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Abstract

In this work, we address the task of weakly-supervised
human action segmentation in long, untrimmed videos. Re-
cent methods have relied on expensive learning models,
such as Recurrent Neural Networks (RNN) and Hidden
Markov Models (HMM). However, these methods suffer
from expensive computational cost, thus are unable to be
deployed in large scale. To overcome the limitations, the
keys to our design are efficiency and scalability. We pro-
pose a novel action modeling framework, which consists
of a new temporal convolutional network, named Tempo-
ral Convolutional Feature Pyramid Network (TCFPN), for
predicting frame-wise action labels, and a novel training
strategy for weakly-supervised sequence modeling, named
Iterative Soft Boundary Assignment (ISBA), to align action
sequences and update the network in an iterative fashion.
The proposed framework is evaluated on two benchmark
datasets, Breakfast and Hollywood Extended, with four dif-
ferent evaluation metrics. Extensive experimental results
show that our methods achieve competitive or superior per-
formance to state-of-the-art methods.

1. Introduction
One of the major challenges in video understanding [7,

21, 19, 23, 24, 20, 5] is to localize and classify human ac-
tions in long, untrimmed videos, of which usually the re-
quirement is to predict per-frame semantic labels. Recently,
many approaches [22, 9, 12, 17, 4] have been introduced to
address this problem in fully-supervised setting, relying on
the densely-annotated video data such as [8, 2]. However,
such data is usually too tedious to obtain, which makes these
methods not scalable under real-world condition. Further-
more, annotating the precise temporal boundaries between
actions is also a challenge for humans; the resulting data
will be inconsistent and less likely to be relied on for learn-
ing in larger scale.
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Figure 1. Overview of the proposed framework with Iterative Soft
Boundary Assignment (ISBA) and Temporal Convolutional Fea-
ture Pyramid Network(TCFPN).

As a result, there is an increasing attention on meth-
ods [16, 10, 6, 2] that focus on solving the problem un-
der weaker supervision, e.g. with action transcripts. In this
case, an action transcript refers to a set of action units orga-
nized by their occurrence ordering in a video without pre-
cisely locating their temporal boundaries. This kind of la-
beling is much easier to obtain, and can even be automat-
ically generated from other meta information [1, 11, 14].
Our paper aligns with this set of weakly-supervised works
and assumes only access to action transcripts of training.

However, current methods stick to use Recurrent Neu-
ral Networks (RNN) to encode the video data and use dif-
ferent algorithms, such as Extended Connectionist Tempo-
ral Classification (ECTC) [6] and Hidden Markov Model
(HMM) [16, 10], to go through all the possible action se-
quences and find the one with maximal likelihood. Both
parts, i.e., network and learning model, suffer from expen-
sive computational cost. For example, in [16], videos have
to be cut into small chunks to enable RNN training. Be-
sides, [16, 10] also introduce iterative learning approaches
that train until converge, which do not consider the condi-
tion of overfitting.



To overcome the above collective limitations, we pro-
pose a novel action segmentation framework for weakly su-
pervised learning, which consists of a new temporal con-
volutional network, named Temporal Convolutional Fea-
ture Pyramid Network (TCFPN), for predicting frame-wise
action labels, and a novel training strategy, named Itera-
tive Soft Boundary Assignment (ISBA), to align action se-
quences and update the network in an iterative fashion (see
Fig. 1 for an overview). Both parts feature efficient and
highly parallelizable computation, e.g., not using any re-
currency or Markovian process. We also propose a specific
stop criteria that can effectively evaluate the current training
process and prevent overfitting.

Concretely, the ISBA allows us to iteratively train a tem-
poral segmentation network with the training target gener-
ated from action transcript, and refine the action transcript
based on the inference of current network. Each time, the
proposed ISBA looks at the boundary frames between two
actions and decides an update to the action boundary based
on the current inference result. This leads to increased ef-
ficiency than other methods [16, 6], because unlike these
methods that try to find the optimal action sequence with
maximal likelihood after going through all the candidates
during each iteration, ISBA uses a simple-yet-effective al-
gorithm and tries to form a reasonable probabilistic distri-
bution of different actions. Such process takes the idea from
Expectation-Maximization (EM) algorithm [3], but features
a more randomized behavior.

We also propose a soft boundary mechanism that puts
weaker supervision on the boundary frames, which can fur-
ther help the network find most discriminative patterns for
learning an action model. Our proposed stop criteria is
based on video-level recognition loss and prevents a net-
work from overfitting to the iterative training in ISBA.

In addition, we propose TCFPN, a convolution-based
neural network that achieves state-of-the-art performance
on temporal modeling with exceeding speed than RNN-
based methods. It has a pyramid structure to make use of
both low-level and high-level features, with lateral connec-
tion [13] to reduce computation cost.

For evaluation, we use two benchmark datasets, Break-
fast and Hollywood Extended, both of which are among the
largest datasets for evaluating action segmentation. Four
different metrics are used to comprehensively evaluate the
performance. Extensive experimental results show that our
methods achieve competitive or superior results than state-
of-the-art methods on both datasets.

Our contributions are three-fold. First of all, we propose
ISBA training strategy with novel stop criteria for weakly-
supervised action segmentation and alignment. The ISBA
is independent from a chosen segmentation network. Sec-
ondly, we propose TCFPN, a new temporal convolutional
network for action segmentation. Thirdly, our whole sys-

tem combining TCFPN and ISBA achieves state-of-the-art
performance on weakly-supervised action segmentation and
alignment, with exceeding efficiency and scalability.

2. Related Work
We organize the related work on video action model-

ing into two sets: fully-supervised methods and weakly-
supervised methods, and discuss them next.
Fully-Supervised Methods. Many existing works in this
category use frame-level features as input and then build
temporal models on the whole video sequence. Yeung
et al. [22] propose an attention LSTM network to model
the dependencies of the input frame features in a fixed-
length window. Singh et al. [17] present a multi-stream
bi-directional recurrent neural network for fine-grained ac-
tion detection task. Kuehne et al. [9] introduce an end-to-
end generative framework for action segmentation using the
HTK system, and focus on the part of feature extraction.
Lea et al. [12] devise two temporal convolutional networks
for action segmentation and detection, transforming suc-
cessful approaches from speech recognition. Ding et al. [4]
further introduce a hybrid temporal convolutional and re-
current network that also learns action ordering, but suffers
high computation cost.
Weakly Supervised Methods. A variety of different ap-
proaches have been explored for the task of weakly super-
vised action labeling. Bojanowski et al. [2] formulate the
temporal assignment problem and propose Ordering Con-
strained Discriminative Clustering (OCDC), with the intro-
duction of Hollywood extended dataset. Huang et al. [6]
propose ECTC which enforces the action alignments to be
consistent with frame-wise visual similarities. Kuehne [10]
use HMM to model the action and set the ground truth to
be the sequence that maximizes the likelihood of all pos-
sible sequences. They iteratively refine the segmentation.
Following a similar pipeline, Richard et al. [16] propose
an iterative fine-to-coarse sub-action modeling mechanism
with RNN and HMM. Our method is in this category. Com-
paring to previous works, our method runs fast and achieves
state of the art performance, which we show in Sec. 5.

3. Temporal Convolutional Feature Pyramid
Network (TCFPN)

In order to counter the weakly supervised action segmen-
tation task, a good temporal segmentation network is essen-
tial to the whole system. We set the requirements for a good
segmentation network for our task: (1) it should be able to
learn from the coarse ground truth; and (2) it needs to run
efficiently enabling the iterative training process. As a re-
sult, we adopt the Encoding-Decoding Temporal Convolu-
tional Network (ED-TCN) [12] as our baseline and propose
an improved structure: TCFPN. We achieve this by adding
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Figure 2. Structure overview of TCFPN. The proposed network ex-
tends the original ED-TCN [12] by adding lateral connections [13]
between encoder and decoder.

the lateral connection mechanism proposed in [13], which,
we note, is for a different task, i.e., object detection. We
adapt it here for action segmentation. Figure 2 shows an
overview of the structure of our proposed network.

TCFPN retains an encoder-decoder architecture. Both
encoder and decoder parts consist of K layers of features.
We define the encoding layers as L(i)

E , and the decoding
layer as L(i)

D , for i = 1, 2, . . . ,K, where K > 0 is the
depth parameter that can vary based on the size of dataset.
Empirically, we set K = 3 for all of our experiments.

In the encoder part, L(1)
E is the video feature extracted

from each frame. For i > 1, each layer L(i)
E is the out-

put of a combination of operations, i.e., temporal (1D) con-
volution, batch normalization, ReLU nonlinearity, and max
pooling across time.

In the decoder part, L(1)
D is computed from L

(K)
E with

a 1× 1 convolution with a desired number of filters, which
serves mainly as dimension reduction. For i > 1, each layer
L
(i)
D is computed by the lateral connection with L(K+1−i)

E ,
which is the element-wise sum of up-sampled L(i−1)

D and
the result of applying 1× 1 convolution on L(K+1−i)

E . Note
that all the 1 × 1 convolution operations in the decoder
part have the same number of filters. This is required for
element-wise sum in lateral connection and can reduce the
dimension of high-level features. The key idea of decoder
part is to add high-level semantic information into low-level
dense feature maps.

Finally, each decoder layer L(i)
D , i = 1, 2, . . . ,K is oper-

ated by another temporal convolution to reduce the aliasing
effect of upsampling. A frame-wise fully-connected layer
with softmax activation is used to output the class proba-
bilities at each time step for all K layers. The final predic-
tion is averaged through all these layers. Such design nat-
urally combines coarse, semantically-strong features with
fine, semantically-weak features in a pyramidal hierarchy,
with little extra computation expense.
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Figure 3. Example case of the proposed soft boundary mechanism.
By using linear interpolation of probabilities, the temporal bound-
ary between two different actions becomes coarse, which makes
the generated target more robust and reliable.

4. Iterative Soft Boundary Assignment (ISBA)

In this section, we introduce the overall procedure of
our weakly supervised learning mechanism, named Iterative
Soft Boundary Assignment (ISBA), which mainly consists
of two parts, target generation from transcript and iterative
transcript refinement. An overview of the whole procedure
is shown in Fig. 4.

Given a video of making cereals as an example, in
the training process, we are given the ground-truth ac-
tion transcript, i.e. {take bowl, pour cereals, pour milk,
stir cereals}. Notice that, we have only access to the la-
bels and their orders, but not their temporal boundaries in a
video. The goal is to localize each action unit in the train-
ing video with the given transcript (weakly-supervised ac-
tion alignment), as well as to predict the actual frame-wise
labels for unseen testing videos (weakly-supervised action
segmentation).

4.1. Target Generation with Soft Boundary Assign-
ment

We start with a linear mapping from the action transcript
to video frames. Given a video of length n and its action
transcript of length n′, usually the linear mapping assign
each action label in the transcript {A1, A2, ..., An′} to its
corresponding n/n′ frames as a hard assignment and thus
form a target with length n. However, this is not an ideal
setting for weakly-supervised tasks because such mapping
may fail to serve as a good target as the actual lengths of ac-
tions vary. In order to encounter this problem, we propose a
soft boundary assignment mechanism to set the target. The
soft boundary between different actions is defined by a tem-
poral linear interpolation of the probabilities of two labels.
As shown in Fig. 3, after uniform initialization with linear
mapping and soft boundary assignment, the current target
is a sequence with mixed probabilities that generated from
linear interpolation. That is to say, we set a coarse boundary
between different action units to let frames that are close to
the boundary have mixed probabilities to have either label.
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Figure 4. Overview of the proposed Iterative Soft Boundary As-
signment (ISBA) strategy. Under weak supervision, we start from
the action transcript and initialize the training target by uniform
mapping. A temporal segmentation model is then trained and with
which we infer the result on the training set. The action transcript
is then refined by the training result and the next iteration starts.
Finally until meeting the stop criteria, the final model is used to
infer on the training set for the alignment task, and predict on the
testing set for the segmentation task.

One significant advantage of the proposed soft bound-
ary assignment is that, during training, we guide the model
to learn discriminative patterns of an action in a smaller
temporal interval that is more likely to have the same real
ground-truth action label. It works similar to a weighted
loss that does not care too much about the boundary, but
more specifically let the model choose from the two con-
secutive actions and thus preserve the ordering information.

We note that, although our change is simple, it is effec-
tive. During experiments, we found such setting usually
gives a bonus on performance than simply up-sample tran-
script to video length by hard assignment. A detailed abla-
tion study is performed in Sec. 5.4. We have also tried other
scaling methods such as cubic interpolation, but since the
sum of probability should be equal to one as being consis-
tent with the softmax output, and all the probabilities should
be greater than zero, the generated target is thus similar to
linear interpolation after such normalization.

4.2. Transcript Refinement with Iterative Training
and Inference

After each training procedure, a probability sequence
is calculated by running inference of the current model
on each training sample. As shown in Fig. 5, the pre-
dicted probability is likely to be different from the current
target. We use an insertion strategy to refine each tran-
script by utilizing the information learned by the currently-
trained model. This operation pushes each action unit to
be closer to its possible ground-truth position and its possi-
ble length, while preserving their orderings as the weak but
exact ground-truth.

Specifically, for a training video of length n and its ac-
tion transcript of length n′, i.e. {A1, A2, ..., An′}, at each
action boundary i ∈ [1, n′ − 1] between different action
units, frame t = (n/n′) · i is the temporal boundary be-
tween action Ai and action A(i+1). If Ai 6= A(i+1), we
then observe the inferred probability of both action classes,
PAi

(t) and PA(i+1)
(t), predicted by the current model at

that frame. By setting up a threshold ρ ∈ (0, 1), if:

|PAi
(t)− PA(i+1)

(t)| > ρ , (1)

we insert an action label chosen from {Ai, A(i+1)} with the
higher probability into the action transcript at a location cor-
responds to that boundary. Suppose PAi

(t) > PA(i+1)
(t),

then Ai is the one to insert and the transcript now becomes
{..., Ai,AiAiAi, A(i+1), ...}. Alg. 1 describes the whole itera-
tive process in detail. The runtime of this algorithm is al-
most linear to different actions in the whole dataset, which
is the size of all original transcripts. It is very fast with the
simple insertion operation.

Besides, in order to make the process more robust, we
also include a randomness parameter θ ∈ (0, 0.5], accord-
ing to which the label is chosen from a Bernoulli distribu-
tion of the two labels with p = θ. In this case, the probabil-
ity of insertAi into transcript is (1−θ). This idea is inspired
from taking random steps used in deep reinforcement learn-
ing. Finally, after using the above method to refine all the
training transcripts, the next training iteration starts from the
new target generation process with the refined transcript.

The intuition behind this transcript refinement strategy
is to iteratively transform the initial action transcript into
the pesudo-supervision. It can adjust the length of each ac-
tion unit during every iteration while preserving the ground-
truth action orderings. Throughout the refinement, the ac-
tion transcript becomes less coarse and thus the next target
generated from transcript will have stronger supervision for
training. The most ideal case is that the transcript will get to
be more accurate overtime, and at the same time, the train-
ing model during each iteration becomes better as the target
is more accurate, thus can infer an even better transcript.
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Figure 5. Example case of the proposed transcript refinement
method. Given the initial transcript {SIL, squeeze orange, pour
juice, SIL}, we first generate the target with soft boundary, train
the model, and infer the probability. At each temporal bound-
ary between different actions, i.e. t = 150, 300, 450, if ∆ > ρ
where ∆ is the difference of probabilities and ρ is a threshold, we
then insert the action with higher probability into the transcript at
corresponding location. In this case, we insert two actions and
the new transcript becomes {SIL, SIL, squeeze orange, squeeze
orange, pour juice, SIL}. As a result, the transcript is gradually
being refined to mimic the unknown ground truth.

4.3. Stop Criteria

A proper stop criteria is essential to our approach, as it
is very likely to gradually make the refined training target
overfit the behavior of the network, which might not really
explain the data, and thus miss to fit the unknown ground
truth. Also since ISBA itself features a converging behav-
ior (see Alg. 1), other methods such as threshold on frame
change [16] are not ideal for this case because we can al-
ways meet that threshold after a certain number of itera-
tions. In this case, we propose another performance moni-
toring method to solve this problem.

Besides the ordering of actions, what we can also ob-
tain under weak supervision is the occurrence of actions in
each video. We utilize this as a measurement to evaluate
how the model has learned to recognize actions on video-
level. After training and inference, for each training video,

Algorithm 1 Transcript Refinement
Given transcript in training set
for each action in length(transcript) do
t = boundary frame
if (action 6= next action) then

if Pt(action)− Pt(next action) > ρ then
insert action into transcript at current location

else if Pt(next action)− Pt(action) > ρ then
insert nextaction into transcript at current lo-
cation

end if
end if

end for

we use a global max-pooling through time to get the maxi-
mal probability of each actions in video. We then propose a
video-level recognition loss, calculated as the binary cross-
entropy loss against the ground-truth occurrence of actions,
which can be obtained from the action transcript.

Concretely, given a video of length n and the action set
with k classes, the inference result P at frame-level has di-
mension (n, k). The global max-pooling shrinks P into P ′

with dimension (1, k) as the maximal probability of each
action class throughout the whole video. Given the ground-
truth action occurrence for the same sequence as Y , the bi-
nary cross entropy loss is calculated as:

Lvideo =

k∑
i=1

[Yi log(P
′
i ) + (1− Yi) log(1− P ′i )] . (2)

The final loss is averaged over all the samples. In this work,
we stop training if this recognition loss does not decrease
for three iterations. We then choose the result at the iteration
with minimal video-level loss as the final result for a video.

There are several reasons for using such validation. First,
it can measure how the model learns to recognize the ac-
tions in the video, despite the ordering. It is essential
that the model should first recognize the action in order to
give the correct ordering and temporal location. Second,
its real ground truth can be obtained from transcript under
the weakly-supervised setting. Third and most importantly,
since we do not use that loss directly for back propagation
during training, it is less likely that the model will overfit
that loss. Given the fact that TCFPN does classification on
each frame, the video-level context is harder to be learned
from frame-level loss.

Generally speaking, we use this sequence recognition
loss to find out the best condition that the model learns to
model discriminative patterns of different actions during the
whole iterative training process, although the training tar-
gets are generated from different transcripts.
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5. Experiments
In this section, we describe in detail the experimental

results. We experiment with three different tasks, e.g.,
fully-supervised action segmentation, weakly-supervised
action segmentation, and weakly-supervised action align-
ment, on two datasets, e.g., Breakfast [8] and Hollywood
Extended [2]. The Breakfast dataset has over 1.7k video
sequences of cooking in the kitchen environment with an
overall duration of 66.7h. Each video is labeled with a
set of 48 action classes with a mean of 4.9 instances per
video. The Hollywood Extended dataset contains 937 video
sequences from different Hollywood movies. It features a
set of 16 different action classes overall and a mean of 2.5
action instances per video. Surpassing [15, 18], these two
datasets are among the largest datasets for evaluating action
segmentation.

We use four different metrics to evaluate the perfor-
mance, making it more general and easy to compare with
previous and future work on this topic. Besides, we also do
an ablation study to further explore the proposed method.

5.1. Metrics

Performance metric is very task- or need-specific for
video understanding problems. Most of other works pro-
pose or stick to only one or two specific metrics. In this
work, we use four different metrics to evaluate qualitative
results on all three tasks. Examples of comparison among
different metrics are shown in Fig. 6.

Frame-wise accuracy (Acc.) is a common metric for
action segmentation, which directly evaluates how many
frames are correctly labeled. A drawback of this metric is
that, if frames in a are dominated by a single class, e.g. back-
ground, one can achieve high accuracy by simply classify-
ing everything as that class. To overcome the limitations,
we propose another metric, frame-wise accuracy without
background (Acc.−b.g.), which computes the accuracy for
all frames except background frames. In this case, the met-
ric emphasizes on evaluating frames with a real action label.

Another set of metrics are Jaccard measures, which ob-
serve how the prediction and ground truth overlaps each
other. In this work, we obtain results of both intersec-
tion over union (IoU) and intersection over detection (IoD).
Given a ground-truth action interval I∗ and a prediction in-
terval I , IoU is measured as |I ∩ I∗|/|I ∪ I∗| and IoD is

Table 1. Results of fully-supervised action segmentation. The
proposed network TCFPN outperforms state-of-the-art methods
on both datasets with all four metrics. (*result obtained from the
author of [16]; **our implementation)

Breakfast Acc. Acc.−b.g. IoU IoD

HTK(64) [9] 56.3 - - -
HTK [10] 50.7 - 36.1 -
GRU [16]* 60.6 - - -
ED-TCN [12]** 43.3 43.6 29.4 42.0

TCFPN 52.0 52.6 36.7 54.9

Hollywood Ext. Acc. Acc.−b.g. IoU IoD

HTK [10] 39.5 - 8.4 -
ED-TCN [12]** 36.7 27.3 10.9 13.1

TCFPN 54.8 33.1 20.4 28.8

measured as |I ∩ I∗|/|I|. IoU requires accurate temporal
segmentation to achieve high score, while IoD requires the
prediction to be included in the ground truth. Thus, IoD is
more related to the detection task instead of action segmen-
tation. Since previous work [6, 2, 16] tend to use IoD as
a measure, we also include the IoD metric for comparison
although it is not so relevant to the segmentation task.

5.2. Implementation Details

In order to make the results comparable, for both datasets
we obtain features used in previous work [10, 9] from the
authors, which are computed using improved dense trajec-
tories (iDT) and Fisher vectors (FV) with PCA and GMM,
as described in [9]. Frames are down-sampled to about 1
fps. We will release our implementations along with all pa-
rameters upon acceptance to facilitate future research.

5.3. Comparing to State-of-the-Art Methods

We compare the proposed methods under three different
tasks to the state-of-the-art. Since other work usually only
use one or two metrics, we leave the blank for those missing
evaluations.

Fully-Supervised Action Segmentation
We first evaluate the proposed temporal segmentation net-
work TCFPN in fully-supervised setting. We also imple-
ment the ED-TCN [12] as our baseline method, which has
not been implemented on the two datasets yet. As shown
in Table 1, TCFPN outperforms ED-TCN to a large extent
and shows competitive results to state-of-the-art methods.
The HTK(64) [9] uses the same HTK system as [10], but
a better feature with GMM size of 64. Besides, the pro-
posed method does not contain recurrent connections, e.g.,
LSTMs, and thus the training can be very efficient with
highly-parallelized computation.



Table 2. Results of weakly-supervised action segmentation. The
proposed TCFPN + ISBA outperforms other state-of-the-art meth-
ods on both datasets with most of the metrics. (*from [6])

Breakfast Acc. Acc.−b.g. IoU IoD

OCDC [2]* 8.9 - - -
HTK [10] 25.9 - 9.8 -
ECTC [6] 27.7 - - -
GRU reest. [16] 33.3 - - -

ED-TCN + ISBA 32.0 28.8 18.4 30.6
TCFPN + ISBA 38.4 38.4 24.2 40.6

Hollywood Ext. Acc. Acc.−b.g. IoU IoD

HTK [10] 33.0 - 8.6 -
GRU reest. [16] - - 11.9 -

ED-TCN + ISBA 27.8 29.4 8.9 10.7
TCFPN + ISBA 28.7 34.5 12.6 18.3

Weakly-Supervised Action Segmentation
We evaluate the proposed ISBA strategy with both ED-TCN
and TCFPN on the weakly-supervised action segmentation,
which is the main task of this work. As shown in Table 2,
the proposed TCFPN+ISBA outperform other state-of-the-
art methods to a large extent on almost every metric. The
only exception is for the frame-wise accuracy on Holly-
wood Extended dataset, which is due to a large amount of
background frames. Although the HTK [10] has a better
frame-wise accuracy, its IoU is much lower than other state-
of-the-art methods and our proposed method. Our method
outperforms HTK significantly on Breakfast dataset.

Another observation, when jointly considering the re-
sult from previous fully-supervised action segmentation,
is that when TCFPN shows competitive or slightly better
performance than other methods, TCFPN + ISBA shows
much stronger performance on weakly-supervised task.
More specifically, for Breakfast dataset, TCFPN is 5.8%
worse than GRU on frame-wise accuracy if fully super-
vised. However when it comes to weakly-supervised task,
TCFPN + ISBA is 5.1% better than GRU and HMM with re-
estimation [16]. Thus, we regard the proposed ISBA mech-
anism as the main boost in the weakly supervised action
segmentation task.

Weakly-Supervised Action Alignment
We also show the weakly-supervised action alignment task,
which aims to align the given transcript to its proper tem-
poral location. This task is in parallel with segmentation
because we iteratively refine the transcript and thus have
a better segmentation model with improved training target.
We report the alignment result on the testing set by itera-
tively refine the testing scripts for 10 iterations with the best
model determined by stop criteria.

Table 3. Results of weakly-supervised action alignment on train-
ing set. The proposed TCFPN + ISBA outperforms other state-of-
the-art methods on both datasets with most of the metrics. (*from
author’s plot)

Breakfast Acc. Acc.−b.g. IoU IoD

OCDC [2] - - - 23.4
HTK [10] 43.9 - 26.6 42.6
ECTC [6]* ∼35 - - ∼45
GRU reest. [16] - - - 47.3

ED-TCN + ISBA 52.7 50.5 33.5 51.4
TCFPN + ISBA 53.5 51.7 35.3 52.3

Hollywood Ext. Acc. Acc.−b.g. IoU IoD

OCDC [2] - - - 43.9
HTK [10] 49.4 - 29.1 46.9
ECTC [6]* - - - ∼41
GRU reest. [16] - - - 46.3

ED-TCN + ISBA 50.3 32.4 26.2 34.8
TCFPN + ISBA 57.4 36.1 22.3 39.6

As shown in Table 3, the proposed TCFPN+ISBA again
shows superior result on Breakfast dataset. For Hollywood
Extended dataset, many works choose to use IoD as the only
metric to evaluate the detection performance. In this work,
we assume the video is well labeled with action transcript
and there are less background or meaningless labels. As
a result, we achieve a better IoU but a lower IoD, because
the network is less likely to label the majority of frames as
background.

5.4. Analysis and Ablation Study

In this section, several experiments are done to further
evaluate the proposed method. First, we evaluate the speed
of the proposed method. Second, we investigate the effec-
tiveness of the proposed soft boundary mechanism. Third,
we visualize detailed result of an example training process
with all the iterations included, showing how the method
learns from weak labels and how the proposed stop criteria
works. Experiments give more direct insights about perfor-
mance and capability of the proposed method.
Speed. On Breakfast dataset, TCFPN+ISBA takes only
4 minutes for one iteration of training including inference
and prediction on the training set, averagely around half an
hour for the whole training process. Comparing to previous
work, OCDC [2] takes about 2 hours to train; HTK [10]
takes 23.7 minutes just for segmentation prediction.
Soft Boundary. In addition to experiments described
in the previous section, we train the TCFPN+ISBA model
without soft boundary on Breakfast dataset. In this case,
the transcript is simply repeatedly up-sampled to the video



Table 4. Ablation study of weakly-supervised action segmenta-
tion and alignment on Breakfast dataset. By adding the soft bound-
ary mechanism, the final results gain improvement on most of the
metrics.

Breakfast (seg.) Acc. Acc.−b.g. IoU IoD

TCFPN + ISBA 38.4 38.4 24.2 40.6
Above w/o soft b.d. 37.8 38.1 24.1 41.8

Breakfast (align.) Acc. Acc.−b.g. IoU IoD

TCFPN + ISBA 56.7 55.9 38.7 54.0
Above w/o soft b.d. 55.7 55.8 38.1 53.0
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Figure 7. Example training process on the first split of Breakfast
dataset. Stop criteria is met at iteration 10 as the loss does not
decrease for three iterations from iteration 7, which is the best it-
eration and used as the final result.

length to generate the training target. The comparison result
is shown in Table 4. By adding the soft boundary mecha-
nism, the final results gain improvement on most of the met-
rics. Although the margin is small, the improvement is con-
sistent and can be easily applied to other weakly-supervised
systems. Another benefit from soft boundary is that ISBA
converges more quickly.

Overall, the soft boundary mechanism stands for the idea
of using a mixture of probabilities to represent the bound-
ary between two different actions. We believe such repre-
sentation and mechanism are important in the field of action
modeling, where you can not always tell the exact changing
point of an action, and thus worths further exploration.
Stop Criteria. We visualize the whole training process
on the first split of Breakfast dataset. Fig. 7 shows the
frame-wise accuracy for both alignment task on training
set and segmentation task on testing set, together with the
recognition loss used as our stop criteria. One thing to men-
tion is that we can only access the video-level recognition
loss during training, among these three values. By using the
proposed stop criteria, we can quickly find the best recog-
nition model without extra training.

Ground	Truth
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Figure 8. Two example videos in training and testing set of Break-
fast dataset during the iterative refinement. On the left-hand-side,
the training target starts from a unique mapping and gets refined
over time. Note that the targets are probabilities generated with
soft boundary, and visualization shows only the label with largest
probability. On the right-hand-side, the testing sample is predicted
by models trained during each iteration.

As we see, although the alignment accuracy keeps be-
ing improved, the testing accuracy begins to converge af-
ter a few iterations. The proposed recognition loss aligns
well against the actual testing accuracy. We also do addi-
tional experiment using the stop criteria from [16] on the
first split of Breakfast dataset, resulting 21 iterations with
38.7 Acc., which means almost twice iterations with lower
performance, comparing to the 10 iterations with 39.8 Acc.
from Fig. 7.

Fig. 8 shows example results on training and testing set,
respectively. As the training target gradually being refined
to its proper length and location, the testing result also gets
better as the model becomes more precise. The proposed
method is designed to find useful information throughout
the whole dataset in an iterative fashion.

6. Conclusion

In this work, we propose ISBA as a novel strategy for
weakly-supervised action segmentation and alignment. It
features an iterative training procedure with transcript re-
finement and soft boundary assignment, together with a
video-level loss metric proposed as the stop criteria. We
also propose TCFPN, a new temporal convolutional net-
work for supervised action segmentation, which can be fast-
trained and shows competitive performance to state-of-the-
art methods. The whole system TCFPN+ISBA outperforms
state-of-the-art on both weakly-supervised action segmen-
tation and alignment. Our training strategy is general and
can be integrated with other work or used in other tasks, to
facilitate future research in video action understanding.
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