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Abstract

Training deep neural networks for solving machine
learning problems is one great challenge in the field, mainly
due to its associated optimisation problem being highly
non-convex. Recent developments have suggested that
many training algorithms do not suffer from undesired lo-
cal minima under certain scenario, and consequently led
to great efforts in pursuing mathematical explanations for
such observations. This work provides an alternative math-
ematical understanding of the challenge from a smooth op-
timisation perspective. By assuming exact learning of finite
samples, sufficient conditions are identified via a critical
point analysis to ensure any local minimum to be globally
minimal as well. Furthermore, a state of the art algorithm,
known as the Generalised Gauss-Newton (GGN) algorithm,
is rigorously revisited as an approximate Newton’s algo-
rithm, which shares the property of being locally quadrat-
ically convergent to a global minimum under the condition
of exact learning.

1. Introduction
Deep Neural Networks (DNNs) have been successfully

applied to solve challenging problems in pattern recogni-
tion, computer vision, and speech recognition [3, 21, 43].
Despite this success, training DNNs is still one of the great-
est challenges in the field [9]. In this work, we focus on
training the classic feedforward Multi-Layer Perceptrons
(MLPs). It is known that performance of MLPs is highly
dependent on various factors in a very complicated way. For
example, studies in [15, 37] identify the topology of MLPs
as a determinative factor. Works in [25, 9] demonstrate the
impact of different activation functions to performance of
MLPs. Moreover, a choice of error/loss functions is also
shown to be influential as in [8].

Even with a well designed MLP architecture, training
a specific MLP both effectively and efficiently can be as
challenging as constructing the network. The most popular

method used in training MLPs is the well-known backpro-
pagation (BP) algorithm [42]. Although the classic BP al-
gorithm shares a great convenience of being very simple,
they can suffer from two major problems, namely, (i) con-
vergence to undesired local minima, if global optimality is
assumed; and (ii) slow convergence speed. Early works
as [38, 30] argue that such problems with BP algorithms
are essentially due to their nature of being gradient descent
algorithms, while an associated optimisation problem for
MLP training is often highly non-convex and of large scale.

One major approach to address the problem of undesired
local minima in MLP training is via an error/loss surface
analysis [14, 35, 6]. Even for simple tasks, such as the
classic XOR problem, the error surface analysis is surpris-
ingly complicated and its results can be hard to conclude
[22, 35, 36]. Early efforts in [11, 44, 45] try to identify gen-
eral conditions on the topology of MLPs to eliminate unde-
sired local minima, i.e., suboptimal local minima. Unfor-
tunately, these attempts fail to provide complete solutions
to general problems. On the other hand, although BP al-
gorithms are often thought to be sensitive to initialisations
[19], recent results reported in [10] suggest that modern
MLP training algorithms can overcome the problem of sub-
optimal local minima conveniently. Such observations have
triggered several very recent efforts to characterise global
optimality of DNN training [17, 28, 13].

The work in [17] shows that both deep linear networks
and deep nonlinear networks with only the Rectified Linear
Unit (ReLU) function in the hidden layers are free of sub-
optimal local minima. The attempted technique is not ap-
plicable for analysing deep nonlinear networks with other
activation functions, e.g. the Sigmoid and the SoftSign. Re-
cent work in [28] proves that all local minima are globally
minimal for exact learning with wide MLPs, if the num-
ber of units in a hidden layer of the network is larger than
the number of training samples and the network structure
from that layer on is pyramidal. Unfortunately, the deployed
techniques can neither exclude the possibility of suboptimal
local minima of low rank, nor be applied to narrow MLPs.



Most recently, by restricting the network output and its reg-
ularisation to be positively homogeneous with respect to the
network parameters, the work in [13] develops sufficient
conditions to guarantee all local minima to be globally min-
imal. So far, such results only apply to networks with either
one hidden layer or multiple deep subnetworks connected
in parallel. Moreover, it still fails to explain performance
of MLPs with non-positively homogeneous activation func-
tions.

To deal with slow convergence speed of the classic
BP algorithm, various modifications have been developed,
such as momentum based BP algorithm [40], conjugate
gradient algorithm [5], BFGS algorithm [20], and ADAp-
tive Moment estimation (ADAM) algorithm [18]. Specifi-
cally, a Generalised Gauss-Newton (GGN) algorithm pro-
posed in [31] has demonstrated its prominent performance
over many state of the art training algorithms in practice
[23, 39]. Unfortunately, justification for such performance
is still mathematically vague [24]. Another popular so-
lution to deal with slow convergence is to employ New-
ton’s method for MLP training. However, an implemen-
tation of exact Newton’s method is often computationally
prohibitive. Hence, approximations of the Hessian matrix
are needed to address the issue, such as a diagonal approx-
imation structure [1], and a block diagonal approximation
structure [41]. However, without a complete evaluation of
the true Hessian, performance of these heuristic approxi-
mations is hardly convincing. Although existing attempts
[2, 27] have characterised the Hessian by applying partial
derivatives, these results still fail to provide further struc-
tural information of the Hessian, due to the limitations of
partial derivatives.

In this work, we provide an alternative mathematical
understanding of the difficulty in training MLPs from a
smooth optimisation perspective. Sufficient conditions are
identified via a critical point analysis to ensure all local min-
ima to be globally minimal. Convergence properties of the
GGN algorithm are rigorously analysed as an approximate
Newton’s algorithm.

2. Learning with MLPs
Many machine learning tasks can be formulated as a

problem of learning a task-specific ground truth mapping
g∗ : X → Y , where X and Y denote an input space and
an output space, respectively. The problem of interest is to
approximate g∗, given only a finite number of samples in ei-
ther X or X×Y . When only T samples in X are given, say
{xi}Ti=1 ⊂ X , the problem of approximating g∗ is known
as unsupervised learning. When both input samples and
their desired outputs yi := g∗(xi) are provided, i.e., given
training samples {(xi, yi)}Ti=1⊂X×Y , the corresponding
problem is referred to as supervised learning. In this work,
we only focus on the problem of supervised learning.

A popular approach to evaluate learning outcomes is via
minimising an empirical error/loss function as

g̃ ∈ argmin
g∈G

1

T

T∑
i=1

E
(
g(xi), p(xi)

)
, (1)

where G denotes a hypothetical function space, where a
minimiser g̃ is assumed to be reachable, and E : Y ×Z →
R denotes a suitable error function that evaluates the esti-
mate g(xi) against some task-dependent prior knowledge
p(xi) ∈ Z . For supervised learning problems, such prior
knowledge is simply the corresponding desired output yi,
i.e., p(xi) := g∗(xi). In general, given only a finite number
of samples, the ground truth mapping g∗ is hardly possible
to be exactly learned as the solution g̃. Nevertheless, we can
still define a specific scenario of exact learning with respect
to a finite number of samples.

Definition 1 (Exact learning). Let g∗ : X → Y be the
ground truth mapping. Given samples {xi, yi}Ti=1 ⊂ X ×
Y , a mapping ĝ : X →Y , which satisfies ĝ(xi) = g∗(xi)
for all i = 1, . . . , T , is called a finite exact approximator of
g∗ based on the T samples.

For describing MLPs, we denote by L the number of lay-
ers in an MLP structure, and by nl the number of process-
ing units in the l-th layer with l = 1, . . . , L. Specifically,
by l = 0, we refer it to the input layer. Let σ : R → R
be a unit activation function, which was traditionally cho-
sen to be non-constant, bounded, continuous, and monoton-
ically increasing. Recent choices, e.g. ReLU, SoftPlus, and
Bent identity, are unbounded functions. In this work, we
restrict activation functions to be smooth and monotonically
increasing, and denote by σ′ : R → R and σ′′ : R → R
the first and second derivative of the activation function σ,
respectively.

For the (l, k)-th unit in an MLP architecture, referring to
the k-th unit in the l-th layer, we define the corresponding
unit mapping as

fl,k(wl,k, φl−1) := σ
(
w>l,kφl−1 − bl,k

)
, (2)

where φl−1 ∈ Rnl−1 denotes the output from the (l − 1)-th
layer, wl,k ∈ Rnl−1 and bl,k ∈ R are respectively a weight
vector and a bias associated with the (l, k)-th unit. Note,
that the bias bl,k is a free variable in general. However,
through our analysis in this work, we fix it as a constant
scalar as in Eq. (2) for the sake of convenience for presenta-
tion. Then, we can simply define the l-th layer mapping by
stacking all unit mappings in the layer as

Fl(Wl,φl−1) :=
[
fl,1(wl,1,φl−1), . . . ,fl,nl

(wl,nl
,φl−1)]>, (3)

with Wl := [wl,1, . . . , wl,nl
] ∈ Rnl−1×nl being the l-th

weight matrix. Specifically, let us denote by φ0 ∈ Rn0

the input, then the output at the l-th layer is recursively de-
fined as φl := Fl(Wl, φl−1). Note, that the last layer of



an MLP commonly employs the identity map as the ac-
tivation function, i.e., φL := W>L φL−1. Finally, by de-
noting the set of all parameter matrices in the MLP by
W := Rn0×n1 × . . . × RnL−1×nL , we compose all layer-
wise mappings to define the overall MLP network mapping

F : W × Rn0 → RnL ,

(W, φ0) 7→ FL(WL, ·) ◦ . . . ◦ F1(W1, φ0).
(4)

With such a construction, we can define the set of parame-
terised mappings specified by a given MLP architecture as

F :=
{
F (W, ·) : Rn0 → RnL

∣∣W ∈W
}
. (5)

More specifically, we denote by F(n0, . . . , nL) the MLP
architecture specifying the topology of the MLP, i.e., the
number of units in each layer.

Now, let X ⊆ Rn0 and Y ⊆ RnL , one can utilise an
MLP F (W, ·) ∈ F to approximate the ground truth map-
ping g∗. Then, an empirical total loss function of MLP
based learning can be formulated as

J (W) :=
1

T

T∑
i=1

E
(
F (W, xi), yi

)
. (6)

If the error function E(·, ·) is differentiable in F (W, xi),
then the function J is differentiable in the weights W. For
the convenience of presentation, in the rest of the paper we
denote the sample-wise loss function by

J(W, xi) := E
(
F (W, xi), yi

)
. (7)

It is important to notice that, even if the error function
E(·, ·) is constructed to be convex with respect to the first
argument, the total loss function J as defined in Eq. (6)
is still non-convex in W. Since the set of parameters W
is unbounded, when squashing activation functions are em-
ployed, exploding the norm of any weight matrix will not
drive the function value of J to infinity. Namely, the total
loss function J can be non-coercive [12]. Therefore, the
existence and attainability of global minima of J are not
guaranteed in general. However, in the finite sample set-
ting, when appropriate nonlinear activation functions, such
as Sigmoid and tanh, are employed in the hidden layer, a
three-layer MLP with a sufficiently large number of units in
the hidden layer can achieve exact learning of finite samples
[16, 32].

In the rest of the paper, we assume the existence of an
MLP structure that is capable of realising a finite exact ap-
proximator.

Assumption 1. Let g∗ : X → Y be the ground truth map-
ping. Given T unique samples {xi}Ti=1 ⊂ X , there exists
an MLP architecture F , as defined in Eq. (5), and a weight
W∗ ∈ W , so that the corresponding MLP F (W∗, ·) is a
finite exact approximator of g∗.

As exact learning of finite samples is assumed, a suit-
able error function E is critical to ensure its attainability
and uniqueness via an optimisation procedure. Specifically,
a finite exact approximator is demanded to correspond with
a global minimum of the total loss function without subop-
timal local minima. We propose the following assumption
as a practical principle of choosing error function.

Principle 1 (Choice of error function). The error function
E(·, ·) is differentiable with respect to its first argument. If
the gradient ofE with respect to the first argument vanishes
at φL ∈ RnL , i.e., ∇E(φL) = 0, then φL is a global mini-
mum of E.

Remark 1. Typical examples of error function include the
classic squared loss, smooth approximations of `p norm
with 0 < p < 2, Blake-Zisserman loss, and Cauchy loss
[29]. Moreover, by Principle 1, the weights W∗ as assumed
in Assumption 1 is a global minimiser of the total loss func-
tion J .

3. Critical point analysis of MLP training
In order to develop a gradient descent algorithm to mini-

mise the cost function J as in Eq. (6), the derivative of
all unit mappings are building blocks for our computation.
We define the derivative of the activation function σ in the
(l, k)-th unit as

f ′l,k(wl,k, φl−1) := σ′
(
w>l,kφl−1 − bl,k

)
, (8)

and the collection of all derivatives of activation functions
in the l-th layer as

F ′l (Wl,φl−1) :=
[
f ′
l,1

(w
l,1
, φ

l−1
), . . . , f ′

l,nl
(w

l,nl
, φ

l−1
)
]>
. (9)

For simplicity, we denote by φ′l := F ′l (Wl, φl−1) ∈ Rnl .
We apply the chain rule of multivariable derivative to com-
pute the directional derivative of J with respect to Wl in
direction Hl ∈ Rnl−1×nl as

DJ(Wl)·Hl = DE(φL) ·D2FL(WL, φL−1) · . . . · (11)
·D2Fl+1(Wl+1,φl) ·D1Fl(Wl,φl−1) ·Hl,

where D1Fl(Wl, φl−1) ·Hl and D2Fl(Wl, φl−1) ·hl−1 re-
fer to the directional derivative of Fl with respect to the
first and the second argument, respectively. Explicitly,
the first derivative of Fl evaluated at Wl is a linear map
D1Fl(Wl, φl−1) : Rnl−1×nl → Rnl , computed as

D1Fl(Wl, φl−1)·Hl = diag(φ′l)H
>
l φl−1, (12)

where the operator diag(·) puts a vector into a diagonal ma-
trix form, and the first derivative of Fl evaluated at φl−1 in
direction hl−1 ∈ Rnl−1 as

D2Fl(Wl, φl−1)·hl−1 = diag(φ′l)W
>
l hl−1. (13)



The gradient of J in the l-th weight matrix Wl ∈ Rnl−1×nl

with respect to the Euclidean metric can be computed as

∇J(Wl)=φl−1
(
Σ′lWl+1Σ′l+1. . .WLΣ′L∇E(φL)︸ ︷︷ ︸

=:ωl∈Rnl

)>
, (14)

where Σ′l := diag(φ′l). By exploring the layer-wise struc-
ture of the MLP, the corresponding vector ωl can be com-
puted recursively backwards from the output layer L, i.e.,

ωl := Σ′lWl+1ωl+1, for all l = L− 1, . . . , 1, (15)

with ωL = Σ′L∇E(φL). With such a backward mechanism
in computing the gradient ∇J(Wl), we recover the classic
BP algorithm.

In what follows, we characterise critical points of the to-
tal loss function J as defined in Eq. (6) by setting its gradi-
ent to zero, i.e., ∇J (W) = 0. Explicitly, the gradient of J
with respect to the l-th weight Wl is computed by

∇J (Wl) =

T∑
i=1

φl−1ω
>
l ∈ Rnl−1×nl , (16)

where φl−1 and ωl are respectively the (l− 1)-th layer out-
put and the l-th error vector as defined in Eq. (15). Simi-
lar to the recursive construction of the error vector ωl as
in Eq. (15), we construct a sequence of matrices as, for all
l = L− 1, . . . , 1,

Ψl := Σ′lWl+1Ψl+1 ∈ Rnl×nL , (17)

with ΨL = Σ′L ∈ RnL×nL . Then the vector form of the
gradient ∇J (Wl) can be written as

vec
(
∇J (Wl)

)
=

T∑
i=1

(
Ψl ⊗ φl−l

)
∇E(φL), (18)

where vec(·) transforms a matrix into a vector by stacking
columns on top of one another, and ⊗ denotes the Kro-
necker product of matrices. Then, by applying the previous
calculation to all T samples, critical points of the total loss
function J are characterised as solutions of the following
parameterised linear system for W

Ψ
(1)
L ⊗φ

(1)
L−1 . . . Ψ

(T )
L ⊗φ

(T )
L−l

...
. . .

...
Ψ

(1)
1 ⊗φ

(1)
0 . . . Ψ

(T )
1 ⊗φ

(T )
0


︸ ︷︷ ︸

=:P(W)∈RNnet×(TnL)


∇E(φ

(1)
L )

...
∇E(φ

(T )
L )


︸ ︷︷ ︸
=:ε(W)∈RTnL

=0, (19)

where the superscript (·)(i) indicates the corresponding
term for the i-th sample, and P(W) is the collection of the
Jacobian matrices of the MLP for all T samples. Here,Nnet

is the number of variables in the MLP, i.e.,

Nnet =

L∑
l=1

nl−1nl. (20)

The above parameterised linear equation system in ε(W) is
strongly dependent on several factors, essentially all factors

in designing an MLP, i.e., the MLP structure, the activation
function, the error function, given samples, and the weight
matrices. If the trivial solution ε(W) = 0 is reachable at
some weights W∗ ∈W , then a finite exact approximator ĝ
is realised by the corresponding MLP, i.e., F (W∗, ·) = ĝ.
Additionally, if the solution ε = 0 is the only solution of
the parameterised linear equation system for all W ∈ W ,
then any local minimum of the loss function J is a global
minimum. Thus, we conclude the following theorem.

Theorem 1 (suboptimal local minima free condition). Let
an MLP architecture F satisfy Assumption 1 for a specific
learning task, and the error function E satisfy Principle 1.
If the following two conditions are fulfilled for all W ∈W ,

(1) the matrix P(W), as constructed in (19), is non-zero,

(2) the vector ε(W), as constructed in (19), lies in the row
span of P(W),

then a finite exact approximator ĝ is realised at a global
minimum W∗ ∈W , i.e., F (W∗, ·) = ĝ, and the loss func-
tion J is free of suboptimal local minima, i.e., any local
minimum of J is a global minimum.

Obviously, condition (1) in Theorem 1 is quite easy to
be ensured, while condition (2) is hardly possible to be re-
alised, since it might require enormous efforts to design the
space of MLPs F . Nevertheless, if the rank of matrix P
is equal to TnL for all W ∈ W , then the trivial solution
zero is the only solution of the parameterised linear system.
Hence, we have the following proposition as a special case
of Theorem 1.

Proposition 1 (Strong suboptimal local minima free con-
dition). Let an MLP architecture F satisfy Assumption 1
for a specific learning task, and the error function E satisfy
Principle 1. If the rank of matrix P(W) as constructed in
(19) is equal to TnL for all W ∈ W , then a finite exact
approximator ĝ is realised at a global minimum W∗ ∈W ,
i.e., F (W∗, ·) = ĝ, and the loss function J is free of sub-
optimal local minima.

Given the number of rows of P(W) beingNnet, we sug-
gest the second principle of ensuring performance of MLPs.

Principle 2 (Choice of the number of NN variables). The
total number of variables in an MLP architecture Nnet

needs to be greater than or equal to TnL, i.e.,Nnet ≥ TnL.

In what follows, we investigate the possibility or diffi-
culty to fulfil the condition, i.e., rank

(
P(W)

)
= TnL for

all W ∈ W , required in Proposition 1. Let us firstly con-
struct the two identically partitioned matrices (L× T parti-
tions), by collecting the partitions Ψ

(i)
l ’s and φ(i)l ’s, as

Ψ :=


Ψ

(1)
L . . .Ψ

(T )
L

...
. . .

...
Ψ

(1)
1 . . .Ψ

(T )
1

, and Φ :=


φ
(1)
L−1 . . . φ

(T )
L−1

...
. . .

...
φ
(1)
0 . . . φ

(T )
0

. (21)



Then, the matrix P(W) constructed on the left hand side of
Eq. (19) is computed as the Khatri-Rao product of Ψ and Φ,
i.e., pairwise Kronecker products for all pairs of partitions
in Ψ and Φ, denoted by

P(W) := Ψ�Φ. (22)

Each row block of P(W) associated with a specific layer
l is by construction the Khatri-Rao product of the corre-
sponding row blocks in Ψ and Φ, i.e., Ψl � Φl−1 with
Ψl :=

[
Ψ

(1)
l , . . . ,Ψ

(T )
l

]
and Φl−1 :=

[
φ
(1)
l−1, . . . , φ

(T )
l−1
]
.

We firstly investigate the rank property of row blocks of
P(W) in the following proposition1.

Proposition 2. Given a collection of matrices Ψi ∈
Rnl×nL and a collection of vectors φi ∈ Rnl−1 , for i =
1, . . . , T , let Ψ := [Ψ1, . . .ΨT ] ∈ Rnl×(nLT ) and Φ =
[φ1, . . . , φT ] ∈ Rnl−1×T . Then the rank of the Khatri-Rao
product Ψ�Φ is bounded from below by

rank(Ψ�Φ) ≥ nl rank(Φ)+

T∑
i=1

rank(Ψi)−Tnl. (23)

If all matrices Ψi’s and Φ are of full rank, then the rank of
Ψ�Φ has the following properties:

(1) If nl ≤ nL, then rank(Ψ�Φ) ≥ nl rank(Φ);

(2) If nl > nL and nl−1 ≥ T , then rank(Ψ�Φ) ≥ TnL;

(3) If nl > nL and nl−1 < T , then rank(Ψ�Φ) ≥ nL.

Unfortunately, stacking these row blocks Ψl �Φl−1 for
l = 1, . . . , L together to construct P(W) cannot bring bet-
ter knowledge about the rank of P(W).

Proposition 3. For an MLP architecture F , the rank of
P(W) as defined in Eq. (22) is bounded from below by

rank
(
P(W)

)
≥

L∑
l=1

nl rank
(
Φl−1

)
−

L−1∑
l=1

Tnl

+

L∑
l=1

T∑
i=1

rank
(
Ψ

(i)
l

)
− LTnL.

(24)

Clearly, in order to have the rank of P(W) sharper
bounded from below, it is important to ensure higher rank
of all Ψ

(i)
l ’s and Φl−1’s. By choosing appropriate activa-

tion functions in hidden layers, all Φl−1’s can have full rank
[16, 32]. Then, in what follows, we present three heuristics
aiming to keep all Ψ

(i)
l ’s being of full rank as much as possi-

ble. By the construction of Ψ
(i)
l as specified in Eq. (17), i.e.,

matrix product of Σ
′(i)
l ’s and W (i)

l ’s, it is reasonable to en-
sure full rankness of all Σ

′(i)
l ’s and W (i)

l ’s.

Principle 3 (Constraints on MLP weights). All weight ma-
trices Wl ∈ Rnl−1×nl for all l = 1, . . . , L are of full rank.

1The proof is given in the provided supplements.

Remark 2. Note that, the full rank constraint on the weight
matrices does not introduce new local minima of the con-
strained total loss function. However, whether such a con-
straint may exclude all global minima of the unconstrained
total loss function for a given MLP architecture is still an
open problem.

Principle 4 (Choice of activation functions). The deriva-
tive of activation function σ is non-zero for all z ∈ R, i.e.,
σ′(z) 6= 0.

Remark 3. It is trivial to verify that most of popular dif-
ferentiable activation functions, such as the Sigmoid, tanh,
SoftPlus, and SoftSign, satisfy Principle 4. Note, that the
Identity activation function, which is employed in the out-
put layer, also satisfies this principle. However, potentially
vanishing gradient of squashing activation functions can be
still an issue in practice due to finite machine precision.
Therefore, activation functions without vanishing gradients,
e.g. the Bent identity or the leaky ReLU (non-differentiable
at the origin), might be preferred.

However, even if both Principles 3 and 4 are fulfilled,
matrices Ψ

(i)
l ’s still cannot be guaranteed to have full rank,

according to the Sylvester’s rank inequality [33]. Hence,
we need to prevent loss of rank in each Ψ

(i)
l due to matrix

product, i.e., to preserve the smaller rank of two matrices
after a matrix product.

Principle 5 (Choice of the number of hidden units). Given
an MLP with hidden layers, the numbers of units in three
adjacent layers, namely nl−1, nl, and nl+1, satisfy the fol-
lowing inequality with l ≤ L− 2

nl ≤ max{nl−1, nl+1}. (25)

Remark 4. The condition l ≤ L−2 together with l−1 ≥ 0
implies L ≥ 3, i.e., the inequality in Eq. (25) takes effect,
when there is more than one hidden layer, since Principle
3 and 4 are sufficient to ensure Ψ

(i)
L ’s and Ψ

(i)
L−1’s to have

full rank. However, for l ≤ L− 2, the inequality in Eq. (25)
together with Principle 3 and 4 ensures no loss of rank in
all Ψ

(i)
l , i.e., rank

(
Ψ

(i)
l

)
= min{nl, . . . , nL}.

Remark 5. Note, that the pyramidal MLP structure re-
quired in [28] follows indeed Principle 5. It can be further
verified that the main result of [28] (Theorem 3.8) is a direct
application of property (2) in Proposition 2.

4. Hessian analysis of MLP training
It is well known that gradient descent algorithms can suf-

fer from slow convergence. Information from the Hessian
matrix of the loss function is critical for developing efficient
numerical algorithms. Specifically, definiteness of the Hes-
sian matrix is an indicator to the isolatedness of the critical
points, which will affect significantly the convergence speed
of the corresponding algorithm.



We start with the Hessian of the sample-wise MLP loss
function J as defined in Eq. (7), which is a bilinear operator
HJ : RNnet × RNnet → R, computed by the second direc-
tional derivative of J . For the sake of readability, we only
present one component of the second directional derivative
with respect to two specific layer indices k and l, i.e.,

D2J(W)(Hk, Hl) = d2

dt2 Jl,k(W + tH)
∣∣
t=0

= D2E(φL)
(
DF (Wl)·Hl,DF (Wk)·Hk

)
+

+ (∇E(φL))>D
(
Σ′LW

>
L . . .Σ′lH

>
l φl−1

)
·Hk.

(26)

Since exact learning of finite samples is assumed at a global
minimum W∗, gradients of the error function at all samples
are simply zero, i.e., ∇E(φ

∗(i)
L ) = 0 for all i = 1, . . . , T .

Consequently, the second summand in the last equation in
Eq. (26) vanishes for all i = 1, . . . , T . Then, the Hessian
HJ(W) evaluated at W∗ in direction H ∈W is given as

D2J(W∗)(H,H) = HJ(W∗)(H,H)

=

L∑
l,k=1

(
DF (W ∗l )·Hl

)>
HE(φ∗L)

(
DF (W ∗k )·Hk

)
,

(27)

where HE(φL) : RnL×RnL → R is the Hessian of the error
function E with respect to the output of the MLP φL. By
a direct computation, we have the Hessian of the total loss
function J at a global minimum W∗ in a matrix form as

HJ (W∗) = P(W∗)HE(W∗)
(
P(W∗)

)>
, (28)

where P(W∗) is the Jacobian matrix of the MLP eval-
uated at W∗ as defined in Eq. (19), and HE(W∗) :=

diag
(
HE(φ

∗(1)
L ), . . . ,HE(φ

∗(T )
L )

)
∈ RTnL×TnL is a block

diagonal matrix of all Hessians of E for all T samples eval-
uated at W∗. It is then trivial to conclude the following
proposition about the rank of HJ (W∗).

Proposition 4. The rank of the Hessian of the total loss
functionJ at a global minimum W∗ is bounded from above
by

rank(HJ (W∗)) ≤ TnL. (29)

Remark 6. If Principle 2 is assumed, it is easy to see

rank(HJ(W∗)) ≤ TnL ≤ Nnet. (30)

Namely, when an MLP is designed from scratch without in-
sightful knowledge and reaches exact learning, then it is
very likely that the Hessian is degenerate, i.e., the classic BP
algorithm will suffer significantly from slow convergence.
Moreover, Proposition 4 indicates that conditions stated in
Corollary 3.9 of [28], i.e., the existence of non-degenerate
global minima, is impossible to be satisfied for the setting
specified in [28].

If Proposition 1 holds true, i.e., rank
(
P(W∗)

)
= TnL,

then the rank of HJ (W∗) will depend on the rank of
HE(W∗). To ensure HE(W∗) to have full rank, we need
to have a non-degenerate Hessian for the error function E

at global minima, i.e., E is a Morse function [26]. Hence,
in addition to Principle 1, we state the following principle
on the choice of error functions.

Principle 1.a (Strong choice of error function). In addition
to Principle 1, the error function E is Morse, i.e., the Hes-
sian HE(φL) is non-degenerate for all φL ∈ RnL .

5. Case studies
In this section, we evaluate our results in the previous

sections by two case studies, namely loss surface analysis
of training MLPs with one hidden layer, and development
of an approximate Newton’s algorithm.

5.1. MLPs with one hidden layer
Firstly, we revisit some classic results on MLPs with

only one hidden layer [44, 45], and exemplify our analy-
sis using the classic XOR problem [22, 14, 35, 36]. For a
learning task with T unique training samples, a finite exact
approximator is realisable with a two-layer MLP (L = 2)
having T units in the hidden layer, and its training process
exempts from suboptimal local minima.

Proposition 5. Let an MLP architecture with one hidden
layer satisfy Principle 1, 3, and 4. Then, for a learning
task with T unique training samples, if the following two
conditions are fulfilled:

(1) There are T units in the hidden layer, i.e., n1 = T ,

(2) T unique samples produce a basis in the output space
of the hidden layer for all W1 ∈ Rn0×n1 ,

then a finite exact approximator ĝ is realised at a global
minimum W∗ ∈W , i.e., F (W∗, ·) = ĝ, and the loss func-
tion J is free of suboptimal local minima.

When the scalar-valued bias bl,k in each unit map, as in
Eq. (2), is set to be a free variable, a dummy unit is intro-
duced in each layer, except the output layer. The dummy
unit always feeds a constant input of one to its successor
layer. Results in [44, 45] claim that, with the presence of
dummy units, only T − 1 units in the hidden layer are re-
quired to achieve exact learning and eliminate all subopti-
mal local minima. Such a statement has been shown to be
false by counterexample utilising the XOR problem [36]. In
the following proposition, we reinvestigate this problem as
a concrete example of applying Proposition 3.

Proposition 6. Let a two-layer MLP architecture
F(n0, n1, n2) with dummy units and n2 ≤ n1 ≤ T
satisfy Principle 1, 3, and 4, and 1 := [1, . . . , 1]> ∈ RT .
For a learning task with T unique samples X ∈ Rn0×T ,
we have
(1) if rank([X>,1]) = n0, then

rank
(
P(W)

)
≥ max

{
n1n2, n1(n0 + n2 − T )

}
; (31)

(2) if rank([X>,1]) = n0 + 1, then

rank
(
P(W)

)
≥max

{
n1n2, n1(n0+n2−T+1)

}
. (32)



In the rest of this section, we examine these statements
on the XOR problem [14, 35, 36]. Two specific MLP
structures have been extensively studied in the literature,
namely, the F(2, 2, 1) network and the F(2, 3, 1) network.
Squashing activation functions are used in the hidden layer.
Dummy units are introduced in both the input and hidden
layer. The XOR problem has T = 4 unique input samples

X :=

[
[x1 x2 x3 x4 ]
[ 1 1 1 1 ]

]
=

0 0 1 1
0 1 0 1
1 1 1 1

∈R3×4, (33)

where the last row is due to the dummy unit in the input
layer and rank(X) = 3. Their associated desired outputs
are specified as

Y := [y1 y2 y3 y4] = [0, 1, 1, 0] ∈ R1×4. (34)

Then a squared loss function is defined as

Jxor(W) :=
1

4

4∑
i=1

(F (W, xi)− yi)2 , (35)

where W := {W1,W2} ∈ R3×n1 ×R(n1+1)×1. In order to
identify local minima of the loss function Jxor, we firstly
compute n1(n0 + n2 − T + 1) = 0, according to situation
(2) in Proposition 6. Hence, we need to investigate the rank
of the Jacobian matrix

Pxor(W) :=

[
1⊗ φ(1)1 . . . 1⊗ φ(4)1

Ψ
(1)
1 ⊗ x1 . . . Ψ

(4)
1 ⊗ x4

]
. (36)

Firstly, let us have a look at the F(2, 2, 1) XOR net-
work. By considering the dummy unit in the hidden layer,
the matrix Φ1 := [φ

(1)
1 , . . . , φ

(4)
1 ] ∈ R3×4 has the last row

as [1, 1, 1, 1]. Then, according to Proposition 2, the first row
block in Pxor in Eq. (36) has the smallest rank of two, while
the second row block has the smallest rank of one. Hence,
the rank of Pxor(W) is lower bounded by two, and local
minima can exist for training the F(2, 2, 1) XOR network
[35, 22].

Similarly, for the F(2, 3, 1) network, i.e., n1 = 3, al-
though the first row block in Pxor has potentially the largest
rank of four, it is still not immune from collapsing to lower
rank of three. Meanwhile, the second row block in Pxor

has also the smallest rank of one. Therefore, the rank of
Pxor(W) is lower bounded by three. As a sequel, there
still exist undesired local minima in training the F(2, 3, 1)
XOR network [36].

5.2. An approximate Netwon’s algorithm

It is important to notice that the Hessian HJ (W∗) is nei-
ther diagonal nor block diagonal, which differs from the
existing approximate strategies of the Hessian in [1, 41]. A
classic Newton’s method for minimising the total loss func-
tion J requires to compute the exact Hessian of J from its
second directional derivative as in Eq. (26). The complexity

of computing the second summand on the right hand side of
the last equality in Eq. (26) is of order O(L3) in the num-
ber of layers L. Namely, an implementation of exact New-
ton’s method becomes much more expensive, when an MLP
gets deeper. Motivated by the fact that this computation-
ally expensive term vanishes at a global minimum, shown
in Eq. (28), we propose to approximate the Hessian of J at
an arbitrary weight W with the following expression

H̃J (W) = P(W)HE(W)
(
P(W)

)>
, (37)

where HE(W) := diag
(
HE(φ

(1)
L ), . . . ,HE(φ

(T )
L )

)
, and

P(W) is the Jacobian matrix of the MLP as defined in
Eq. (19). With this approximation, we can construct an
approximate Newton’s algorithm to minimise the total loss
function J . Specifically, for the k-th iterate W(k), an ap-
proximate Newton’s direction is computed by solving the
following linear system for ξ(k)N ∈ RNnet

H̃J (W(k))ξ
(k)
N = vec

(
∇J (W(k))

)
, (38)

where∇J (W(k)) is the gradient of J at W(k). When Prin-
ciple 1.a holds, the approximate Newton’s direction ξ(k)N

can be computed as ξ(k)N = P(W(k))ξ(k) with ξ(k) ∈
RTnL solving the following linear system

H̃J (W(k))P(W(k))ξ(k) = P(W(k))ε(W(k)). (39)

Then the corresponding Newton’s update is defined as

vec(W(k+1)) = vec(W(k))− α P(W(k))ξ(k), (40)

where α > 0 is a suitable step size.
Remark 7. The approximate Hessian proposed in Eq. (37)
is by construction positive semi-definite at arbitrary
weights, while definiteness of the exact Hessian is not con-
clusive. It is trivial to see that the approximate Hessian co-
incides with the ground-truth Hessian as Eq. (28) at global
minima. Hence, when α = 1, the corresponding approx-
imate Newton’s algorithm induced by the update rule in
Eq. (40) shares the same local quadratic convergence prop-
erties to a global minimum as the exact Newton’s method
(see Section 6).

In general, computing the approximate Newton’s update
as defined in Eq. (38) can be computationally expensive. In-
terestingly, the approximate Newton’s algorithm is indeed
the state of the art GGN algorithm developed in [31]. Ef-
ficient implementations of the GGN algorithm have been
extensively explored in [23, 7, 4]. In the next section, we
investigate the theoretical convergence properties of the ap-
proximate Newton’s algorithm, i.e., the GGN algorithm.

6. Numerical evaluation
In this section, we investigate performance of the Ap-

proximate Newton’s (AN) algorithm, i.e., the GGN algo-
rithm. We test the algorithm on the four regions classifi-
cation benchmark, as originally proposed in [34]. In R2
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Figure 1. Investigation of an approximate Newton’s algorithm, a.k.a. the Generalised Gauss-Newton algorithm.

around the origin, we have a square area (−4, 4)× (−4, 4),
and three concentric circles with their radiuses being 1, 2,
and 3. Four regions/classes are interlocked and nonconvex,
see [34] for further details of the benchmark. Samples are
drawn in the box for training with their corresponding out-
puts being the classes {1, 2, 3, 4}.

We firstly demonstrate theoretical convergence proper-
ties of the AN/GGN algorithm with α = 1, by deploy-
ing an MLP architecture F(2, 20, 1). Dummy units are
introduced in both the input and hidden layer. Activation
functions in the hidden layer are chosen to be the Bend
identity, and the error function is the squared loss. With
a set of 20 randomly drawn training samples, we run the
AN/GGN algorithm from randomly initialised weights. The
convergence is measured by the distance of the accumula-
tion point W∗ to all iterates W(k), i.e., by an extension of
the Frobenius norm of matrices to collections of matrices as
‖W(k)−W∗‖2F :=

∑L
l=1 ‖W

(k)
l −W ∗l ‖2F . It is clear from

Figure 1(a) that the AN/GGN algorithm converges locally
quadratically fast to a global minimiser of exact learning.

We further investigate the performance of AN/GGN with
five different activations, namely Sigmoid, tanh, SoftSign,
SoftPlus, and Bent identity. The first three activation func-
tions are squashing, while the SoftPlus is only bounded
from below, and the Bent identity is totally unbounded. Fig-
ure 1(b) gives the box plot of the value of the total loss func-
tion J over 100 independent runs from random initialisa-
tions after convergence. Clearly, AN/GGNs with SoftPlus
and Bent identity perform very well, while the ones with
Sigmoid and tanh suffer from numerically spurious local
minima. However, it is also very interesting to observe that
SoftSign does not share the bad convergence behaviour as
its squashing counterparts, due to some unknown factors.

Finally, we investigate the AN/GGN algorithm, compar-
ing with the classic BP algorithm in terms of convergence
speed, without exact learning being assumed. In this experi-
ment, we adopt an MLP architecture F(2, 10, 10, 4), where
the target outputs being the corresponding standard basis
vector in R4, and the set step size to be constant α = 0.01.

For running 1000 iterations, the BP algorithm took 61.1
sec., while the AN/GGN algorithm spent 1314.1 sec. On
average, the running time for each iteration of AN/GGN
was about 21.4 times as required for an iteration of BP. With
the same data and the same random initialisation, we ran BP
for 20760 iterations, which took the same amount of time
as required for 1000 iterations of AN/GGN. As shown in
Figure 1(c), the first 1000 iterations of BP was highlighted
in red with the remaining iterations being coloured in blue.
The AN/GGN goes up at the beginning, then smoothly con-
verges to the global minimal value, while the BP demon-
strates strong oscillation towards the end.

7. Conclusion

In this work, we provide a smooth optimisation perspec-
tive on the challenge of training MLPs. Under the con-
dition of exact learning, we characterise the critical point
conditions of the empirical total loss function, and inves-
tigate sufficient conditions to ensure any local minimum to
be globally minimal. Classic results on MLPs with only one
hidden layer are reexamined in the proposed framework. Fi-
nally, the so-called Generalised Gauss-Newton algorithm is
rigorously revisited as an approximate Newton’s algorithm,
which shares the property of being locally quadratically
convergent to a global minimum. All aspects discussed in
this paper require a further systematic and thorough inves-
tigation both theoretically and experimentally, and are ex-
pected to be also applicable for training recurrent neural
networks.

Furthermore, it is worth noticing that the present work
only considers the case of exact learning of MLPs. When
training data is contaminated by noise or outlier, exact
learning can be more problematic than an approximate
learning, due to overfitting. Since exact learning needs to
be avoided in this case, and the loss function of MLP train-
ing is non-coercive in general, it is crucial as well as difficult
to select appropriate regularisers that ensure both generali-
sability and solvability of regularised MLP training.
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