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Abstract

Fully supervised methods for semantic segmentation re-
quire pixel-level class masks to train, the creation of which
is expensive in terms of manual labour and time. In this
work, we focus on weak supervision, developing a method
for training a high-quality pixel-level classifier for seman-
tic segmentation, using only image-level class labels as the
provided ground-truth. Our method is formulated as a two-
stage approach in which we first aim to create accurate
pixel-level masks for the training images via a bootstrap-
ping process, and then use these now-accurately segmented
images as a proxy ground-truth in a more standard super-
vised setting. The key driver for our work is that in the target
dataset we typically have reliable ground-truth image-level
labels, while data crawled from the web may have unreli-
able labels, but can be filtered to comprise only easy images
to segment, therefore having reliable boundaries. These two
forms of information are complementary and we use this ob-
servation to build a novel bi-directional transfer learning
framework. This framework transfers knowledge between
two domains, target domain and web domain, bootstrap-
ping the performance of weakly supervised semantic seg-
mentation. Conducting experiments on the popular bench-
mark dataset PASCAL VOC 2012 based on both a VGG16
network and on ResNet50, we reach state-of-the-art perfor-
mance with scores of 60.2% IoU and 63.9% IoU respec-
tively1.

1. Introduction
Semantic image segmentation is a fundamental problem

in computer vision whose aim is to predict a category label
for each pixel of an image. Recent approaches [19, 18, 2,
17, 20, 33] based on Deep Convolutional Neural Networks
(DCNN) have achieved remarkable success. However, un-
like training classification networks [9, 28, 15, 32], which

1Our code is available at https://github.com/ascust/BDWSS
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Figure 1: Illustration of the bi-directional framework.
Model-T and Model-W are trained in the target domain and
the web domain respectively. Model-T uses the knowledge
in its domain to help Model-W to filter out image with in-
correct tags, yielding a set of high quality easy images.
Model-W trained with high quality web images transfers
the knowledge back to the target domain, helping Model-T
enhance the results.

only requires image-level labels, training a network for se-
mantic segmentation involves a large amount of pixel-level
labels.

As shown in [1], annotating pixel-level labels is very
time-consuming, taking an average of 239.7 seconds for a
single image. In contrast, obtaining image-level labels only
takes 20 seconds or less per image. This motivates explor-
ing the possibility of using partially annotated or weakly
annotated data to achieve reasonable performance. To this
end, a number of semi- or weakly supervised methods have
been proposed [24, 1, 26, 16, 13, 30, 6, 23]. These methods
utilize different levels of supervision including bounding
boxes, scribbles, points, image-level labels, etc. Points indi-
cate the location of the object; bounding boxes and scribbles
imply the extent of the object; image-level supervision only
indicates the presence of the object. Among various types
of supervision, image-level supervision is undoubtedly the
weakest one. In this paper, we focus explicitly on this task
of using the weakest supervision; i.e. semantic segmenta-
tion with only image-level labels.

We tackle the problem by focusing on generating the



pixel-wise masks for the training images to create a proxy
ground-truth dataset. Using this proxy ground-truth dataset,
we train a Fully Convolutional Network (FCN) for the task.
Our framework is designed to generate high-quality masks,
close in accuracy to those created by humans, and to use
these masks to train a network.

Web data exist in large quantities and we can easily col-
lect a group of images associated with a particular class
label by using the label (and synonyms) as a query to a
search engine. The hope is that these extra data can be used
to boost the performance, and indeed a number of papers
[30, 11, 26] have previously explored this idea to improve
results of weakly supervised methods. There are two hur-
dles to overcome; the first is that the retrieved web data will
often be noisy, in the sense that the image labels (tags) may
not match the image content, or be inconsistent with the
concept/object we are trying to capture. The second is of
course that the retrieved images will not have the ground-
truth segmentation masks associated with them.

In this paper we describe a bootstrapping process, in
which we leverage bi-directional flow of information be-
tween two domains, a target domain (i.e. the set of classes
for which we want segmentation and a set of training images
with accurate image-level labels) and the web domain (i.e.
images crawled from the web using the target class labels
as search keywords). For simplicity, we use Model-T and
Model-W to represent models in the target and web domain
respectively (see Figure 1). The key insight is that we can
use a weakly supervised network (Model-T, trained on the
target domain using only image-level labels) to effectively
filter the web-retrieved images to eliminate labelling errors
and to retain only images that are relatively easy to seg-
ment, having a simple background, single semantic class,
and decent-sized objects. By doing this, we create a new
dataset with high quality images that are easier to segment
with only weak supervision. Figure 2 illustrates typical im-
ages and segmentation results from the two domains. Im-
ages in the target domain usually have a complex scene and
multiple, overlapping objects, whereas web images filtered
are simpler and therefore easier to segment using a weakly
supervised network.

Since the model trained with the target dataset can filter
the web data and provides us with a high quality dataset, we
propose to learn a model with these web images and in re-
turn help enhance our results. As shown in Figure 3, the first
two masks are estimated by the model trained with the target
dataset and web images respectively. We observe that the
model trained with the target dataset is good at distinguish-
ing semantic classes but provides bad boundaries, while the
model trained with web images gives good boundaries but
tends to merge different semantic regions. By our merg-
ing strategy, the enhanced mask, shown in right bottom of
Figure 3, takes advantage from both masks and makes high

Target domain

Web domain

Figure 2: Mask estimation in two domains. In the upper
part, the mask is given by the model trained in the target
domain, which is coarse due to complex scene and overlap-
ping objects of the images. The lower part shows an exam-
ple given by the model trained in the web domain, which is
better because of the simple context.

estimated mask 
(model with target dataset)

estimated mask 
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image
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Figure 3: Illustration of enhancing mask. The upper part
shows an image in the training set and ground truth (which
is not available in our weakly supervised setting). In the
lower part, the first two masks are estimated by the model
in the target domain and the web domain respectively and
the last one is the enhanced mask.

quality estimation. There is also the ground truth annotation
in upper right for visual comparison, which is not available
in our weakly supervised setting.

Our contributions can be summarized as follows:

• We propose a bidirectional transfer learning frame-
work for bootstrapping webly supervised semantic
segmentation.

• We propose an effective approach to filter web data and
find high quality images, which are suitable for weakly
supervised semantic segmentation.

• We transfer the knowledge learnt from the web domain
to the target domain and generate high quality masks.

• By using the high quality masks as proxy ground truth,
we train a standard FCN and achieve state-of-the-art



performance. The gap between weakly supervised
methods and fully supervised methods is further re-
duced.

2. Related Work

Semantic segmentation has greatly benefited from FCN
based networks that enable training dense prediction mod-
els in an end-to-end fashion. Many methods have been pro-
posed [19, 18, 2, 17, 20, 33] and achieved remarkable suc-
cess. However these methods are designed in fully super-
vised setting and require pixel-level masks, which involves
a large amount of human labour and time to obtain.

In order to reduce the effort of annotation, many semi-
and weakly supervised methods have been proposed [24,
1, 26, 16, 13, 30, 6, 23]. In these methods, various forms
of supervision are investigated to achieve reasonable per-
formance compared with fully supervised methods. In [6],
Dai et al. propose a bounding box supervised method where
they extract object masks based on the bounding box by us-
ing MCG. In [16], Lin et al. use scribbles as supervision and
construct a graphical model to tackle the problem. In [1]
only points are used as supervision to train a model. Among
these supervisions, the most challenging one is image-level
annotation. Pathak et al. [23] introduce a constrained con-
volutional neural network with assumptions on object size,
foreground and background. Pinheiro et al. [24] propose
a Multiple Instance Learning (MIL) based method for the
problem. In [13], a ”seed, expand and constrain” (SEC)
framework is proposed using only image-level labels where
localization cues from classification networks are used to
find the object; a weighted rank pooling loss is used to con-
strain the object extent; CRF is used to refine the bound-
aries. Our method uses SEC model as a starting point and
use web images to learn better features.

Our method is closely related to webly supervised learn-
ing [4, 14, 31, 5], which is focused on extracting useful
knowledge or features from noisy web data. Many webly
based semantic segmentation methods have also been pro-
posed [11, 26, 30, 10]. In [11, 30], a network is firstly
trained with simple images from the internet and the cor-
responding masks estimated using saliency detection. Then
the network is adapted to the target domain with progressive
improvement. Shen et al. [26] use co-segmentation to ex-
tract the masks of web images and train the network. Hong
et al. [10] use data from the web crawled videos and extract
masks based on temporal information and attention cues.

3. Method

The pipeline of our framework is described in Figure 4.
Our goal is to estimate the masks for training images in
the target domain, which will then be used as a proxy for
ground truth to train the final segmentation network. The

models in two domains interact with each other to transfer
knowledge and finally provide us with high quality masks
for the training images.

In detail, our bi-directional framework is based on the
two domains:

• In the target domain, we train Initial-SEC on VOC
images with only image-level labels and get initial es-
timation of the masks. Details are presented in Section
3.1.

• In the web domain, we transfer the knowledge from
target domain by using Initial-SEC as a filter to clean
noisy web data. Then we have three steps to learn
the knowledge from the web domain by training Web-
SEC (Section 3.2.2), using Grabcut refinement (Sec-
tion 3.2.3) and training Web-FCN (Section 3.2.4).

• Back to the target domain, we transfer the knowledge
from the web domain back to enhance the initial es-
timation of the masks, which is described in Section
3.3.

• Finally Final-FCN is trained using the estimated
masks, as described in Section 3.4.

3.1. Training Initial-SEC in the Target Domain

Our framework starts in the target domain, where we
train a SEC model, termed Initial-SEC, on VOC images.
We first review the SEC architecture [13]. Let I =
{(Xn,Yn)}N1 be our target dataset, e.g. PASCAL VOC
2012, which consists of N1 images. Each Image Xn is an-
notated by image-level labels Yn ∈ {0, 1}C where C is the
number of classes. The goal is to train a DCNN f(X), short
for f(X; θ), that is parameterized by θ and models category
probabilities for each pixel. The SEC model is trained by
three losses:

L =

N1∑
n

Lseed(f(Xn),Yn) + Lexpand(f(Xn),Yn)

+Lconstrain(f(Xn),Xn)

(1)

Lseed supervises the network with localization cues
obtained from Class Activation Mapping (CAM) [34].
Lexpand controls how to aggregate the heat maps to be con-
sistent with image-level labels where a global weighted rank
pooling (GWRP) is proposed. Lconstrain makes the predic-
tions respect the boundaries of objects.

In the original paper, the trained model is the final model.
Unlike their approach, we apply the model back to the train-
ing images to generate their masks. These masks are coarse,
as shown in left bottom of Figure 3, and will be enhanced
by the model trained in the web domain.
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Figure 4: Illustration of our pipeline. Assuming the target dataset is PASCAL VOC 2012, the target domain contains the
training images in VOC with image-level labels, shown in the lower rectangle with dashed lines. The web domain has noisy
(i.e. incorrectly labelled) images, represented in the upper rectangle with dashed lines. Beginning with the target domain,
we first train Initial-SEC to generate rough initial masks. We then use this model as a filter to clean the noisy web data and
remove complex images, retaining easy-to-segment ones. In the (filtered) web domain, we train another SEC model (Web-
SEC) to get rough masks for the web images and Grabcut refinement to further refine the masks. Then a FCN (Web-FCN) is
trained on these data to represent the knowledge in the web domain. This model in turn enhances the estimation of the initial
masks to generate high quality masks. The last step is to train Final-FCN using the proxy ground truth.

Since we have access to image-level labels, we use them
to further refine the masks of the training images as follows:

mi = argmax
j∈{1,..,C}

yifij (2)

wheremi is the mask prediction for ith pixel (i.e. we choose
the class label as the most likely one from the set of valid
labels). An example is illustrated in Figure 5. Compared
with the raw prediction on left bottom, the confusion is re-
moved in the refined prediction shown on right bottom. We
also use the ground truth annotation for visual comparison,
which is not available in our setting.

3.2. Training Models in the Web Domain

The masks estimated from Section 3.1 are still too rough
to be used as the ground truth, as shown in right upper of
Figure 2. In this section we show how we can leverage
web-crawled data, transferring knowledge from the target
domain to the web domain and learn new knowledge in the
web domain.

3.2.1 Crawl and Filter Web Images

High quality web data processed by good filtering methods
are crucial to learning good segmentation models. In this

image ground truth

raw prediction refined prediction

Figure 5: Illustration of removing confusions of the initial
masks by using image-level labels. Given an image in up-
per left, the raw estimation is shown in lower left. Using
this information, we get cleaned estimation in right bottom.
We also use the ground truth annotation for visual compar-
ison(not available in our setting).

section, we show how to transfer the knowledge from the
target domain to filter web data.

We first search for images based on class names using
search engines (Bing in our experiments). The class names
are used as seeds, along with synonyms, and similar words



suggested by the search engines. For example, when search-
ing for “dog”, “German Shepherd dog”, “Pitbull dog” etc.
are also suggested. After greedily crawling all related im-
ages, we use the Initial-SEC model trained on VOC images
as our filter to clean the web data.

Applying the SEC model to web images, we are able
to obtain masks with per-pixel class labels. Based on
the dense masks information, we can easily identify qual-
ified images by scene complexity of the image, extent of
the object and semantic relevance. Specifically, we select
the images according to two criteria: (i) the number of
pixels for the target class must lie in a predefined range,
t1 < 1

N

∑
i 1(mi = c) < t2; and (ii) the number of

other foreground pixels should be lower than a threshold,
1
N

∑
i 1(mi 6= c and mi 6= background) < t3. The in-

tuition is we want to select images with a “proper” size for
the foreground. It is expected that such images can be eas-
ily segmented. Different from existing filtering approaches
[30, 10], our method is based on dense masks and provides
richer information of the images.

3.2.2 Training of Web-SEC

The filtering process described above creates a dataset of
accurately labelled, high quality web images from a noisy
web search. Our goal now is to improve the estimates of
their masks. To this end, we train another SEC model on the
web data which we term “Web-SEC”. Unlike in the target
domain, where images are associated with multiple class
labels, images in the web domain are much simpler, filtered
to be likely to contain only one class, and therefore easier
to segment.

The Web-SEC model is able to generate masks for these
web images of higher quality than Initial-SEC. Figure 6
shows a qualitative comparison between these two mod-
els (Initial-SEC and Web-SEC). The middle masks are from
Initial-SEC trained in the target domain. It gives basic se-
mantic information and rough extent of the object. Clearly
the masks on the right, outputs from Web-SEC, are well
adapted to the web domain and provide more accurate esti-
mation.

3.2.3 Grabcut Refinement

The masks generated by Web-SEC are good at capturing the
whole object but sometimes overestimate the object, as il-
lustrated in the second column of Figure 7. To further refine
the masks, we develop a Grabcut based refinement method.
It is similar to [12], but we use the mask as prior knowl-
edge to indicate the foreground and background instead of
the bound box. We simply jitter the window that tightly
surrounds the mask and perform Grabcut [25]. By multiple
samples, we are able to get a probability heat map of the
foreground as shown in the third column of Figure 7, and

image Initial-SEC Web-SEC

Figure 6: Comparison of the estimated mask for web im-
ages between Initial-SEC model and Web-SEC model. The
middle column shows the masks estimated from Initial-SEC
model, which are coarse. The masks on the right are from
the Web-SEC model, which provide more accurate estima-
tion.

image Web-SEC Grabcut refinementGrabcut heatmap

Figure 7: Illustration of Grabcut refinement. The second
column shows the masks from Web-SEC model. The third
column shows the probability heat map after Grabcut. The
last column shows the refined masks.

we retain as foreground only the pixels with high probabil-
ity.

For a mask estimated by Web-SEC, li ∈ {1, ..., C} is
the label for ith pixel. After Grabcut refinement, we have
pi ∈ [0, 1] for ith pixel representing the probability of being
kept. The refined mask is defined as:

l̂i =


li if pi ≥ t

background if pi < t and li = background

void if pi < t and li 6= background

(3)

where l̂i is the new label for ith pixel; t is the threshold;
void indicates unclear regions.

We are able to control the balance between precision
and recall by choosing a proper threshold. By using a high
threshold, we have high confidence about the pixels being
kept. Since those with low probability are set to void, they
will be ignored during the training and not have a big im-
pact.



3.2.4 Training of Web-FCN

After Section 3.2.3, we obtain a web image dataset with
estimated masks. Let W = {(Xn,Mn)}N2 be the dataset
with N2 images, where Xn and Mn are the image and the
estimated mask respectively. We now are able to train a
standard FCN (Web-FCN), which is used to estimate masks
for our target dataset. The architecture we adopt here is a
1/8 resolution FCN with dilated convolution kernels, similar
to DeepLab [2]. This becomes a “fully supervised” problem
and the objective is to minimize a softmax loss:

L =

N2∑
n

Lsoftmax(f(Xn),Mn) (4)

The Web-FCN trained in the web domain encodes the
knowledge in this domain. The knowledge will be trans-
ferred to the target domain by applying this model to the
target dataset.

3.3. Enhancing the Initial Estimation

In this section, we describe how to transfer the knowl-
edge learnt from the web domain to the target domain and
improve the estimation. Recall that in lower part of Figure
3, the first two masks are from models in the target and the
web domain respectively. We observe that the model in the
target domain is good at distinguishing classes because it is
trained with confident image-level labels. In contrast, the
model in the web domain provides better boundaries and
captures more complete extent but is prone to making mis-
takes about the class labels. We address this by fusing the
estimations from both domains and get the final enhanced
mask, shown in right bottom of Figure 3.

More specifically, let M (t) be the mask from the target
domain andM (t)

i ∈ {1, ..., C} represent the category for ith
pixel. Likewise, M (w) and M (f) represent the mask from
the web domain and the final enhanced mask respectively.
The fusion strategy is as follows:

M
(f)
i =


M

(t)
i if M

(w)
i 6= background

M
(t)
i if M

(w)
i = background

and
∑

k 1(M
(w)
k =M

(t)
i ) < ε

M
(w)
i otherwise

(5)

where ε is a small number.
The intuition for this strategy is that for foreground pix-

els in M (w), the category labels will follow M (t) because
it has better ability to distinguish classes. For background
pixels in M (w), if the number of pixels for a valid class is
lower than a threshold, we also follow the label in M (t).
This indicates if a class is shown in image-level labels, we
should guarantee some pixels for this class, otherwise the

information for this class will be lost. In any other cases,
we follow M (w).

3.4. Training Final-FCN

After obtaining the enhanced masks, the problem is sim-
ilar to a “fully supervised” problem. The target dataset be-
comes I = {(Xn,Yn,Mn)}N1 , where we have pixel-wise
masks besides image-level labels. This enables us to train a
standard FCN model. The structure we adopt in our experi-
ment is a FCN with dilated kernels, similar to DeepLab [2].
Besides, we also adopt a global-multi label branch for scene
consistency, as in [27]. We train Final-FCN by minimizing
two loss functions:

L =

N1∑
n

Lsoftmax(f(Xn),Mn) + Lmulti(g(Xn),Yn)

(6)
where g(Xn) is the output for global multi-label and

Lmulti is a logistic multi-label loss.

4. Experiments
4.1. Dataset

Retrieved Dataset: We retrieve images from Bing based
on class names. We use class names as seeds and greedily
search for related images, including synonyms, words sug-
gested by the searching engine. By using our Initial-SEC
as a filter and setting a threshold for each class as the max-
imum number of images, we obtain a retrieved dataset with
76683 images. All images are resized so that the larger di-
mension is 500. In term of the parameters mentioned in
Section 3.2.1, t1 = 0.3, t2 = 0.7 and t3 = 0.1.

PASCAL VOC 2012: We use this dataset as our tar-
get dataset and evaluate the performance based on this. The
original dataset [7] contains 1464 training images, 1449 val-
idation images and 1456 testing images. As common prac-
tice, we also use the augmented data from [8], which gives
10582 training images in total. There are 21 classes includ-
ing a background class. The result is evaluated with Inter-
section over Union (IoU) averaged over 21 classes.

4.2. Implementation Details

The implementation is based on MXNet [3]. For details
of training SEC models, Initial-SEC and Web-SEC, please
refer to the original paper [13]. We follow the same param-
eters except that for training Web-SEC, we use a smaller
initial learning rate of 1e-4. For Grabcut refinement, Sec-
tion 3.2.3, we set the threshold t = 0.7. For Web-FCN
we use DeepLab-based [2] structure, which has output res-
olution of 1/8. For Final-FCN, apart from the basic struc-
ture, a global multi-label branch is also introduced to en-
courage scene consistency, similar to [27]. We use standard



Method val test Extra Supervision
Chen et al. [2] 63.7 66.4 Fully supervised
Lin et al. [16] 63.1 - Scribble
Dai et al. [6] 62.0 64.6 Bounding box+MCG
Oh et al. [21] 55.7 56.7 Bounding box

Bearman et al. [1] 46.1 - Point
Wei et al. [29] 55.0 55.7 Supervised saliency

STC [30] 49.8 51.2 Supervised saliency
EM-Adapt [22] 33.8 39.6 -

CCNN [23] 35.3 35.6 -
SEC [13] 50.7 51.7 -

Hong et al. [10] 58.1 58.7 -
Ours-VGG16 58.8 60.2 -
Ours-Res50 63.0 63.9 -

Table 1: Comparison with methods using other supervi-
sions.

T-domain Web-domain
Initial-SEC Web-SEC GC Web-FCN post IoU

! 49.3
! ! 52.6
! ! ! 55.7
! ! ! ! 56.6
! ! ! ! ! 58.8

Table 2: Comparison under different settings on the PAS-
CAL VOC 2012 validation set.

Stochastic Gradient Descent (SGD) for optimization. For
post-processing, multi-scale inference and dense-CRF are
used as common practice.

4.3. Experiment Results

The results on PASCAL VOC validation set and test set
are shown in Table 4 and Table 5 respectively. According
to the tables, the one with VGG16 [28], same as the other’s
base network, already achieves state of the art performance,
60.22. By using another base net, Resnet 50 [9], we achieve
much better result 63.93, which significantly outperforms
other methods.

Table 1 also shows a comparison with methods using dif-
ferent supervision, where the extra supervision is explained
in the last column. In the upper half of the table, we list
methods with stronger supervision than image-level labels.
It is worth noting that our method does not use any other
auxiliary methods that involve extra supervision. Some
qualitative examples are shown in Figure 8.

4.4. Ablation Study

4.4.1 Analysis of Different Modules

To analyse the effectiveness of our bi-directional transfer
learning framework, we conduct ablation study with differ-

2http://host.robots.ox.ac.uk:8080/anonymous/X0CH0F.html
3http://host.robots.ox.ac.uk:8080/anonymous/GKJXB6.html

Number of web images IoU
76.7k 56.6
58.1k 56.4
39.1k 56.3
20.0k 56.4
10.0k 56.4

6k 55.7
2k 55.3

80.0k without filtering 49.8

Table 3: Ablation study using different number of web im-
ages on the PASCAL VOC 2012 validation set.

ent settings. Recall that our goal is to generate high quality
masks for the training images and train a FCN using the
estimated masks. Therefore, the quality of the masks di-
rectly affects the final performance. Table 2 shows a com-
parison under different settings. Starting with the simplest
one where only target domain is involved, we only get 49.3
by using Initial-SEC. With the web domain introduced, we
train Web-SEC for the web images, which gives us 3.3 point
improvement. This indicates the effectiveness of the knowl-
edge transferred from the web domain. We continue train-
ing Web-FCN without using Grabcut refinement and further
improve the result to 55.7. By using Grabcut refinements,
we get almost one more point of improvement. The final
score is obtained by post-processing including multi-scale
inference and dense-CRF as common practice.

4.4.2 Analysis of Number of Web Images

It is also interesting to analyse how the number of web im-
ages involved affects the result. Table 3 shows an ablation
study using different numbers of web images.The best per-
formance is obtained by using 76.7k images. We also run
experiments with different numbers of images by varying
the threshold of maximum images for each class. It is inter-
esting that the performance does not drop much with the
number of web images decreasing. Even the number of
images is decreased to 2k, the performance only drops by
1.3%. This indicates that our bi-directional framework is
pretty robust to noise and the filtered images are high qual-
ity. Furthermore, we also show an experiment without fil-
tering the images, which is shown in the last row. Using
80k noisy web images, we only get score of 49.8, which is
6.8 lower than the best one. This again indicates the impor-
tance of using knowledge learnt in target domain to filter
web data.

5. Conclusion
In this paper, we tackle the problem of weakly super-

vised semantic segmentation using only image-level labels.
Apart from the target dataset with confident image-level la-
bels, we propose to use noisy web data to boost the perfor-



Method bk plane bike bird boat bottle bus car cat chair cow table dog horse motorpersonplant sheep sofa train tv mean

EM-Adapt [22] 67.2 29.2 17.6 28.6 22.2 29.6 47.0 44.0 44.2 14.6 35.1 24.9 41.0 34.8 41.6 32.1 24.8 37.4 24.0 38.1 31.6 33.8
CCNN [23] 68.5 25.5 18.0 25.4 20.2 36.3 46.8 47.1 48.0 15.8 37.9 21.0 44.5 34.5 46.2 40.7 30.4 36.3 22.2 38.8 36.9 35.3

MIL+seg [24] 79.6 50.2 21.6 40.9 34.9 40.5 45.9 51.5 60.6 12.6 51.2 11.6 56.8 52.9 44.8 42.7 31.2 55.4 21.5 38.8 36.9 42.0
SEC [13] 82.4 62.9 26.4 61.6 27.6 38.1 66.6 62.7 75.2 22.1 53.5 28.3 65.8 57.8 62.3 52.5 32.5 62.6 32.1 45.4 45.3 50.7
STC [30] 84.5 68.0 19.5 60.5 42.5 44.8 68.4 64.0 64.8 14.5 52.0 22.8 58.0 55.3 57.8 60.5 40.6 56.7 23.0 57.1 31.2 49.8

WebS [11] 84.3 65.3 27.4 65.4 53.9 46.3 70.1 69.8 79.4 13.8 61.1 17.4 73.8 58.1 57.8 56.2 35.7 66.5 22.0 50.1 46.2 53.4
Hong et al. [10] 87.0 69.3 32.2 70.2 31.2 58.4 73.6 68.5 76.5 26.8 63.8 29.1 73.5 69.5 66.5 70.4 46.8 72.1 27.3 57.4 50.2 58.1
Ours-VGG16 85.0 74.4 24.9 76.2 20.7 58.2 82.3 73.6 81.0 25.9 71.3 37.4 71.8 69.6 70.3 71.0 44.1 73.8 34.1 48.4 40.0 58.8

Ours-Resnet50 86.8 71.2 32.4 77.0 24.4 69.8 85.3 71.9 86.5 27.6 78.9 40.7 78.5 79.1 72.7 73.1 49.6 74.8 36.1 48.1 59.2 63.0

Table 4: Results on the PASCAL VOC 2012 validation set.

Method bk plane bike bird boat bottle bus car cat chair cow table dog horse motorpersonplant sheep sofa train tv mean

EM-Adapt [22] 76.3 37.1 21.9 41.6 26.1 38.5 50.8 44.9 48.9 16.7 40.8 29.4 47.1 45.8 54.8 28.2 30.0 44.0 29.2 34.3 46.0 39.6
CCNN [23] 70.1 24.2 19.9 26.3 18.6 38.1 51.7 42.9 48.2 15.6 37.2 18.3 43.0 38.2 52.2 40.0 33.8 36.0 21.6 33.4 38.3 35.6

MIL+seg [24] 78.7 48.0 21.2 31.1 28.4 35.1 51.4 55.5 52.8 7.8 56.2 19.9 53.8 50.3 40.0 38.6 27.8 51.8 24.7 33.3 46.3 40.6
SEC [13] 83.5 56.4 28.5 64.1 23.6 46.5 70.6 58.5 71.3 23.2 54.0 28.0 68.1 62.1 70.0 55.0 38.4 58.0 39.9 38.4 48.3 51.7
STC [30] 85.2 62.7 21.1 58.0 31.4 55.0 68.8 63.9 63.7 14.2 57.6 28.3 63.0 59.8 67.6 61.7 42.9 61.0 23.2 52.4 33.1 51.2

WebS [11] 85.8 66.1 30.0 64.1 47.9 58.6 70.7 68.5 75.2 11.3 62.6 19.0 75.6 67.2 72.8 61.4 44.7 71.5 23.1 42.3 43.6 55.3
Hong et al. [10] 87.2 63.9 32.8 72.4 26.7 64.0 72.1 70.5 77.8 23.9 63.6 32.1 77.2 75.3 76.2 71.5 45.0 68.8 35.5 46.2 49.3 58.7
Ours-VGG16 85.3 77.6 26.2 76.6 17.3 61.4 82.4 74.8 83.8 25.7 66.9 46.2 74.0 75.6 79.2 70.8 48.3 73.1 40.5 38.8 39.0 60.2

Ours-Resnet50 87.2 76.8 31.6 72.9 19.1 64.9 86.7 75.4 86.8 30.0 76.6 48.5 80.5 79.9 79.7 72.6 50.1 83.5 48.3 39.6 52.2 63.9

Table 5: Results on the PASCAL VOC 2012 test set.

input ground truth prediction input ground truth prediction

Figure 8: Qualitative results on PASCAL VOC 2012 validation set.

mance. To leverage the data in two domains, target domain
and web domain, we propose a novel bi-directional trans-
fer learning framework that is able to generate high quality
masks for the training images. Using these masks as proxy
ground truth, we achieve state-of-the-art performance and
further narrow down the gap between weakly and fully su-
pervised methods.
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