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Abstract

Most existing Zero-Shot Learning (ZSL) methods have
the strong bias problem, in which instances of unseen (tar-
get) classes tend to be categorized as one of the seen
(source) classes. So they yield poor performance after be-
ing deployed in the generalized ZSL settings. In this paper,
we propose a straightforward yet effective method named
Quasi-Fully Supervised Learning (QFSL) to alleviate the
bias problem. Our method follows the way of transductive
learning, which assumes that both the labeled source im-
ages and unlabeled target images are available for training.
In the semantic embedding space, the labeled source images
are mapped to several fixed points specified by the source
categories, and the unlabeled target images are forced to be
mapped to other points specified by the target categories.
Experiments conducted on AwA2, CUB and SUN datasets
demonstrate that our method outperforms existing state-of-
the-art approaches by a huge margin of 9.3 ∼ 24.5% fol-
lowing generalized ZSL settings, and by a large margin of
0.2 ∼ 16.2% following conventional ZSL settings.

1. Introduction

With the availability of large-scale training data, the field
of visual object recognition has made significant progress
in the last several years [17, 35, 37, 13, 14]. However,
collecting and labeling training data are laboriously diffi-
cult and costly. For example, in fine-grained classification,
expert knowledge is required to discriminate between dif-
ferent categories. For rare categories, such as endangered
species, it’s an extremely difficult work to collect sufficient
and statistically diverse training images. Even worse, the
frequencies of observing objects follow a long-tailed dis-
tribution [33, 45], which indicates that the number of such
unfrequent objects significantly surpasses that of common
objects. Given limited or zero training images, existing vi-

Figure 1. An illustrative diagram of the bias towards seen source
classes in the semantic embedding space. The blue circles denote
the anchor points specified by the source classes.

sual recognition models (e.g., deep CNN models) struggle
to make correct predictions.

Zero-Shot Learning (ZSL) [8, 18, 1, 31, 2, 29, 41, 24]
has emerged as a promising paradigm to alleviate the above
problem. Unlike fully supervised classification which re-
quires sufficient labeled training images for each category,
ZSL distinguishes between two types of categories: source
and target, where the labeled images are only available for
the source categories. To facilitate the recognition of nov-
el target categories, ZSL assumes the source and the target
categories share a common semantic space to which both
the images and class names can be projected. The semantic
space can be defined by attributes [8, 1], word2vec [21] or
WordNet [23]. Under this assumption, the recognition of
images from novel target categories can be achieved by the
nearest neighbor search in the shared space.

Depending on whether the unlabeled data of target class-
es are available for training, existing ZSL methods can be
categorized into two schools: inductive ZSL [9, 25, 43, 2,
31, 4] and transductive ZSL [16, 10, 12]. For the inductive
ZSL, only data of the source categories are available dur-
ing the training phase. For the transductive ZSL methods,
both the labeled source data and the unlabeled target data
are available for training. The transductive ZSL aims to u-
tilize the information from both the labeled source data and
the unlabeled target data to accomplish the ZSL task.



During the test phase, most existing inductive and trans-
ductive ZSL methods [18, 1, 31, 2, 29, 24] assume the test
images come solely from the target classes. Therefore, the
search space for classifying the new test images is restrict-
ed to the target classes. We call this experimental settings
conventional settings. However, in a more practical situa-
tion, the test images come not only from the target but also
from the source classes. Hence, both the source and the tar-
get classes should be considered. This experimental settings
are usually regarded as the generalized ZSL settings [41, 6],
abbreviated to generalized settings in this paper.

Existing ZSL methods perform much worse in the gen-
eralized settings than in the conventional settings [41, 6].
One vital factor accounting for the poor performance can
be explained as follows. ZSL achieves the recognition of
new categories by establishing the connection between the
visual embeddings and the semantic embeddings. However,
during the phase of bridging the visual and the semantic em-
beddings, there exists a strong bias [6] (shown in Figure 1).
During the training phase of most existing ZSL methods,
the visual instances are usually projected to several fixed
anchor points specified by the source classes in the seman-
tic embedding space. This leads to a strong bias when these
methods are used for testing: given images of novel classes
in the target dataset, they tend to categorize them as one of
the source classes.

To alleviate the mentioned problem above, we propose a
novel transductive ZSL method in this paper. The proposed
method assumes that both the labeled source and the un-
labeled target data are available during the training phase.
On the one hand, the labeled source data are used to learn
the relationship between visual images and semantic em-
beddings. On the other hand, the unlabeled data of target
classes are used to alleviate the strong bias towards source
classes. More specifically, unlike other ZSL methods which
always map input images to several fixed anchor points in
the embedding space during training, our method allows the
mapping from the inputs to other points, which significantly
alleviates the strong bias problem.

We dub the proposed ZSL method as Quasi-Fully Super-
vised Learning (QFSL), as it works like the conventional
fully supervised classification in which a multi-layer neu-
ral network and a classifier are integrated together (shown
in Figure 2). The architecture of the multi-layer neural net-
work is usually taken from AlexNet [17], GoogleNet [37]
or other well-known deep networks. In the training phase,
our model is trained in an end-to-end manner to recognize
the data from both source and target classes even without
labeled data for the target classes. This feature brings up
a compelling advantage: when the labeled data of target
classes are available in the future, it can be directly used to
train our model. In the test phase, our trained model can be
directly used to recognize new images from both the source

and the target classes without any modifications.
To sum up, we made the following contributions: 1) A

transductive learning (QFSL) method is proposed to learn
unbiased embeddings for ZSL. To our knowledge, this is the
first work to adopt transductive learning method in solving
the ZSL problem in generalized settings. 2) Experiments re-
veal that our method significantly outperforms existing ZSL
methods, in both generalized and conventional settings.

2. Related Work
Zero-Shot Learning ZSL relies on the semantic space
to associate source and target classes. Various semantic s-
paces have been investigated, including attributes [8, 18, 1,
41, 24], word vector [9, 23], text description [29, 42] and
human gaze [15]. The attribute has been shown to be an
effective semantic space [2, 31, 24] for ZSL. However, its
superior performance is obtained at the cost of much more
expensive human labor. As an alternative, the word vectors
are gaining more attention recently [22, 27] since they are
learned from the large text corpus in an unsupervised way.
Albeit their popularity, the word vectors often suffer from
visual-semantic discrepancy problem [28, 5, 7]. In addition
to the word vectors, human gaze [15] is recently proposed
to replace the attributes, as its annotation can be performed
by non-experts without domain knowledge.

In terms of the way how the visual space and the seman-
tic space are related, existing ZSL methods can be mainly
categorized into three groups: (1) from the visual space to
the semantic space [9, 2, 29], (2) from the semantic space
to the visual space [42, 34, 16] and (3) both the visual space
and the semantic space are projected to a shared intermedi-
ate space [20, 44, 4]. As long as one of the above pathways
is established, classification can be carried out via the n-
earest neighbor search in the embedding space which both
the original visual inputs and the class labels can access.
However, most existing ZSL methods share a common de-
ficiency. During the training phase, regardless of how these
two spaces are related, the existing ZSL usually project the
visual inputs to several fixed points in the embedding space.
It leads to the bias problem as discussed in Section 1. Our
work aims at alleviating this problem to improve the perfor-
mance of ZSL.

Transductive Zero-Shot Learning Transductive ZSL
solves ZSL in a semi-supervised learning manner where
both the labeled source data and the unlabeled target data
are available. Propagated Semantic Transfer (PST) [30] ex-
ploits the manifold structure of novel classes to conduct la-
bel propagation. Transductive Multi-View ZSL (TMV) [10]
and Unsupervised Domain Adaption (UDA) [16] associate
cross-domain data by CCA and regularized sparse coding.
In [12], a joint learning approach is proposed to learn the
Shared Model Space (SMS) for transductive ZSL settings.



Figure 2. An overall architecture of the proposed QFSL model. Both the labeled and the unlabeled data are used to train the same model.
Here for a better understanding, we depict them in two streams.

With the SMS, knowledge can be effectively transferred be-
tween classes using attributes. In this paper, we leverage
both the labeled source data and the unlabeled target data to
learn an unbiased embedding space for ZSL.

Zero-Shot Learning in Generalized Settings In perfor-
mance evaluation, most existing ZSL methods usually as-
sume that the test instances belong only to the unseen tar-
get classes. However, in practice, we are more often re-
quired to recognize instances from both the source and the
target classes. The generalized settings relax the unrealis-
tic assumption of the conventional settings with both the
seen classes and the unseen classes at test time. In [9, 25],
the source classes are considered when the classification is
conducted, but only data from the unseen classes are tested.
In [36], a two-stage approach is proposed to solve the ZS-
L problem in generalized settings. Before classification, it
first determines whether a test instance is from a source or
target class. In [6], an empirical study and analysis of ZSL
in generalized settings are provided. Recently, [41] shows
many ZSL methods behave much worse in the generalized
settings than in the conventional settings.

3. Quasi-Fully Supervised Learning

3.1. Problem Formulation

Assume that there is a source dataset Ds =
{(xs

i , y
s
i )}

Ns
i=1 consisting of Ns images. Each image xs

i

is associated with a corresponding label ysi , ysi ∈ Ys =
{yi}Si=1, and S is the number of the source classes. Similar-
ly, there is a target dataset Dt = {(xt

i, y
t
i)}

Nt
i=1 consisting of

Nt images. Each image xt
i is associated with a correspond-

ing label yti , y
t
i ∈ Yt = {yS+i}Ti=1, and T is the number

of the target classes. Ys ∪ Yt = Y , Ys ∩ Yt = ∅. The
goal of ZSL in conventional settings is to learn a prediction
function f as below from the source data

f(x;W ) = argmax
y∈Y

F (x, y;W ), (1)

so that its performance on the target data is maximized. F is
a score function, which ranks the correct label higher than
the incorrect labels, and W is the parameters of F . F usu-
ally takes the following bilinear form [1, 9, 2]:

F (x, y;W ) = θ(x)TWϕ(y), (2)

where θ(x) and ϕ(y) are the visual and the semantic embed-
dings, respectively. The score function is usually optimized
by minimizing the regularized loss:

L =
1

Ns

Ns∑
i=1

Lp(yi, f(xi;W )) + γΩ(W ), (3)

where Lp is the classification loss (such as entropy loss and
structured SVM [38]) to learn the mapping between the vi-
sual and the semantic embeddings. Ω is the regularization
term used to constrain the complexity of the model.

In this paper, we assume the labeled source data Ds, the
unlabeled target data Dt

u = {xt
i}

Nt
i=1, and the semantic em-

beddings ϕ are available for training in our approach. The
aim of our method is to achieve good performance in not
only the conventional but also the generalized settings.

3.2. The QFSL Model

Different from the bilinear form described above, the s-
coring function F in our method is designed as a nonlinear
one. The whole model is implemented by a deep neural
network (shown in Figure 2). It consists of four modules:
the visual embedding subnet, the visual-semantic bridging
subnet, the scoring subnet, and the classifier. The visual
embedding subnet maps the raw images into visual embed-
ding space. The visual-semantic bridging subnet projects
the visual embeddings to semantic embeddings. The scor-
ing subnet produces scores of every class in the semantic
embedding space. And the classifier makes the final predic-
tions based on the scores. All modules are differentiable and
implemented by widely used layers including the convolu-
tional layer, the fully connected layer, the ReLU [17] layer
and the softmax layer. Hence, our model can be trained in



an end-to-end manner. Now we describe each module in
detail in the following sections.

3.2.1 Visual Embedding Subnet

Most existing ZSL models [11, 2, 3, 31, 43, 19] adopt deep
CNN features for visual embeddings. The visual embed-
ding function θ is fixed in these methods. So they do not
fully exploit the power of deep CNN models. Here, we also
adopt a pre-trained CNN model to perform visual embed-
ding. The major difference is that our visual embedding
function can be optimized together with other modules1.
The parameters of the visual embedding subnet are denoted
by Wθ. Unless otherwise specified, we use the output of the
first fully connected layer as the visual embeddings.

3.2.2 Visual-Semantic Bridging Subnet

It is vital to build the connections between the image and
the semantic embeddings. The connection can be built by
either a linear [1, 9, 2] or a nonlinear [40, 36] function. In
this paper, we adopt a non-linear function φ to project the
visual embeddings to the semantic embeddings. φ is imple-
mented by several fully connected layers, each of which is
followed by a ReLU non-linear activation layer. The design
of bridging function depends on the CNN architecture from
the visual embedding subnet. Specifically, our design fol-
lows the fully connected layers of the selected CNN model.
The visual-semantic bridging subnet is optimized together
with the visual embedding subnet. The parameters of the
visual-semantic bridging subnet are denoted by Wφ.

3.2.3 Scoring Subnet

After bridging the visual and the semantic embeddings,
recognition task can be carried out by the nearest neighbor
search in the semantic embedding space. Given an image,
we firstly obtain its visual embedding by the visual embed-
ding subnet. Then the visual embedding is mapped to the
semantic embedding by the visual-semantic bridging sub-
net. Finally, we use the inner product between the projected
embedding and the normalized semantic embeddings as the
scores. Therefore, the score function is

F (x, y;W ) = φ(θ(x;Wθ);Wφ)ϕ
∗(y) (4)

where Wθ and Wφ are the weights of the visual embedding
function and the visual-semantic bridging function respec-
tively, and ϕ∗(y) is the normalized semantic embedding of
y: ϕ∗(y) = ϕ(y)

∥ϕ(y)∥2
.

1In some situations, keeping the visual embedding subnet fixed pro-
duces better performance. We conduct further discussions in Section 4.2.1.

The scoring subnet is implemented as a single fully con-
nected layer. The weights are initialized with the normal-
ized semantic vectors of both the source and the target class-
es: [ϕ∗(y1), ϕ

∗(y2), ..., ϕ
∗(yS+T )]. Unlike the visual em-

bedding subnet and the visual-semantic bridging subnet, the
weights of the scoring subnet are frozen and will not be up-
dated during the training phase. In this way, for a labeled
source image (xs

i , ysi ), our model is trained to project the
image xs

i to an embedding which has the most similar di-
rection with the semantic embedding ϕ(ysi ).

Note that though we don’t have the labeled data of target
classes, the target classes will also be involved in the train-
ing in our approach. Hence during the training phase, our
method produces S + T scores for a given image.

3.2.4 Classifier

After the scoring subnet, we apply a traditional (S + T )-
way softmax classifier to produce the predicted probability
vector for all the classes. The predicted class of the input
image is just the one with the highest probability.

3.3. Optimization of the QFSL Model

As described above, the architecture of our method is
like the conventional fully supervised classification mod-
el with a (S + T )-way classifier for both the target and
the source classes. Unfortunately, only the data for source
classes are labeled while the data from target classes is un-
labeled. In order to train the proposed model, we define a
Quasi-Fully Supervised Learning (QFSL) loss:

L =
1

Ns

Ns∑
i=1

Lp(x
s
i ) +

1

Nt

Nt∑
i=1

λLb(x
t
i) + γΩ(W ). (5)

It is known that the loss of conventional fully supervised
classification is usually composed by the classification loss
Lp and regulation loss Ω. Different from such conventional
definition, our proposed QFSL incorporates an additional
bias loss Lb to alleviate the bias towards source classes:

Lb(x
t
i) = − ln

∑
i∈Yt

pi, (6)

where pi is the predicted probability of class i. Given unla-
beled instances from the target classes, this loss encourages
our model to increase the sum of probabilities of being any
target class. And consequently the model will prevent the
instances of target classes from being mapped to the source
classes.

For the classification loss Lp, we adopt the entropy loss
in our method. For the regularization loss Ω, ℓ2-norm is
used for all the trainable parameters W = {Wθ,Wφ}. λ
and γ are trade-off weights among different losses, and they
are set via cross-validation.



During the training phase, all the labeled and unlabeled
data are mixed for training. Our model is optimized by
the stochastic gradient descent algorithm. Each batch of
training images is randomly drawn from the mixed dataset.
Although our method is straightforward without bells and
whistles, experiments show that it not only significantly al-
leviates the bias problem but also facilitates the building of
connections between visual and semantic embeddings.

4. Experiments
In this section, extensive experiments are carried out to

evaluate the performance of the proposed QFSL method.
Firstly, we introduce some basic experimental settings.
Then we discuss two implementation details of our method.
Finally, we compare our proposed QFSL with existing state-
of-the-art ZSL methods, in both the conventional and the
generalized settings.

4.1. Experimental Settings

Datasets Three datasets are considered: Animals with
Attributes 2 (AwA2) [41], Caltech-UCSD Birds-200-2011
(CUB) [39] and SUN Attribute Database (SUN) [26].
AwA2 is a coarse-grained dataset. It contains 37,322 im-
ages of 50 animals classes, in which 40 classes are used for
training and the rest 10 classes for testing. For each class,
there are about 750 labeled images. CUB is a fine-grained
dataset containing 11,788 images of 200 bird species. We
use 150 classes for training and the rest 50 for testing. In
this dataset, each class has about 60 labeled images. SUN is
another fine-grained dataset. There are 14,340 images com-
ing from 717 types of scenes, of which 645 types are used
for training, and the rest 72 for testing. Note that there are
only about 20 images for every class on SUN, which is rel-
atively scarce. In our experiments, we adopt either the stan-
dard train/test splits (SS) or the splits proposed (PS) in [41]
in some experiments for fair comparisons.

Class-level attributes are used in our experiments. For
AwA2, we use the provided continuous 85-dimension class-
level attributes [41]. For CUB, continuous 312-dimension
class-level attributes are provided in [39]. For SUN, there
are continuous 102-dimension attributes provided in [26].

Model Selection and Training Four popularly used
deep CNN models are involved in our following experi-
ments: AlexNet [17], GoogLeNet [37], VGG19 [35] and
ResNet101 [41]. They are all pre-trained on ImageNet [32]
with 1K classes. Among these models, GoogLeNet is one
of the most popular models used in the ZSL field, so we
adopt GoogLeNet when we make comparisons between our
and existing methods.

Unless otherwise specified, the learning rate is fixed to
be 0.001, and the minibatch size is 64. The scaling weight-
s of bias loss (λ) and weights decay (γ) are 1 and 0.0005,
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Figure 3. Comparisons between optimizing the visual embed-
ding subnet and keeping it fixed. Performance difference =
MCA(unfixed) − MCA(fixed).
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Figure 4. Performance difference with different number of training
images per class on AwA2.

respectively. The training process stops after 5,000 itera-
tions. These hyper-parameters are selected based on class-
wise cross validation [43, 4, 6].

Evaluation Metrics To compare the performances, we
adopt the Mean Class Accuracy (MCA) as the evaluation
metric in our experiments:

MCA =
1

|Y|
∑
y∈Y

accy, (7)

where accy is the top-1 accuracy on the test data from class
y. In the conventional settings, MCA on only the target test
data (MCAt) is considered (Y = Yt in Eqn. 7). In the gen-
eralized settings, the search space at evaluation time is not
restricted to the target classes, instead the the source class-
es are also included. Meanwhile, the test instances come
from not only the target dataset, but also the source dataset
(Y = Ys + Yt in Eqn. 7). Therefore, we adopt MCAt,
MCAs (MCA on the source test data) and their harmonic
mean (H) as the evaluation metrics:

H =
2 ∗MCAs ∗MCAt

MCAs +MCAt
. (8)

4.2. Implementation Discussions

4.2.1 Optimization of the Visual Embedding Subnet

Many existing ZSL methods adopt pre-trained deep Con-
vNets as the visual embedding function. Most of them keep
the trained CNN models fixed and do not optimize them
during the training phase. In contrast, in our method, the vi-
sual embedding subnet can be optimized together with oth-
er parts. In this experiment, we compare the performance
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Figure 5. Performance of QFSL with varying λ.

of our method between with and without the visual embed-
ding subnet fixed. All four models (AlexNet, GoogLeNet,
VGG19, and ResNet101) are adopted to implement our
methods. Experiments in the generalized settings are con-
ducted on CUB, AwA2 and SUN datasets. The results of
AlexNet and VGG19 are shown in Figure 3 (GoogLeNet
and ResNet101 produce similar results). It can be seen
that with the visual embedding subnet optimized, QFSL
achieves much better performance on CUB and AwA2 than
that with visual embedding function fixed. However, on
the SUN dataset, training the visual embedding subnet pro-
duces a worse performance. We speculate that the scarce
training data for source classes account for that. On AwA2
and CUB, there are about 750 and 60 training images for
each category, respectively. However, there are only 20 im-
ages for each category on SUN. To validate our specula-
tion, we conduct another experiment on the AwA2 dataset,
as there are much more images per class in this dataset. In
this experiment, our model is trained with different numbers
(denoted by n) of labeled source images per class. Results
are depicted in Figure 4. It can be concluded that with few-
er training images per class, training the visual embedding
subnet indeed leads to worse performance, which verifies
our speculation.

4.2.2 Classification Loss and Bias Loss

As aforementioned in Section 3.3, there are three compo-
nents in our loss function: the classification loss, the bias
loss, and the regularization loss. The classification loss is
used to build the connection between the visual embeddings
and the semantic embeddings, and the bias loss is designed
to alleviate the bias towards source classes. In this section,
we explore how the trade-off between the classification loss
and the bias loss impacts the performance of QFSL in the
generalized settings.

We test QFSL with several different λ values
{0.0, 0.5, 1.0, 2.0, 5.0, 10.0} on all the three datasets. In the
experiment, we adopt the AlexNet as the visual embedding
function. Figure 5 shows the results of QFSL with different
λ. Consistently, on all the three datasets, MCAs decreases
steadily as we increase λ. It is reasonable because putting
more attention to alleviating the bias will distract the model
from building the connection between image and semantic

Table 1. Comparisons in conventional settings (in %). For each
dataset, the best result is marked in bold font and the second best
in blue. We report results averaged over 5 random trails.

CUB SUN AwA2
Method SS PS SS PS SS PS

DAP [19] 37.5 40.0 38.9 39.9 58.7 46.1
CONSE [25] 36.7 34.3 44.2 38.8 67.9 44.5

SSE [43] 43.7 43.9 25.4 54.5 67.5 61.0
ALE [1] 53.2 54.9 59.1 58.1 80.3 62.5

§ DEVISE [9] 53.2 52.0 57.5 56.5 68.6 59.7
SJE [2] 55.3 53.9 57.1 53.7 69.5 61.9

ESZSL [31] 55.1 53.9 57.3 54.5 75.6 58.6
SYNC [4] 54.1 55.6 59.1 56.3 71.2 46.6
UDA [16] 39.5 – – – – –

£ TMV [10] 51.2 – 61.4 – – –
SMS [12] 59.2 – 60.5 – – –
QFSL− 58.5 58.8 58.9 56.2 72.6 63.5

↑10.5 ↑13.3 ↑0.3 ↑0.2 ↑4.5 ↑16.2
QFSL 69.7 72.1 61.7 58.3 84.8 79.7

§ : inductive ZSL methods.
£ : transductive ZSL methods.
↑ : performance boost compared with the best existing ZSL methods (including

the baseline QFSL−).
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embeddings. For MCAt, the overall best results are ob-
tained when λ ∈ [0.5, 2]. Smaller λ (< 0.5) leaves the bias
problem unsolved. On the other side, larger λ (> 2) yields
negative effects on the building of the relationship between
image and semantic embeddings, thus decreasing MCAt in
return.

4.3. Comparisons in Conventional Settings

We firstly compare our method with existing state-of-
the-art ZSL methods in the conventional settings. The com-
pared methods include: 1) inductive methods DAP [19],
CONSE [25], SSE [43], ALE [1], DEVISE [9], SJE [2],
ESZSL [31], SYNC [4], and 2) transductive methods U-
DA [16], TMV [10] and SMS [12]. In addition to these ex-
isting ZSL methods, there exists a latent baseline: training
our proposed model with only labeled source data, i.e., the
inductive version of our model. In this case, QFSL loss de-
grades to conventional fully supervised classification loss.
We denote this baseline by QFSL− and also compare our
method with it.

Experiments are conducted on AwA2, CUB, and SUN.
We use both the standard split (SS) and the proposed split
(PS) [41] for more convincing results. The visual embed-
ding subnet is optimized for AwA2 and CUB, but fixed for
SUN. Table 1 shows the experimental results. It can be seen



Table 2. Comparisons in the generalized settings (in %). Previously published results are given in normal font, and results of our implemen-
tations are given in italics font. For QFSLG and QFSLR, the visual embedding function is implemented with GoogLeNet and ResNet101,
respectively. For each dataset, the best result is marked in bold font and the second best in blue. We report results averaged over 5 random
trails (CMT∗: CMT with novelty detection).

AwA2 CUB SUN
Method MCAs MCAt H MCAs MCAt H MCAs MCAt H

DAP [19] 84.7 0.0 0.0 67.9 1.7 3.3 25.1 4.2 7.2
CONSE [25] 90.6 0.5 1.0 72.2 1.6 3.1 39.9 6.8 11.6

SSE [43] 82.5 8.1 14.8 46.9 8.5 14.4 36.4 2.1 4.0
† ALE [1] 81.8 14.0 23.9 62.8 23.7 34.4 33.1 21.8 26.3

DEVISE [9] 74.7 17.1 27.8 53.0 23.8 32.8 30.5 14.7 19.8
SJE [2] 73.9 8.0 14.4 59.2 23.5 33.6 30.5 14.7 19.8

ESZSL [31] 77.8 5.9 11.0 63.8 12.6 21.0 27.9 11.0 15.8
SYNC [4] 90.5 10.0 18.0 70.9 11.5 19.8 43.3 7.9 13.4
CMT [36] 90.0 0.5 1.0 49.8 7.2 12.6 21.8 8.1 11.8

CMT∗ [36] 89.0 8.7 15.9 60.1 4.7 8.7 28.0 8.7 13.3
‡ CS [6] 77.6 45.3 57.2 49.4 48.1 48.7 22.0 44.9 29.5

baseline 72.8 52.1 60.7 48.1 33.3 39.4 18.5 30.9 23.1
QFSLG 92.4↑1.8 64.3↑12.2 75.8↑15.1 74.2↑2.0 71.6↑23.5 72.9↑24.2 33.6↓6.3 54.8↑9.9 41.7↑12.2

‡ QFSLR 93.1↑2.5 66.2↑14.1 77.4↑16.7 74.9↑2.7 71.5↑23.4 73.2↑24.5 31.2↓8.7 51.3↑6.4 38.8↑9.3

† : ZSL methods which do not takes generalized settings into consideration.
‡ : ZSL methods which takes generalized settings into consideration.
↑ : Performance boost compared with the best existing ZSL methods (including the baseline).
↓ : Performance drop compared with the best existing ZSL methods (including the baseline).

that 1) the baseline of our method (QFSL−) yields compa-
rable performance with existing ZSL methods, and 2) the
proposed method outperforms the baseline and existing ap-
proaches on all datasets. Notably, on CUB and AwA2, our
method outperforms other state-of-the-art ZSL methods (in-
cluding QFSL−) by a large margin of 4.5 ∼ 16.2%. The
experimental results indicate that our approach effectively
utilizes the valuable information contained in the unlabeled
target data to facilitate the building of connections between
the visual and the semantic embeddings.

To further verify that our method is not only effective
to a specific CNN model, we implement our method with
AlexNet, GoogleNet, and VGG respectively. In this ex-
periment, as QFSL− is shown to achieve comparable per-
formance with other ZSL methods in Table 1, we compare
our method only with QFSL−. The comparison result is
provided in Figure 6. It can be noticed that our method
outperforms the baseline consistently on all the three CNN
models, which validates the effectiveness of our method.

4.4. Comparisons in Generalized Settings

Our method is designed to alleviate the strong bias prob-
lem. Therefore, we verify its effectiveness in the general-
ized settings, in which the strong bias problem often leads
to poor performance. Before evaluating the performance
of our method, there remains one issue to address. When
evaluating the performance in the test phase, most of the
existing transductive ZSL methods use the same target data
used in the training phase. However, if our method adopts
the same policy, it will be problematic because our method
has already used the supervisory information that the unla-
beled data are coming from the target classes. To solve this
problem, we split the unlabeled target data into two halves

and train two QFSL models. One half of the unlabeled data
is used for training and the other one for testing when train-
ing our first model, and vice versa when training our second
model. The final performance of our method is the average
performance of these two models. To our knowledge, this is
the first study on applying the transductive method to solve
the ZSL problem in generalized settings.

We compare our method with several state-of-the-art ZS-
L methods [19, 25, 43, 1, 9, 2, 31, 4]. However, these meth-
ods do not take the generalized settings into consideration.
In addition to these methods, we also compare our meth-
ods with two other ZSL methods Calibrated Stacking (C-
S) [6] and Cross Model Transfer (CMT) [36], which take
the generalized settings into consideration. CS maximizes
the performance in the generalized settings by trading of-
f between MCAs and MCAt. CMT first utilizes novelty
detection methods [36] to differentiate between source and
target classes and then accordingly applies the correspond-
ing classifiers. As our method utilizes the unlabeled target
data, we introduce another baseline (called baseline here)
for a clearer comparison. The baseline trains a deep binary
classifier (GoogLeNet) on the available source data and un-
labeled target data to discriminate between the source and
the target data, then classifies the test instances in the corre-
sponding search space.

The original data split and other experimental settings
are kept the same as that used in [41], where the visual em-
bedding function is implemented with ResNet101. For a
fair comparison, we also adopt ResNet101 to implement the
visual embedding function (denoted by QFSLR). In addi-
tion, as GoogLeNet is widely used in ZSL, the performance
of our method with GoogLeNet is also provided (denoted
by QFSLG). Experimental results are given in Table 2. It



can be seen that generally our method improves the over-
all performance (harmonic mean H) by an obvious mar-
gin (9.3 ∼ 24.5% on the three datasets). The performance
boost mainly comes from the improvement of mean class
accuracy on the target classes (MCAt), meanwhile with-
out much performance drop on the source classes (MCAs).
These compelling results verify that our method can signif-
icantly alleviate the strong bias towards source classes by
using the unlabeled instances from the target classes.

Another noticeable result from Table 2 is that the results
of QFSLR are generally better that of QFSLG on CUB and
AwA2 datasets. However, on SUN, QFSLG achieves better
performance. We observe the fact that only scarce (about
20) training images are available for each source category in
the SUN dataset accounts for that. Using such scarce data
to train deep CNN models like ResNet101 usually leads to
over-fitted models.

5. Further Study and Discussions
In real-world scenarios, the number of the target class-

es usually greatly surpasses that of source ones. However,
most datasets for ZSL benchmark violate that. For exam-
ples, for AwA2, only 10 of 50 classes are treated as target
ones. On CUB, only 50 out of 150 classes are used as the
target. More severely, on the SUN dataset, only 72 out of
717 classes are put into the target classes. In this section,
we empirically study how the imbalance between the source
and the target classes affects the proposed QFSL method.

Experiments are conducted on the SUN dataset, as
there are much more classes in it. The visual embed-
ding function is implemented with GoogLeNet. We adop-
t the standard split used by the most of other works.
72 classes are treated as the target categories. For the
source categories, we randomly select seven subsets from
the rest categories. The number of source categories is
{100, 200, 300, 450, 550, 600, 645}. We use these 7 differ-
ent source data and the fixed target data to test out method.
For a better understanding of our method, we also depict
the performance of the baseline QFSL−, in which only the
labeled source data are available.

Results in generalized settings are demonstrated in Fig-
ure 7. On the one hand, as the number of source classes in-
creases, the classification task of source data becomes more
difficult, which results in the performance drop in MCAs.
On the other hand, the increasing source classes provide
more knowledge to build the mapping between the visual
and the semantic embeddings, which results in the perfor-
mance boost in terms of MCAt.

Note that albeit with taking additional consideration of
addressing the bias problem, our proposed method pro-
duces a comparable performance with the baseline QFSL−

in MCAs. Furthermore, with more imbalanced source and
target classes, the new test instances from target classes are
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Figure 7. Performance of QFSL with different numbers of source
classes on SUN.

more likely to be classified into source classes (i.e., the bias
problem is more severe). Because our method alleviates
the bias problem, it yields much better performance in this
case. Consequently, as the number of source classes in-
creases (i.e., the imbalance ratio between source and target
classes becomes larger), the superiority of our method over
the baseline QFSL− becomes larger.

6. Conclusions and Future Work

In this work, we have proposed a straightforward yet
effective method to learn the unbiased embedding for ZS-
L. This method assumes both the labeled source data and
the unlabeled target data are available at the training time.
On the one hand, the labeled source data are projected to
the points specified by the source classes in the semantic
space, which builds the relationship between the visual em-
beddings and the semantic embeddings. On the other hand,
the unlabeled target data are forced to be projected to other
points specified by the target classes, which alleviates the
bias towards source classes significantly. Various experi-
ments conducted on different benchmarks demonstrate that
our method outperforms other state-of-the-art ZSL methods
by a large margin in both the conventional and the general-
ized settings.

There are many different research lines which are worthy
of further study following this work. For example, in this
work, semantically meaningful attributes are adopted as the
semantic space. In our future work, we will exploit other
semantic space such as word vectors. Another example is
that this work addresses the bias problem by transductive
learning, in our future work we will consider solving the
same problem following the way of inductive learning.
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