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Abstract

Deep learning methods have become the de-facto stan-
dard for challenging image processing tasks such as im-
age classification. One major hurdle of deep learning ap-
proaches is that large sets of labeled data are necessary,
which can be prohibitively costly to obtain, particularly
in medical image diagnosis applications. Active learning
techniques can alleviate this labeling effort. In this pa-
per we investigate some recently proposed methods for ac-
tive learning with high-dimensional data and convolutional
neural network classifiers. We compare ensemble-based
methods against Monte-Carlo Dropout and geometric ap-
proaches. We find that ensembles perform better and lead to
more calibrated predictive uncertainties, which are the ba-
sis for many active learning algorithms. To investigate why
Monte-Carlo Dropout uncertainties perform worse, we ex-
plore potential differences in isolation in a series of experi-
ments. We show results for MNIST and CIFAR-10, on which
we achieve a test set accuracy of 90% with roughly 12,200
labeled images, and initial results on ImageNet. Addition-
ally, we show results on a large, highly class-imbalanced
diabetic retinopathy dataset. We observe that the ensemble-
based active learning effectively counteracts this imbalance
during acquisition.

1. Introduction
Convolutional neural networks (CNNs) have become

the state-of-the-art method for image classification tasks,
achieving superior performance on well-known benchmark
datasets like MNIST ([41]), CIFAR ([38]) or ImageNet
([51]) where CNNs were shown in [58], [17], and [55] to
outperform human classification accuracy.

One shortcoming of CNNs is that they require large
datasets for training which often come with a high label-
ing effort, resulting in a major hurdle in domains where la-
bels can only be acquired by time-consuming and expen-
sive manual labeling. Particularly for medical images la-
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beling requires well-trained specialists, such that labeling
resources and not computational power or model capacity
become the main bottleneck for the rapid applicability of
CNN models. Under a limited financial budget or if only a
few experts are available, techniques to reduce labeling ef-
fort become important. The goal of such techniques is to
find the minimally required set of labeled images in order
to reach a certain classification accuracy. This problem can
be formally addressed with the framework of active learn-
ing ([6]). Starting with an initial (small) data set to train
a model, new data-points to be labeled (e.g. by a human
expert) are selected with a so-called acquisition function.
This function ranks unlabeled data by “how desirable” la-
bel information is expected to be for each data-point. Com-
monly used acquisition functions are based on criteria such
as uncertainty of prediction ([16], [32], [62]), coverage of
the data space ([52]), unanimity of a committee ([30]), ex-
pected error, or variance reduction ([25], [33]). Typically, a
small number of highest-ranking unlabeled data-points are
selected for labeling and subsequently added to the train-
ing set to train the model afresh. This procedure is repeated
resulting in a step-wise increase of labeled data.

While active learning (AL) has a long history in ma-
chine learning, there is currently little literature on active
learning for CNNs. Most traditional acquisition functions
cannot be straightforwardly used since they do not scale to
high-dimensional image data ([57]), or they rely on good
uncertainty estimates for unlabeled data which are hard to
obtain with standard CNNs. Methods which are applicable
to CNNs have been introduced in ([16], [52], [59], [61]).

In this paper we use an ensemble of CNNs as a scal-
able approach for deriving well-behaved uncertainty esti-
mates for unlabeled data (see also [49] and [40] for a com-
parable approach). These uncertainties are used to eval-
uate different acquisition functions proposed in the litera-
ture. We compare ensemble-based active learning with the
two state-of-the art methods: a Bayesian deep learning ap-
proach (Monte Carlo Dropout [16]), and a density-based
approach ([52]). Our experiments on MNIST, CIFAR-10
and a real-world large-scale medical image dataset for di-
abetic retinopathy (DR) detection ([11]) show that the en-



semble based approach consistently outperforms the other
two approaches. On CIFAR-10 after acquiring 14, 500 im-
ages we report an accuracy of 91.5% compared to 88.4%
and 88.2% for the methods by [16] and [52]. For the DR
use case we achieve an AUC of 0.983 (a 1.8 units increase
over the random baseline) for training on 21, 000 images.
A recent paper on DR classification ([20]) achieves an AUC
of 0.991 training on over 100, 000 images. The data-set
is highly imbalanced (19.34% unhealthy examples) and the
ensemble-based method selects the more informative, un-
healthy examples for labeling with an increased probability.

In additional experiments we shed some light on why
the ensemble-based uncertainties lead to better performance
compared to MC Dropout uncertainties ([16]). We find that
the ensemble uncertainties are better calibrated (see sec-
tion 4), and subsequently investigate potential causes (in-
creased model capacity, wider variety of randomness, in-
creased diversity of ensemble members). Recent literature
propose to split the uncertainty over network predictions
into a data-dependent aleatoric and a parameter-dependent
epistemic uncertainty ([36], [9]). Selecting data-points for
labeling based only on epistemic model-uncertainty seems
promising, however, we find that using epistemic uncer-
tainty alone in our acquisition functions does not yield bet-
ter results. One potential shortcoming of ensemble ap-
proaches is that training multiple networks can become
computationally very costly. We investigate how a recently
proposed method to overcome this problem, snapshot en-
sembles ([28]), performs in the active learning setting.

2. Related Work
Active learning The survey [53] gives an overview of

the many AL strategies developed so far, though, it does not
include any work on AL for deep neural networks. Active
learning concepts relevant for this paper include uncertainty
sampling ([42], [32], [35]), query-by-committee ([30], [5])
and density-based approaches ([52], [61], [46]).

Active learning for high-dimensional data Most of the
methods proposed in the literature do not use deep learning
models. [32] use an SVM classifier where uncertainties are
calculated based on probabilistic outputs over the class la-
bel, with entropy and best-vs-second-best approaches as ac-
quisition functions. [42] combine uncertainty and informa-
tion density, the latter being extracted via a Gaussian pro-
cess using precomputed SIFT features. [63] use a Gaussian
random field model to combine active and semi-supervised
learning. [26] use expected information gain as acquisition
function and evaluate on various datasets using a SVM.

Ensembles for (deep) neural networks (to estimate
uncertainty) Combining predictions of an ensemble of
learners for improving task performance in neural networks
goes back many years [21]. Today, ensembles are widely
used in machine learning (see [10] for a review) and deep

learning ([39], [23], [18]). Besides increasing task accu-
racy, [40], [49], and [48] use ensembles to estimate predic-
tion uncertainty of deep neural networks in the context of
outlier detection and reinforcement learning.

Uncertainty estimation in neural networks By taking
the variance over softmax outputs of an ensemble of net-
works, and optionally using bagging to increase the net-
work diversity, [48] show how to obtain uncertainty mea-
sures with neural networks. Another variant is shown in
[40], who add an extra head to the network which is trained
to account for a proportion of the variance ([47]). This al-
lows one to use the combined variance over predictions as
an uncertainty estimate, using a single network.

Bayesian neural networks model parameter-uncertainty
explicitly by learning (Gaussian) posterior probabilities
over weights, inducing uncertainty over network activa-
tions and thus predictions ([44], [45]). Recent approaches
based on stochastic variational inference have been applied
successfully to deep networks ([19]). [1] extend the ap-
proach of [19] by inducing a Gaussian mixture prior over
the weights while minimizing an objective that also regular-
izes the network. A different approach uses additive Gaus-
sian noise on the gradients during back-propagation for ob-
taining uncertainties over the posterior weight distribution
([37]). [24] introduce expectation back-propagation for ap-
proximate variational inference in deep neural networks.

Uncertainty used for AL [15] show how dropout can
be used for obtaining posterior uncertainties over network
predictions, and specifically for CNNs in [14]. The au-
thors also use these uncertainties for AL in [16] on MNIST
and a small medical data set. Uncertainty estimates are ob-
tained by sampling from the average softmax output of mul-
tiple forward passes with random dropout masks—known
as Monte Carlo (MC) Dropout. An interpretation is that
each dropout mask produces one member of an ensemble of
networks and averaging over multiple such forward passes
is similar to having a full ensemble. In the experimental
section, we compare MC Dropout uncertainties for active
learning against uncertainties produced by a full ensemble.

[52] argue that uncertainty-based methods for AL are in-
effective for CNNs and instead propose an acquisition func-
tion that uses geometric arguments in the data-space (essen-
tially trying to cover a diverse set of points by considering
distances between points and clusters of points). In our ex-
periments we also compare against this method.

AL for CNNs Besides [16] there are three other AL
approaches for CNNs to the best of our knowledge: [52]
use a density approach to cover the entire space of unla-
beled data points using a geometric based similarity func-
tion between images. [59] use the entropy of the softmax
output for selecting images to label and additionally auto-
matically label high confidence samples (pseudo-labeling).
This approach is outperformed by [52]. Finally, [34] ex-



tend a method based on the expected model output change
principle to deep neural networks. This method is compu-
tationally expensive and its performance is similar to [59].

3. Methodology
3.1. Pool-Based Active Learning

In pool-based AL, there exists a large unlabeled pool of
data U , and an initial, small labeled set of data L. In each
step of the process, a model M is trained on L, and an ac-
quisition function a(U,M) chooses s points to be labeled
by an external oracle and added to L. This process is re-
peated, training M from scratch with the newly incorpo-
rated labeled data, until a certain budget of labeled data is
exhausted or until a certain model performance is reached.

We explore different acquisition functions used for re-
gression and image classification. For the former, a(U,M)
in this study is always based on the predictive variance of
the model output. For the latter, either the softmax output
vector of a neural network is used as an input to an un-
certainty based acquisition function, or the outputs of the
last fully-connected layer in the network are used as feature
vectors to calculate image similarities for a density-based
approach.

3.2. Uncertainty estimation and approaches

This study uses two recent methods to obtain well-
behaved uncertainty estimates from deep neural networks:
Monte-Carlo dropout (MC-dropout) ([15]) and deep ensem-
bles ([40], [48]). The former approaches the problem from
a Bayesian perspective, and interprets dropout regulariza-
tion as a variational Bayesian approximation. In practice
this entails training the neural network with the data Dtrain

as usual with dropout, and during inference performing T
forward passes through the network, each time sampling a
new dropout mask, which results in the weights wt. The T
softmax vectors are then averaged to obtain the output for a
given class c and input x.

p(y = c|x,Dtrain) =
1

T

T∑
t=1

p(y = c|x,wt) (1)

The latter approach trains an ensemble of N classifiers, and
uses the averaged softmax vectors of each ensemble mem-
ber as the output (same as equation 1, replacing T with N ).
In the experiments all ensembles are trained with the same
Dtrain and same network architecture, but different random
weight initializations winit. One could also take additional
measures to de-correlate the ensembles, such as bootstrap-
ping or using different network architectures ([48]).

3.3. Acquisition functions

Uncertainty based Three different uncertainty based ac-
quisition functions, used in this study, can be applied to out-

puts obtained from either deep ensembles or MC-dropout.
These functions and their approximations (when necessary)
were introduced and used in [16] for active learning in cer-
tain settings. In the following equations, T always refers to
either the number of forward passes in MC-dropout, or the
number of classifiers in an ensemble.

The most ubiquitous measure in the literature is to
choose points whose predicted classification probability
distributions have the highest entropy ([54]).

H[y|x,Dtrain] :=−
∑
c

( 1

T

∑
t

p(y = c|x,wt)
)

· log
( 1

T

∑
t

p(y = c|x,wt)
) (2)

Another measure (also known as (BALD, [27]) is the mu-
tual information between data-points and weights. The idea
is that data-points with a large mutual information between
the (predicted) label and network weights would have a
large impact on the trained network if the correct labels
were provided. The measure consists of the entropy over
predictions minus the conditional entropy over predictions
given the weights, approximated for the CNN case ([16]).

I[y;w|x,Dtrain] := H[y|x,Dtrain]

− 1

T

∑
t

∑
c

−p(y = c|x,wt) log p(y = c|x,wt)
(3)

The variation ratio is a measure of dispersion of a nomi-
nal variable, and is calculated as the proportion of predicted
class labels that are not the modal class prediction (fm is the
number of predictions falling into the modal class category)
([13]). Larger values thus indicate a greater dispersion.

v := 1− fm
T

(4)

Although shown to be less effective than the previous ac-
quisition functions in some settings [16], the variance of
the softmax output vectors within the ensemble or within T
forward passes can also be used as an acquisition function.

σ2 =
1

C

∑
c

1

T

∑
t

(p(y = c|x,wt)− p̂(y = c))
2 (5)

Geometric approaches Density-based acquisition func-
tions have recently also been applied to CNNs. For com-
parison, this study implements the approaches presented in
[52] (in the following called Core-Set) and [61] (in the fol-
lowing called REPR). The former method is a core-set ap-
proach that seeks to choose p points (the acquisition size)
that minimize the maximum distance between point xi in
the overall distribution (with [n] being all points there) and
its closest neighbor xj in the selected subset s. This study



uses the simpler of the two implementations in [52], as it
was shown to perform only marginally worse. In practice,
the value u is selected greedily one point at a time, initial-
ized with the training data images.

u = argmax
i∈[n]\s

min
j∈s

dist(xi, xj) (6)

The REPR method chooses points that best “represent” the
rest of the distribution. The algorithm greedily tries to max-
imize the representativenessR of a set of selected points Sa.
Each point in Su has a representativeness score r, defined as
the similarity between it and its most similar point in the se-
lected subset; R is the sum of all individual r scores. REPR
encourages diverse points to be added to Sa, as adding a
point Ij to Sa similar to one already in Sa would result in
high r scores for points in Su that already had high r scores.
For the similarity measure sim we use the Euclidean norm.

R(Sa, Su) =
∑

Ij∈Su

r(Sa, Ij)

r(Sa, Ij) = max
Ii∈Sa

sim(Ii, Ij)
(7)

4. Experimental results
The models presented in the following are evaluated on

MNIST ([41]), CIFAR-10 ([38]), and a diabetic retinopathy
dataset ([11]). Referred figures and tables starting with an
“A” are placed in the supplementary material. Shaded areas
in the plots denote ± one standard deviation.

4.1. Implementation details

The settings for the experiments are described in Ta-
ble 1. The network architecture for MNIST, referred to as
“S-CNN” is the same as in the example Keras MNIST CNN
implementation ([12]), also used in [16] (two convolutional
layers and one dense layer). For CIFAR-10 we use the
Keras CIFAR CNN implementation ([12]) with four con-
volutional layers and one dense layer, which we refer to as
“K-CNN”. Additionally we also evaluate with DenseNet-
121 (k = 12, with bottleneck) on CIFAR-10, using the
learning rate schedule as proposed in [29]. Details for the
inceptionV3 architecture used for the diabetic retinopathy
use case are described in section 4.5. For all models we
use Glorot initialization, the Adam optimizer for S-CNN,
RMSprop for K-CNN, standard SGD for DenseNet and a
combiantion of RMSprop (20 epochs) and SGD (rest of
the training) for InceptionV3. After each acquisition step,
models are trained for a fixed number of epochs. Subse-
quently, a fixed number of samples are selected from a pool
of fixed size (a random subsample of the remaining “un-
labeled” training data), added to the labeled data set, and
models are re-rained from scratch with this set. Initial la-
beled sets are randomly sampled from the whole training

set. For MNIST and CIFAR-10 initial sets are balanced
over all classes. All experiments are run for a fixed amount
of acquisition steps, or equivalently, until a certain amount
of training data is labeled. We report test errors on the final
model, after training the full number of epochs, except for
DenseNet where we use the model with the best validation
loss among all epochs. Results are averaged over five rep-
etitions. For MC dropout we use 25 forward passes. Each
ensemble consists of five networks of identical architecture
but different random initializations. The dropout rate is 0.25
for the two conv-layers and 0.5 for the dense layers for S-
CNN and K-CNN, respectively. For DenseNet it is 0.2 after
every convolutional layer. For the geometric approaches the
Euclidean norm is used as a similarity-measure and is calcu-
lated using image features from the outputs of the last fully
connected layer in the network.

4.2. Results for active learning on image data

We evaluate the AL performance under different meth-
ods for uncertainty estimation: an ensemble of five net-
works, MC Dropout, and a single, standard network. Se-
lected results are shown in figure 1. All results (including
Variation Ratio, BALD, predictive variance, predictive en-
tropy and additional the geometric approaches Core-Set and
REPR) are shown in Figure A1. On MNIST and CIFAR the
ensemble-based approach outperforms all others by a clear
margin, whereas the MC-VarR performs similarly to the
Single-Entropy approach. Note that for the initial labeled
set data-points were selected randomly, thus, comparing ac-
quisition based versions against their random counter-parts
for each method should lead to the same accuracy on aver-
age. Corresponding results are shown in the inlets.

On average ENS-VarR increases the accuracy over its
random baseline by a larger margin compared to the other
approaches on more complex data. On MNIST not consid-
ering the initial training and the first four acquisition steps,
as there is larger variance in the accuracy, ENS-VarR / MC-
VarR / Single-Entr. achieve on average 3.96 / 3.98 / 2.87
percentage points (pp) higher accuracy than the random
baseline. On CIFAR (omitting the initial training and first
acquisition step) this is 3.19 / 2.23 / 2.30 pp.

Table 2 provides the mean and standard deviation over
five runs of labeled images needed to achieve a top-1 accu-
racy of 80%, 85%, and 87.5% (DenseNet on CIFAR-10).
The ENS-VarR needs on average 2, 906 (29.2%) less la-
beled images to reach an acccuracy of 85% compared to
an entropy-based single network approach. Generally, vari-
ance for ENS-VarR is lowest and variance for random ac-
quisitions is higher compared to AL acquisitions.

The geometric approach by [52] (Single-Core-Set) per-
forms similar to random acquistion on MNIST ( 1a, sig-
nificantly worse than random on CIFAR-10 using the K-
CNN ( A1f, and better than random on CIFAR-10 using



(a) MNIST on S-CNN (b) CIFAR-10 on DenseNet
Figure 1: Test accuracy over acquired images. We compare Variation Ratio for MC dropout and the ensemble (ENS) and
softmax-entropy based acquisition for a single network. For all methods we also show performance under random acquisition.
Shaded areas denote ± one standard deviation. (see text for details about the architectures used).

the DenseNet ( 1b. However the original paper uses a dif-
ferent network (VGG-16), and achieves a relatively worse
accuracy than our setup: with 10, 000 training images [52]
achieve a mean accuracy of 74%, whereas we report 85%
on the DenseNet for 10, 500 images. The differences could
be due to the different feature representations provided by
the various network architectures, or perhaps the prevalence
of outliers hindering the greedy core-set approach (i.e. per-
haps there are more outliers with a negative effect using
the K-CNN feature representation on CIFAR-10). Results
on CIFAR-10 with K-CNN (instead of DenseNet) show lit-
tle difference in the performance of the different methods
(see Fig. A2), with the exception of the geometric methods.
Variations of hyperparameters such as acquisition step size,
subset pool size, dropout rates do not qualitatively affect the
results (Fig. A3).

4.3. Comparing ensemble-based against Monte-
Carlo Dropout performance

Multiple MC Dropout forward passes with different
dropout masks can also be interpreted as an approximation

to a full ensemble (consisting of separate networks). In our
experiments we find that using uncertainties obtained from
MC Dropout with 25 forward passes performs worse for
AL compared to uncertainties obtained by an ensemble of
five networks. To investigate the difference we performed a
number of experiments. One difference is that the weights,
initialization, and (to some degree) the gradient updates are
shared among all MC Dropout “ensemble” members, which
is not true for an ensemble of five separate networks. An-
other difference is that the effective model-capacity of MC
Dropout might be reduced, since at every forward pass a
certain proportion of neurons or convolutional filters are in-
active. Our experiments show that it is a combination of
several factors that lead to an increased AL performance us-
ing an ensemble. In particular, we investigate the following
aspects in isolation: Number of networks in the ensemble
or forward passes in MC dropout, Model capacity by re-
ducing the number of neurons for the ensemble networks,
Fixed initialization to have the same initialization for all
ensemble members, and Fixed order within a mini-batch
to have the same order of images within a mini-batch for all

Model Training epochs Data size Acquisition size
train / val / test

MNIST S-CNN 50 58,000 / 2,000 / 10,000 20 + 20 (2K) → 1,000
CIFAR-10 K-CNN 150 48,000 / 2,000 / 10,000 200 + 400 (4K) → 9,800
CIFAR-10 DenseNet 100 48,000 / 2,000 / 10,000 500 + 2000 (20K) → 14,500
Diabetic R. InceptionV3 150 67,961 / 3,000 / 17,741 1,000 + 5,000 (30K) → 21,000
ImageNet ResNet-50 100 1,281,167 / 10,000 / 50,000 40,000 + 40,000 (400K) → 280,000

Table 1: Settings used for the active learning experiments on the MNIST, CIFAR-10 and Diabetic Retinopathy data sets:
Training epochs: Maximum number of training epochs.
Data size: Size of data set for training / validation / test.
Acquisition size: number of images for the initial model + number of images acquired in each step (from the number of
images in the pool subsample)→Maximum number of images acquired during training.
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Figure 2: Manipulating differences between Monte-Carlo Dropout and ensemble-based active learning in isolation. Plots
show test accuracy on CIFAR-10 with K-CNN, using Variation Ratio as an acquisition function. (a) ENS-fix.order: ensemble
with fixed order of images per mini-batch. ENS-fix.init: ensemble with same initialization for all members. ENS-red.cap.:
ensemble with reduced number of neurons (25% less for conv-layers, 50% less for dense layers). ENS-red.cap+fix.init:
ensemble with reduced capacity and same initialization for all members. (b) Acq.by.ENS-on MC: Images acquired by
ensemble-based approach (during the run of ENS) used to train MC dropout network. ENS-Random: ensembles with random
acquisition. Acq.by.MC-on ENS: Images acquired by MC Dropout (during the run of MC) used to train ensemble. MC-
Random: MC Dropout with random acquisition.

ensemble members.
Number of networks Fig. A3 shows the effect of using

different numbers of MC forward passes (2, 5, 10, 25, 50,
100) and of ensemble members (3, 5, and 7). The perfor-
mance of the ensemble-based approach is only slightly im-
pacted by the number of members and even with three net-
works, the method still outperforms the MC Dropout based
approach with a much larger number of forward-passes.

Fixed initialization and order Another potential cause
for the lack of diversity ([4], [31]) in the MC Dropout case
is the single initialization; the ”networks” from random for-
ward passes could be in similar local optima, whereas mem-
bers of the ensemble may converge to different local optima
due to different initializations. A second source of random-
ness that may have the same effect is the order of the train-
ing images presented in the mini-batches: for the ensemble
this order is randomly shuffled for each member. As Fig-
ure 2a shows, fixing the order of training examples has a

test ENS-VarR MC-VarR Single-Entr.
accuracy Active learning acquisition (Random)

80% mean 4718 (6032) 6255 (7470) 6711 (7661)
std. 206.2 (57.8) 276.0 (442.9) 216.2 (565.6)
85% mean 7053 (9613) 9888 (13248) 9959 (13300)
std. 205.3 (451.8) 186.6 (481.6) 301.6 (496.3)
87.5% mean 9187 (12830) 13388 (-) 12453 (-)
std. 184.8 (333.8) 280.9 (-) 582.2 (-)

Table 2: Mean and standard deviation over five runs of ac-
quired images to achieve a top-1 accuracy (DenseNet on
CIFAR-10) for the ensemble, MC dropout and a single net
with Variation Ratio and Entropy as acquisition functions
compared to random acquisition. The ensemble approach
needs less images to achieve a certain accuracy.

negligible effect, whereas sharing the same weight initial-
ization across all members of the ensemble leads to a sig-
nificant decrease in performance. However, the latter factor
alone can not fully explain the difference in performance.

Capacity In each MC forward pass a significant fraction
of neurons or convolutional filters is inactive, such that on
average the total model capacity may be reduced compared
to an ensemble of multiple networks of the same architec-
ture. By using smaller networks for the ensemble (i.e. their
layer-size matches the average number of active neurons in
MC Dropout) we find that the reduced model capacity does
indeed play an important role (see Figure 2). The perfor-
mance of such a capacity-limited ensemble drops roughly
to the performance of MC Dropout (note however that MC
Dropout uses 25 forward passed compared to 5 ensemble
members). In figure A4 we increase the capacity of the MC
network so the same number of activations are present after
dropout. Though, there is only a negligible benefit.

Separating acquisition quality from inherent accuracy
In Figure 2b we investigate the effect of training the en-
semble with the images that MC Dropout would have se-
lected. To do so, we simply perform all acquisition steps
with MC Dropout and record the images selected in each
step, and subsequently train an ensemble with these acqui-
sitions. We also perform the reciprocal experiment of train-
ing MC Dropout with images acquired using ensembles.
The results show that an MC-Dropout network using the
ENS selected images performs only marginally worse than
the ENS acquisition function, and using ENS to evaluate on
the MC-Dropout selected images performs only marginally
better than the MC acquisition function. Essentially, this
means that the “acquisition quality” of ENS is superior to
MC Dropout, and that the difference can not simply be ex-
plained by the fact that evaluating with an ensemble is more



accurate than evaluating with MC Dropout.

Uncertainty calibration To assess calibration ([7]) qual-
ity we determine whether the expected fraction of correct
classifications (as predicted by the model confidence, i.e.
the uncertainty over predictions) matches the observed frac-
tion of correct classifications. When plotting both values
against each other, a well-calibrated model lies close to the
diagonal. The mean-squared-error (MSE) between the di-
agonal and the calibration plot is used to quantify calibra-
tion quality. Results are shown in Figure 3 after 3 acqui-
sition steps and throughout the whole acquisition proce-
dure in Figure 3a. Additionally we show calibration plots
for different acquisition steps in Figure A6. We observe
that ensemble-models are better calibrated in the low-data
regime compared to MC Dropout and a single network. In
the regime of sufficient data we find little difference be-
tween MC Dropout and ensembles.

0.0 0.2 0.4 0.6 0.8 1.0
Expected correct classification

0.0

0.2

0.4

0.6

0.8

1.0

Ob
se

rv
ed

 c
or

re
ct

 c
la

ss
ifi

ca
tio

n

Single-Entropy
MC-VarR
ENS-VarR

(a)

0 2000 4000 6000 8000 100001200014000
Number of training images

0.0

0.1

0.2

0.3

0.4

M
SE

Single-Entropy
MC-VarR
ENS-VarR

(b)
Figure 3: a) Calibration plot after 3 acquisition steps (6, 500
images) for CIFAR-10 and the DenseNet. Ideal calibration
is on the dashed diagonal. b) Mean squared error for the
calibration lines for different number of acquired images.

As additional measures to assess uncertainty quality, we
report the negative log likelihood (NLL) and the Brier score
([3]) (as used in [40]) in Table 3 for four acquisition steps,
and in Figure A7 across the whole acquisition procedure.
Similar to the calibration analysis, we find that under both
measures ensembles have an increased uncertainty qual-
ity in the low data regime, and perform similarly to MC
Dropout ensembles with sufficient labeled data. Both meth-
ods consistently outperform softmax-entropy based uncer-
tainties of a single network.

Acqu. Brier Score NLL
step Single / MC / ENS Single / MC / ENS

0 0.3773 / 0.2685 / 0.0903 0.3173 / 0.2261 / 0.0763
1 0.2287 / 0.1346 / 0.0682 0.1952 / 0.1170 / 0.0664
2 0.1604 / 0.0923 / 0.0242 0.1371 / 0.0836 / 0.0241
3 0.1315 / 0.0495 / 0.0248 0.1143 / 0.0442 / 0.0287

Table 3: NLL and Brier score, averaged over five runs, for
different acquisition steps for a single network, MC and an
ensemble (DenseNet on CIFAR-10).

Decomposing uncertainty [36] and [9] describe a de-
composition of predictive uncertainty into an aleatoric
(noise in the data) and an epistemic component (uncertainty
in the model parameters). Importantly, epistemic uncer-
tainty can be reduced with more data whereas the aleatoric
uncertainty is theoretically unaffected by an increase of
training data. Acquisition functions based on epistemic un-
certainty thus hold the promise of improving acquisition
quality. Unfortunately we could not find an improvement
in our experiments by using the uncertainty decomposition
in the MC Dropout setting, see Figure A8. To investigate
potential reasons for this we conduct a one-dimensional re-
gression toy-example as described in [47], see Figure A9.

Implicit ensembling The drawback of using ensembles
is that it is computationally expensive to train multiple net-
works. Some techniques to overcome this issue have been
proposed in recent literature. We evaluate some of these
methods on our active learning experiments. The results
and implementation details are described in the appendix
(Fig. A5).

4.4. ImageNet

We further test the best performing method (ENS-VarR)
on the large-scale image classification dataset ImageNet [8],
using the ResNet-50 network architecture [22] (achieves
top-1 accuracy of 75.3% with full dataset). The network
is trained for 100 epochs without data augmentation using
stochastic gradient descent. The initial learning rate of 0.1
is changed to 0.01 at epoch 50, and 0.001 at epoch 75. The
initial 40,000 images are class-balanced. Active learning
hyperparameters can be found in Table 2.

The results are displayed in Fig. 4 and Table 4. While
there initially is no difference between the random base-
line and the uncertainty-based acquisition function, after the
third acquisition (160k training images) a small improve-
ment can be seen, which continues to widen over the next
few iterations. As training an ensemble of networks on Im-
ageNet is computationally costly, a large acquisition size of
40,000 images is used. It is likely that using a smaller ac-
quisition size will result in a faster improvement over the
random baseline.

40k 80k 120k 160k 200k 240k 280k

Random 0.159
(0.004)

0.257
(0.003)

0.321
(0.006)

0.372
(0.003)

0.407
(0.007)

0.439
(0.001)

0.470

VarR 0.152
(0.003)

0.257
(0.004)

0.324
(0.002)

0.383
(0.002)

0.427
(0.004)

0.458
(0.004)

0.494

Table 4: Top-1 accuracies using ENS-based acquisition
functions for active learning on ImageNet (the values plot-
ted in Fig. 4). Numbers in parentheses are standard devia-
tion over three repetitions (except for final point, which is a
single run).
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Figure 4: Test top-1 accuracy over acquired images. Shaded
areas denote ± one standard deviation.

4.5. AL for diagnosis of diabetic retinopathy

AL is particularly relevant for fields in which labeling of
images is expensive or which require highly trained experts,
such as in medical image diagnosis. We evaluate the AL ap-
proaches presented in this paper on a real-world use case to
detect diabetic retinopathy in eye fundus images . Details
about the data and the AL parameters are described at the
beginning of Section 4. The task is to classify between (“un-
healthy”) referable (rDR) and (“healthy”) non-referable DR
images (examples are shown in figure A10). According to
the WHO, in 2002 almost 5 million people were suffering
from blindness caused by DR, which makes it the fifth most
common cause of moderate to severe visual impairment [2].
Once detected, DR can be treated quite well. However, par-
ticularly in developing countries where access to ophthal-
mologists and medical staff is scarce ([50]), cheap solutions
for automated mass-screenings that can be operated by lay-
men is highly desirable. Automatic diagnosis algorithms
using CNN-based grading and detection algorithms have
been developed ([43]), however these require large amounts
of training data which is currently only available for high-
quality image acquisition setups that need to be operated
by trained professionals. Recently, one such data-set was
released as part of a machine learning competition ([11]).
The original data set contains five classes for varying stages
of retinopathy. We merge the first two classes as healthy
and the rest as rDR to yield a binary classification problem.
19.34% of the images fall in the latter category rDR.

We use the inceptionV3 network ([56]) from Keras Ap-
plications ([12]), which achieved high task accuracy in [20].
We augment / preprocess the data by flipping images hori-
zontally and vertically, and by channel-wise color augmen-
tation ([39]). Pre-trained weights from ImageNet are used
for initialization (excluding the final fully connected layer,
which is initialized randomly). For 20 epochs only the final
fully connected layer is trained with RMSprop. Then, the
whole network is trained with SGD (learning rate of 0.0001,
momentum of 0.9, no weight decay).

Figure 5a shows the area-under-curve (AUC) depending

on the number of acquired images. After selecting 21, 000
images, the ENS-VarR approach achieves an AUC of 0.983,
and the random acquisition an AUC of 0.965. [20] use 80%
of the 128, 175 images for training an ensemble of 10 net-
works with the same inceptionV3 architecture, and achieve
a final AUC of 0.991. Although we cannot directly com-
pare [20] to our work as different amounts of data were
used, the experiment nevertheless underlines that the ENS
approach can be usefully applied to a real-life medical use
case. Even though the data-set is highly imbalanced (about
one fifth rDR images), the ensemble approach selects rDR
images with a significantly increased probability per acqui-
sition step (Figure 5b). We assume that these images are
particularly informative for improving task performance.
Interestingly, after four acquisition steps, the fifth acquisi-
tion step for ENS-VarR would select only 5.7% additional
rDR images (compared to 7.5% for the random acquisition).
We believe this is because after four acquistion steps most
rDR images have been selected, so healthy images might be
more beneficial for improving the AUC.
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Figure 5: Test results for the diabetic retinopathy dataset.
(a) AUC over acquired images. (b) Number of unhealthy
images acquired and the percentage of total rDR images in
the training set for each acquisition step.

5. Conclusion
We compare the performance of acquisition functions

and uncertainty estimation methods for active learning
with CNNs on image classification tasks. We show
that ensemble-based uncertainties consistently outperform
other methods of uncertainty estimation (in particular MC
Dropout) and lead to state-of-the-art active learning perfor-
mance on MNIST and CIFAR-10. Through additional ex-
periments we find that the difference in active learning per-
formance can be explained by a combination of decreased
model capacity and lower diversity of MC Dropout ensem-
bles. Additional evaluations indicate that recently proposed
methods for implicit ensembling, but also methods that sep-
arate aleatoric and epistemic uncertainty, fail to outperform
plain-ensemble active learning. We conclude by showing
results on a real-world application in medical diagnosis, and
a large-scale application in ImageNet classification. We find
that ensemble-based active learning works well in both sce-
narios.
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