing model for salient object detection. For the first

problem, we design a Multi-scale Context-aware Feature

Extraction Module (MCFEM) to capture multi-scale con-

textual information. For each side output, we obtain mul-

tiple feature maps by stacking dilated convolutional lay-

ers [35] with different receptive fields. The feature maps

are then fused by concatenating to capture objects as well

as useful image context at multiple scales. For the sec-

ond problem, we introduce a Gated Bi-directional Message

Passing Module (GBMPM). We put forward a bi-directional

structure to pass messages among features from different

levels. With this structure, high-level semantic information

in deeper layers is passed to shallower layers and low-level

spatial details contained in shallower layers are passed in

the opposite direction. As a result, the semantic concept

and fine details are incorporated at each level. Besides, we

use the gate function to control the message passing, so that

the useful features are transmitted and the superfluous fea-

tures are abandoned. The GBMPM provides an adaptive

and effective strategy for incorporating multi-level features.

The integrated features are complementary with each other

and robust for handling different scenes. In summary, the

MCFEM and GBMPM in our model work collaboratively

to accurately detect the salient objects (see the third column

in Fig. 1). Our contributions are summarized as three folds:

- We propose a multi-scale context-aware feature extrac-

tion module to capture rich context information for

multi-level features to localize salient objects with var-

ious scales.

- We put forward a gated bi-directional message passing

module to adaptively and effectively incorporate multi-

level convolutional features. The integrated features

are complementary and robust for detecting salient ob-

jects in various scenes.

- We compare the proposed approach with 13 state-of-

the-art saliency detection methods on five datasets.

Our method achieves the best performance under dif-

ferent evaluation metrics. Besides, the proposed model

has a near real-time speed of 22 fps.

2. Related Work

2.1. Salient Object Detection

Early methods predict saliency using bottom-up compu-

tational models and low-level hand-crafted features. A ma-

jority of them utilize heuristic saliency priors, such as color

contrast [4, 1], boundary background [33, 41] and center

prior [10]. More details about the traditional methods could

be referred in [2].

In recent years, convolutional neural network (CNN) has

achieved competitive performance in many computer vision

tasks. In salient object detection, a lot of deep learning mod-

els with various network architectures have been proposed.

Some early deep saliency models utilize CNN features to

predict the saliency scores of image segments like super-

pixels [15] or object proposals [27]. For instance, Wang et

al. [27] propose two convolutional neural networks to com-

bine local superpixel estimation and global proposal search

for salient object detection. In [15], Li et al. compute

saliency value of each superpixel by extracting its contex-

tual CNN features. These methods could achieve state-of-

the-art saliency detection results. However, the fully con-

nected layers added in the network decrease the computa-

tional efficiency and drop the spatial information. To handle

this problem, several methods have been put forward which

utilize FCN to generate a pixel-wise prediction. In [12],

Lee et al. propose to embed low-level spatial features into

the feature maps and then combine them with CNN fea-

tures to predict saliency maps. Liu et al. [18] build a two-

stage network for salient object detection. The first stage

produces a coarse prediction using global structure, and the

second stage hierarchically refines the details of saliency

maps via integrating local context information. Wang et

al. [29] generate saliency prior map using low-level cues

and exploit it to guide the saliency prediction in a recur-

rent fashion. The above-mentioned methods mainly use

specific-level features for generating saliency maps. Dif-

ferent from them, we propose a gated bi-directional mes-

sage passing module to integrate multi-level features for

accurately detecting salient objects. Besides, many previ-

ous works obtain the multi-scale features by feeding paral-

lel networks with multi-context superpixels [15] or rescaled

images [14]. In contrast to them, we capture rich context

information for multi-level features in one network using

multi-scale context-aware feature extraction module.

2.2. Multi­level Feature Integration

Recently, several works for dense prediction tasks [19,

6, 31] have proved that features from multiple layers are

beneficial to generate better results. Features in deeper
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Figure 2. The overall framework of our proposed model. Each colorful box represents a feature block. Our model takes a RGB image

(256× 256× 3) as input, and exploits VGG-16 [26] to extract multi-level features (blue boxes). Then the MCFEM (orange boxes) is used

to capture context information for multi-level features. Their integration is performed by a gated bi-directional message passing module,

where the gate function is employed to control the message passing rate. The integrated features {h3

i } (gray boxes) are used for saliency

prediction and the final saliency map is the fused output of multiple predicted saliency maps.

layers encode the semantic knowledge for recognizing the

object categories, while features in shallower layers retain

finer spatial details for reconstructing the object boundary.

Some attempts [37, 8, 14] have been conducted to exploit

multi-level CNN features for salient object detection. Hou

et al. [8] propose to integrate multi-level features by build-

ing short connections from deep layers to shallow layers.

In [37], Zhang et al. propose a feature aggregating frame-

work, in which the multi-level CNN features are integrated

into different resolutions to predict saliency maps. Li et al.

[14] put forward a top-down refinement network, where fea-

tures from deeper layers are passed to the shallower ones.

Our method is clearly different from the above approaches

on two aspects. Firstly, in these methods, feature integra-

tion is performed by passing features from deeper layers

to the shallower ones. While our method proposes a bi-

directional message passing module, where semantic infor-

mation in deeper layers and fine details in shallower layers

can transmit mutually. So the multiple saliency cues are in-

corporated at each level. Secondly, these methods always

use sum or concatenation operations to integrate multi-level

features without weighting their importance. While we ex-

ploit a gate function to control the message passing between

different layers. The gate function could determine the on-

and-off of multi-level features and selectively pass useful

information from current layer to other layers.

3. Proposed Algorithm

In this section, we first describe the overall architecture

of our proposed model in Sec. 3.1. Then we give the de-

tailed formulas of multi-scale context-aware feature extrac-

tion module in Sec. 3.2. Sec. 3.3 provides the implementa-

tion of the gated bi-directional message passing module. At

last, we introduce the saliency inference module in Sec. 3.4.

3.1. Overview of Network Architecture

In this paper, we propose a bi-directional message pass-

ing model to address salient object detection. Our net-

work consists of three components: multi-scale context-

aware feature extraction module, gated bi-directional mes-

sage passing module and saliency inference module. The

overall architecture is shown in Fig. 2. Our model is built

on the FCN architecture with VGG-16 net [26] as a pre-

trained model. We first feed the input image into the VGG-

16 net to produce multi-level feature maps which capture

different information about the salient objects. We make

two modifications to the VGG-16 net, so that it can fit

saliency detection task. Firstly, we discard all the fully-

connected layers of the VGG-16 net as our task focuses on

pixel-wise prediction. Secondly, we remove the last pool-

ing layer to retain details of last convolutional layer. The

revised VGG-16 net provides feature maps at five stages.

Then we propose to add a Multi-scale Context-aware Fea-



Layer filter dilation rate output

Conv1-2 3*3,32 1/3/5/7 256*256*128

Conv2-2 3*3,32 1/3/5/7 128*128*128

Conv3-3 3*3,32 1/3/5/7 64*64*128

Conv4-3 3*3,32 1/3/5/7 32*32*128

Conv5-3 3*3,32 1/3/5/7 16*16*128

Table 1. Details of multi-scale context-aware feature extraction

module (MCFEM). The “filter” with (k*k,c) means the kernel size

and channel are k and c. The MCFEM first takes the feature from

a side output of VGG-16 net as input. The four convolutional lay-

ers with different dilation rates are adopted to capture multi-scale

context information. Finally, the cross-channel concatenation is

used to integrate the multiple contextual features.

ture Extraction Module (MCFEM) after each side output of

the VGG-16 net. The MCFEM is made up of convolutional

layers with various fields of view and could learn multi-

scale context information for different levels. To integrate

the multi-level contextual features, we propose to exploit a

Gated Bi-directional Message Passing Module (GBMPM).

In GBMPM, semantic information in high-level features

and spatial details in low-level features pass to each other

in a bi-directional structure. And the gate function is used

to control whether the message at the current level should

be passed to the next level. We generate saliency maps at

different resolutions by using these integrated multi-level

features. And the final saliency map is obtained via fusing

the multi-scale predicted results in a coarse-to-fine manner.

Our network could be learned in an end-to-end way.

3.2. Multi­scale Context­aware Feature Extraction

Visual context is quite important to assist salient object

detection. Existing CNN models [26, 7] learn features of

objects by stacking multiple convolutional and pooling lay-

ers. However, the salient objects have large variations in

scale, shape and position. Directly using the bottom-to-up

single scale convolution and pooling may not effectively

handle these complicated variations. A recent work [30]

proposes to use the pyramid pooling before the final pre-

diction layer to extract multi-scale features for saliency de-

tection. However, the large scale of pooling would cause

the loss of important information. Li et al. [13] embed

the multi-scale contextual information by stacking sequen-

tial blocks containing several dilated convolutions and use

the features from the last block for prediction. Inspired by

this work, we propose a Multi-scale Context-aware Feature

Extraction Module (MCFEM), which contains multiple di-

lated convolutions, to learn the information of objects and

image context.

We show the details of the proposed MCFEM in Table

1. For the input image I with size W × H , we first use

the VGG-16 net to extract feature maps at five levels, which

are represented as F = {fi, i = 1, ..., 5} with resolution

τ = [ W
2i−1 ,

H
2i−1 ]. For feature map fi, we then use four

convolutional layers with various fields of view to capture

the knowledge of object as well as image context at mul-

tiple scales. In this paper, we exploit four dilated convo-

lutional layers [35], which could enlarge the fields of view

without the loss of resolution and increasing the amount of

computation, to form our MCFEM. The four dilated con-

volutional layers have the same convolutional kernel size

3∗3 with different dilation rates, which are set to 1, 3, 5 and

7 to capture multi-scale context information. We combine

the feature maps from different dilated convolutional layers

by cross-channel concatenation. We then apply MCFEM to

multi-level feature maps, and obtain multi-scale contextual

features Fc = {fci , i = 1, ..., 5}.

In this paper, we use the dilated convolutional layers with

four dilation rates (i.e., 1, 3, 5 and 7) instead of convo-

lutional filters with kernel size 3 ∗ 3, 7 ∗ 7, 11 ∗ 11 and

15∗15. Compared with the classic convolutional layers, the

dilated convolutional layers could reduce redundant compu-

tation as well as remain the same field of view. Moreover,

the experimental results in Table 3 demonstrate the advan-

tages of our MCFEM by using dilated convolutional lay-

ers. In summary, with the MCFEM, multi-level features

can encode richer context information. To integrate them

for more accurate saliency prediction, we propose a Gated

Bi-directional Message Passing Module.

3.3. Gated Bi­directional Message Passing

By adopting MCFEM, multi-level features Fc = {fci , i =
1, ..., 5} can capture effective context information. Besides,

the semantic information at deeper layers helping local-

ize the salient objects and spatial details at shallower ones

are both important for saliency detection. In order to ef-

fectively integrate the multi-level features, we introduce a

Gated Bi-directional Message Passing Module (GBMPM).

Our GBMPM is inspired by the work [36] for object de-

tection, which proposes a bi-directional model for pass-

ing messages among contextual regions of the bounding

box. Different from the bi-directional model [36], which

is applied at a specific layer of the backbone network, our

GBMPM is built among multiple side outputs of the VGG-

16. With this structure, deeper layers pass semantic infor-

mation to help the shallower ones better locate the salient

regions, and shallower layers transmit more spatial details

to deeper ones. So multi-level features could cooperate

with each other to generate more accurate results. Besides,

considering that the multi-level features have various reso-

lutions, we add upsampling and downsampling operations

during the process of the bi-directional message passing.

The architecture of our bi-directional message passing

module is shown in Fig. 2. It takes feature maps Fc =
{fci , i = 1, ..., 5} with different spatial resolutions as input

and outputs feature maps H3 = {h3
i , i = 1, ..., 5}. Our mes-

sage passing module contains two directional connections



among multi-level features. One connection starts from the

feature at the first side output layer (i.e., fc1) with the largest

resolution ([W,H]) and ends at feature of the last side out-

put layer (i.e., fc5) with the smallest resolution ([W
24
, H
24
]).

The other direction is the opposite. Taking h0
i = fci with

resolution τ = [ W
2i−1 ,

H
2i−1 ] for example, the process of the

message passing from shallow side output to deep side out-

put is performed by:

h1
i = Down(φ(Conv(h1

i−1; θ
1
i−1,i))) + φ(Conv(h0

i ; θ
1
i ))
(1)

where Conv(∗; θ) is a convolutional layer with parameter

θ = {W, b}. Down() is a shrink operation which aims to

downsample the feature map by a factor of 2 to adapt the

size of higher level feature map. And φ() is a ReLU acti-

vation function. h1
i is the updated features after receiving

message from lower-level feature h1
i−1. Note that we set

h1
0 = 0, since h1

1 is from the first side output and receives

no message from the former layers. The opposite direction

of message passing from deep layer to shallow layer is:

h2
i = Up(φ(Conv(h2

i+1; θ
2
i,i+1)))+φ(Conv(h0

i ; θ
2
i )) (2)

where Up() is an operation to upsample the feature map by

a factor of 2. And h2
i represents the updated features after

receiving message from h2
i+1 with high-level information.

We also take h2
6 = 0, as h2

5 is from the last side output layer

and receives no message from latter layers. After the bi-

directional message transmission using Eq. 1 and Eq. 2, the

features in h1
i could receive more spatial details from low-

level features and features in h2
i receive semantic messages

from high-level features. In order to form a better repre-

sentation for the i-th side output layer, we incorporate the

features from both directions as follows:

h3
i = φ(Conv(Cat(h1

i , h2
i ); θ

3
i )) (3)

where Cat() is the concatenation operation among chan-

nel axis. With Eq. 3, h3
i contains both high-level semantic

and low-level spatial information. The multi-level features

{h3
i }i=1,...,5 are robust and will be jointly used for salient

object prediction.

For the individual input image, the multi-level features

may be not all helpful to precisely predict saliency maps.

Instead of passing messages without selection for all the

input images, we exploit gate function [36] to make the

message adaptively pass among multi-level features. Our

motivation is that during the process of message passing, a

decision should be made about whether the message of the

current level is useful for feature of the next level. The gate

function is designed as convolutional layers with sigmoid

activation to produce message passing rate in the range of

[0, 1], which is used to control the message passing. With

the gate function, the message passing of bi-directional

structure in Eq. 1 and Eq. 2 are changed as:

h1
i =Down(G(h0

i−1; θ
g1
i−1,i)⊗ φ(Conv(h1

i−1; θ
1
i−1,i)))

+ φ(Conv(h0
i ; θ

1
i ))

(4)
h2
i =Up(G(h0

i+1; θ
g2
i,i+1

)⊗ φ(Conv(h2
i+1; θ

2
i,i+1)))

+ φ(Conv(h0
i ; θ

2
i ))

(5)

where ⊗ is element-wise product. G(∗; θg) is the gate func-

tion to control the message passing rate, which is defined as

G(x; θg) = Sigm(Conv(x; θg)) (6)

where Sigm() is the element-wise sigmoid function.

Conv(x; θg) is a 3 ∗ 3 convolutional layer having the same

number of channels with x, which means the gate function

learns a different gated filter for each channel of x. When

G(x; θg) = 0, the message of x is blocked and would not be

passed to other levels. And the formulation for generating

h3
i is unchanged. By adding the gate function into the bi-

directional message passing module, only useful informa-

tion is passed between different levels, and the inaccurate

information is prevented. With the GBMPM, multi-level

features h3
i can adaptively encode various saliency cues and

are robust enough to produce accurate saliency prediction.

3.4. Saliency Inference

In the above sections, we use the MCFEM to capture

multi-scale context information for each side output of the

VGG-16 net. And the multi-level features are further pro-

cessed via GBMPM, so they simultaneously contain seman-

tic information and fine details. The multi-level features

are complementary and robust, so we use them together to

predict saliency maps. Some methods [37, 30] directly up-

sample and integrate the multi-level features into the size of

the input image and exploit a convolutional layer to pro-

duce saliency map. However, this upsampling operation

may lead to the loss of details of the detected objects. To

avoid this problem, we fuse multi-level features and gen-

erate saliency map in a coarse-to-fine manner. Our fusion

module takes the feature map h3
i (resolution is [ W

2i−1 ,
H

2i−1 ])
and the high-level prediction Si+1 as input. The fusion pro-

cess is summarized as follows:

Si =

{

Conv(h3
i ; θ

f
i ) + Up(Si+1), i < 5

Conv(h3
i ; θ

f
i ), i = 5

(7)

where Conv(∗; θf ) is the convolutional layer with kernel

size 1 ∗ 1 for predicting saliency maps. Using Eq. 7, predic-

tions from deep layers are hierarchically and progressively

transmitted to shallow layers. And we take S1 as the fi-

nal saliency map of our model without any post-processing.

The proposed model is trained end to end using the cross-

entropy loss between the final saliency map and the ground

truth. The loss function is defined as:



L = −
∑

x,y

lx,ylog(Px,y) + (1− lx,y)log(1− Px,y) (8)

lx,y ∈ {0, 1} is the label of the pixel (x, y), and Px,y is the

probability of pixel (x, y) belonging to the foreground.

4. Experiments

4.1. Experimental Setup

Dataset. We evaluate the proposed method on five

benchmark datasets: ECSSD [32], PASCAL-S [17],

SOD [23], HKU-IS [15] and DUTS [28]. The ECSSD

dataset [32] has 1000 images with various complex scenes.

The PASCAL-S dataset [17] is based on the validation set

of the PASCAL VOC 2009 segmentation challenge. Images

in this dataset are much more complicated with cluttered

backgrounds and multiple objects. This dataset contains

850 natural images with pixel-wise annotations. The SOD

dataset has 300 images selected from the Berkeley segmen-

tation dataset [22]. It is one of the most difficult saliency

datasets currently. The HKU-IS dataset proposed in [15]

has 4447 images and most of the images include multiple

disconnected salient objects. DUTS [28] is a large scale

dataset, which contains 10553 images for training and 5019

images for testing. The images are challenging with salient

objects of various locations and scales as well as complex

background. We use this dataset for both training and test-

ing our proposed model.

Evaluation Criteria. We evaluate the performance of

the proposed model as well as other state-of-the-art salient

object detection methods using three metrics, including

precision-recall (PR) curves, F-measure and mean absolute

error (MAE). The precision value is the ratio of ground truth

salient pixels in the predicted salient region. And the recall

value is defined as the percentage of the detected salient

pixels and all ground truth area. The precision and recall

are calculated by thresholding the predicted saliency map

and comparing it with the corresponding ground truth. Tak-

ing the average of precision and recall of all images in the

dataset, we can plot the precision-recall curve at different

thresholds. The F-measure is an overall performance indi-

cator, it is computed by the weighted harmonic of precision

and recall:

Fβ =
(1 + β2)× Precision×Recall

β2 × Precision+Recall
(9)

where β2 is set to 0.3 to weight precision more than re-

call as suggested in [33]. The F-measure curve is obtained

by connecting F-measure scores under different thresholds.

We report the maximum F-measure from all precision-recall

pairs, which is a good summary of the method’s detection

performance [2]. Except for PR curve and F-measure, we

also calculate the mean absolute error (MAE) to measure

the average difference between predicted saliency map and

ground truth. It is computed as:

MAE =
1

W ×H

W
∑

x=1

H
∑

y=1

|S(x, y)−G(x, y)| (10)

where S and G are predicted saliency map and ground truth,

respectively.

Implementation Details. We utilize the training set of

DUTS dataset [28] to train our proposed model. It contains

10553 images with high-quality pixel-wise annotations. We

augment the training set by horizontal flipping and cropping

the images to relieve the over-fitting problem, as suggested

in [18]. We don’t use the validation set and train the model

until its training loss converges. A NVIDIA Titan X GPU

is used for training and testing. The parameters of the first

13 convolutional layers are initialized by VGG-16 net [26].

For other convolutional layers, we initialize the weights us-

ing truncated normal method. The convolutional parameters

of our message passing module in Sec. 3.3 are not shared,

and the upsampling and downsampling are conducted sim-

ply by bilinear interpolation. Our model is trained using

Adam [11] with an initial learning rate at 1e-6. The training

process of our model takes about 30 hours and converges

after 12 epochs. During testing, our proposed model runs

about 22 fps with 256× 256 resolution.

4.2. Performance Comparison with State­of­the­art

We compare the proposed saliency detection model

with 13 state-of-the-art methods, including 11 deep learn-

ing based methods (LEGS [27], MDF [15], RFCN [29],

ELD [12], DCL [16], DHS [18], NLDF [20], DSS [8],

Amulet [37], UCF [38], SRM [30]) and 2 conventional

ones (DRFI [9] and BSCA [24]). For fair comparison, the

saliency maps of different methods are provided by the au-

thors or achieved by running available codes or softwares.

Quantitative Evaluation. We perform comparisons of

the proposed algorithm and 13 state-of-the-art saliency de-

tection methods on five datasets. The comparison results

are shown in Fig 3 and Table 2. Table 2 illustrates the per-

formances of different methods under the metrics of max-

imum F-measure and MAE. Our method can consistently

outperform other approaches across all the datasets in terms

of different measurements, which demonstrates the effec-

tiveness of the proposed model. For F-measure and MAE,

our method achieves the best results among five datasets.

Note that the MDF [15] use 3000 images from HKU-IS [15]

dataset for training its model, so we don’t provide its com-

parison result on this dataset.

Fig. 3 lists the PR curves and F-measure curves of dif-

ferent approaches on five datasets. We can observe that the

PR curves of the proposed algorithm perform better than

other methods on five datasets. Besides, the F-measure

curves of our method are significantly higher than other

methods, which means our method is more robust than other

approaches even on challenging datasets.



*
ECSSD PASCAL-S SOD HKU-IS DUTS-test

max Fβ MAE max Fβ MAE max Fβ MAE max Fβ MAE max Fβ MAE

Ours 0.928 0.044 0.862 0.074 0.851 0.106 0.920 0.038 0.850 0.049

SRM [30] 0.917 0.054 0.847 0.085 0.839 0.126 0.906 0.046 0.827 0.059

DSS [8] 0.916 0.052 0.836 0.096 0.841 0.118 0.910 0.041 0.825 0.057

Amulet [37] 0.915 0.059 0.837 0.098 0.802 0.141 0.895 0.052 0.778 0.085

UCF [38] 0.911 0.078 0.828 0.126 0.798 0.164 0.886 0.074 0.771 0.117

NLDF [20] 0.905 0.063 0.831 0.099 0.837 0.123 0.902 0.048 0.812 0.066

DHS [18] 0.907 0.059 0.829 0.094 0.822 0.127 0.890 0.053 0.807 0.067

DCL [16] 0.890 0.088 0.805 0.125 0.820 0.139 0.885 0.072 0.782 0.088

ELD [12] 0.867 0.079 0.773 0.123 0.760 0.154 0.839 0.074 0.738 0.093

RFCN [29] 0.890 0.107 0.837 0.118 0.802 0.161 0.892 0.079 0.784 0.091

LEGS [27] 0.827 0.118 0.762 0.155 0.729 0.195 0.766 0.119 0.655 0.138

MDF [15] 0.832 0.105 0.768 0.146 0.783 0.155 - - 0.730 0.094

DRFI [9] 0.786 0.164 0.698 0.207 0.697 0.223 0.777 0.145 0.647 0.175

BSCA [24] 0.758 0.182 0.667 0.223 0.653 0.251 0.719 0.175 0.597 0.197

Table 2. The maximum F-measure (larger is better) and MAE (smaller is better) of different saliency detection methods on five released

saliency detection datasets. The best three results are shown in red, green and blue.
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Figure 3. Quantitative comparisons of the proposed approach and 13 baseline methods on five datasets. The first and second rows are the

PR curves and F-measure curves of different methods, respectively.

Qualitative Evaluation. Fig. 4 lists some saliency maps

generated by the proposed method as well as other 13 state-

of-the-art algorithms. The images are selected from five

datasets for testing. It can be seen that our method can accu-

rately detect salient objects. For objects with various scales

and shapes, our method can highlight the entire objects with

well-defined boundaries (the 1-3 rows). Our method is also

robust for images with multiple objects (4-5 rows) and com-

plex background (6-8 rows).

4.3. Analysis of the Proposed Approach

The proposed framework is composed of two modules,

including the multi-scale context-aware feature extraction

(MCFEM) and the gated bi-directional message passing

(GBMPM). To investigate the effectiveness of each module,

we conduct a series of experiments on ECSSD [32] dataset.

The Effectiveness of MCFEM. We propose the

MCFEM to capture more context information to detect ob-

jects with various scales. To highlight the advantages of

the MCFEM, we provide another three methods for com-

parisons. The first one (named as “FCN”) is to employ the

multiple side output features of the VGG-16 net to predict

saliency maps by using the inference method in Sec. 3.4.

And the second one (named as “MCFEM with convolu-

tional layer”) is that we replace the dilated convolutional

layers with dilation rates r = 1, 3, 5, 7 by convolutional lay-

ers with kernel size k = 3, 7, 11, 15. The last one (named

as “pyramid pooling”) is a pyramid pooling module simi-

lar to PSPNet [39], in which the pooling kernels are set to

3, 7, 11, 15, respectively. Table 3 shows the maximum F-

measure and MAE of the above-mentioned models on EC-

SSD dataset. We can observe that the proposed MCFEM is

effective in salient object detection, especially implemented

with dilated convolutional layers, which outperforms the
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Figure 4. Qualitative comparisons of the proposed method and the state-of-the-art algorithms.

model setting max Fβ MAE

FCN (baseline) 0.887 0.068

pyramid pooling 0.894 0.061

MCFEM with convolutional layer 0.909 0.058

MCFEM with dilated convolutional layer 0.914 0.053

Downsampling stream in GBMPM 0.894 0.063

Upsampling stream in GBMPM 0.903 0.060

GBMPM with closed gate 0.889 0.068

GBMPM with open gate 0.908 0.059

GBMPM 0.917 0.052

MCFEM + GBMPM 0.928 0.044

Table 3. Quantitative comparisons of different settings in the

MCFEM and GBMPM.

methods of FCN, piramid pooling and the MCFEM with

convolutional layers, respectively.

The Effectiveness of GBMPM. In Sec.3.3, we propose

a gated bi-directional message passing module (GBMPM)

to adaptively incorporate multi-level features. The

GBMPM consists of two components, the bi-directional

message passing structure and the gate function. To prove

their contributions to the model, we implement various set-

tings in the GBMPM, and their maximum F-measure and

MAE are shown in Table 3. We remove the MCFEM to

better investigate the performance of the components in

GBMPM. We obtain the results of message passing from

deep side outputs of FCN to shallow ones ( named as “Up-

sampling stream in GBMPM”) and message passing in the

opposite direction (“Downsampling stream in GBMPM”),

respectively. The comparison with our bi-directional mes-

sage passing model (“GBMPM”) demonstrates the advan-

tage of the bi-directional structure in GBMPM. We also ver-

ify the contribution of the gate function in GBMPM. The

results when all gates are open (“GBMPM with open gate”)

or closed (“GBMPM with closed gate”) are shown in Ta-

ble 3. Compared with “GBMPM”, the proposed adaptive

gate function is effective. Besides, the comparison between

“MCFEM with dilated convolutional layer”, “GBMPM”

and “MCFEM+GBMPM” verifies that both MCFEM and

GBMPM contribute to the final result.

5. Conclusion

In this paper, we propose a novel bi-directional message

passing model for salient object detection. We first design a

multi-scale context-aware feature extraction module, which

consists of dilated convolutions with multiple fields of view

and captures objects and image context at multiple scales.

Then we introduce a gated bi-directional message passing

module to integrate multi-level features, in which features

from different levels adaptively pass messages to each other.

The multi-level features containing both high-level seman-

tic concept and low-level spatial details are further utilized

to produce the final saliency maps. Experimental results on

five datasets demonstrate that our proposed approach out-

performs 13 state-of-the-art methods under different evalu-

ation metrics.
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