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†Facebook AI Research
*Cornell University

Abstract

This paper considers the problem of inferring image la-

bels from images when only a few annotated examples are

available at training time. This setup is often referred to

as low-shot learning, where a standard approach is to re-

train the last few layers of a convolutional neural network

learned on separate classes for which training examples are

abundant. We consider a semi-supervised setting based on

a large collection of images to support label propagation.

This is possible by leveraging the recent advances on large-

scale similarity graph construction.

We show that despite its conceptual simplicity, scaling

label propagation up to hundred millions of images leads to

state of the art accuracy in the low-shot learning regime.

1. Introduction

Large, diverse collections of images are now common-

place; these often contain a “long tail” of visual concepts.

Some concepts like “person” or “cat” appear in many im-

ages, but the vast majority of the visual classes do not occur

frequently. Even though the total number of images may

be large, it is hard to collect enough labeled data for most

of the visual concepts. Thus if we want to learn them, we

must do so with few labeled examples. This task is named

low-shot learning in the literature.

In order to learn new classes with little supervision, a

standard approach is to leverage classifiers already learned

for the most frequent classes, employing a so-called trans-

fer learning strategy. For instance, for new classes with few

labels, only the few last layers of a convolutional neural net-

work are re-trained. This limits the number of parameters

that need to be learned and limits over-fitting.

In this paper, we consider the low-shot learning prob-

lem described above, where the goal is to learn to detect

new visual classes with only a few annotated images per

class, but we also assume that we have many unlabelled im-

ages. This is called semi-supervised learning [39, 37] (con-
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Figure 1. The diffusion setup. The arrows indicate the direction

of diffusion. There is no diffusion performed from the test im-

ages. For the rest of the graph, the edges are bidirectional (i.e., the

graph matrix is symmetric). Except when mentioned otherwise,

the edges have no weights.

sidered, e.g., for face annotation [14]). The motivation of

this work is threefold. First we want to show that with mod-

ern computational tools, classical semi-supervised learning

methods scale gracefully to hundreds of millions of unla-

beled points. A limiting factor in previous evaluations was

that constructing the similarity graph supporting the diffu-

sion was slow. This is no longer a bottleneck: thanks to

advances both in computing architectures and algorithms,

one can routinely compute the similarity graph for 100 mil-

lions images in a few hours [21]. Second, we want to an-

swer the question: Does a very large number of images help

for semi-supervised learning? Finally, by comparing the

results of these methods on Imagenet and the YFCC100M

dataset [33], we highlight how these methods exhibit some

artificial aspects of Imagenet that can influence the perfor-

mance of low shot learning algorithms.

In summary, the contribution of our paper is a study of

semi-supervised learning in the scenario where we have a

very large number of unlabeled images. Our main results

are that in this setting, semi-supervised learning leads to

state of the art low-shot learning performance. In more de-

tail, we make the following contributions:

• We carry out a large-scale evaluation for diffusion

methods for semi-supervised learning and compare
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it to recent low-shot learning papers. Our experi-

ments are all carried out on the public benchmark Im-

agenet [11] and the YFC100M dataset [33].

• We show that our approach is efficient and that the dif-

fusion process scales up to hundreds of millions of im-

ages, which is order(s) of magnitude larger than what

we are aware in the literature on image-based diffu-

sion [19, 18]. This is made possible by leveraging the

recent state of the art for efficient k-nearest neighbor

graph construction [21].

• We evaluate several variants and hypotheses involved

in diffusion methods, such as using class frequency

priors [38]. This scenario is realistic in situations

where this statistic is known a priori. We propose a

simple way to estimate it without this prior knowl-

edge, and extend this assumption to a multiclass set-

ting by introducing a probabilistic projection step de-

rived from Sinkhorn-Knopp algorithm.

• Our experimental study shows that a simple propaga-

tion process significantly outperforms some state-of-

the-art approaches in low-shot visual learning when (i)

the number of annotated images per class is small and

when (ii) the number of unlabeled images is large or

the unlabeled images come form the same domain as

the test images.

This paper is organized as follows. Section 2 reviews

related works and Section 3 describes the label propagation

methods. The experimental study is presented in Section 4.

Our conclusion in section 5 summarizes our findings.

2. Related work

Low-shot learning Recently there has been a renewed in-

terest for low-shot learning, i.e., learning with few exam-

ples thanks to prior statistics on other classes. Such works

include metric learning [26], learning kNN [35], regular-

ization and feature hallucination [16] or predicting param-

eters of the network [5]. Ravi and Larochelle introduce a

meta-learner to learn the optimization parameters invovled

in the low-shot learning regime [30]. Most of the works

consider small datasets like Omniglot, CIFAR, or a small

subset of Imagenet. In our paper we will focus solely on

large datasets, in particular the Imagenet collection [31] as-

sociated with the ILSVRC challenge.

Diffusion methods We refer the reader to [3, 12] for a

review of diffusion processes and matrix normalization op-

tions. Such methods are an efficient way of clustering im-

ages given a matrix of input similarity, or a kNN graph, and

have been successfully used in a semi-supervised discovery

setup [14]. They share some connections with spectral clus-

tering [6]. In [29], a kNN graph is clustered with spectral

clustering, which amounts to computing the k eigenvectors

associated with the k largest eigenvalues of the graph, and

clustering these eigenvectors. Since the eigenvalues are ob-

tained via Lanczos iterations [15, Chapter 10], the basic op-

eration is similar to a diffusion process. This is also related

to power iteration clustering [25], as in the work of Cho et

al. [8] to find clusters.

Semi-supervised learning The kNN graph can be used

for transductive and semi-supervised learning (see e.g.[3,

39] for an introduction). In transductive learning, a rela-

tively small number of labels are used to augment a large

set of unlabeled data and the goal is to extend the labeling

to the unlabeled data (which is given at train time). Semi-

supervised learning is similar, except there may be a sepa-

rate set of test points that are not seen at train time. In our

work, we consider the simple proposal of Zhu et al. [38],

where powers of the (normalized) kNN graph are used to

find smooth functions on the kNN graph with desired val-

ues at the labeled points. There exist many variations on the

algorithms, e.g., Zhou et al. [37] weight the edges based on

distances and introduce a loss trading a classification fitting

constraint and a smoothness term enforcing consistency of

neighboring nodes.

Label propagation is a transductive method. In order to

evaluate on new data, we need to extend the smooth func-

tions out of the training data. While deep networks have

been used before for out of sample extension, e.g., in [7]

and [20], in the speech domain, in this work, we use a

weighted sum of nearest neighbors from the (perhaps un-

labeled) training data [4].

Efficient kNN-graph construction The diffusion meth-

ods use a matrix as input containing the similarity between

all images of the dataset. Considering N images, e.g.,

N = 108, it is not possible to store a matrix of size N2.

However most of the image pairs are not related and have a

similarity close to 0. Therefore diffusion methods are usu-

ally implemented with sparse matrices. This means that we

compute a graph connecting each image to its neighbors, as

determined by the similarity metric between image repre-

sentations. In particular, we consider the k-nearest neigh-

bor graph (kNN-graph) over a set of vectors. Several ap-

proximate algorithms [10, 23, 1, 17] have been proposed to

efficiently produce the kNN graph used as input of itera-

tive/diffusion methods, since this operation is of quadratic

complexity in the number of images. In this paper, we em-

ploy the Faiss library,which was shown capable to construct

a graph connecting up to 1 billion vectors [21].



3. Propagating labels

This section describes the initial stage of our proposal,

which estimates the class of the unlabelled images with a

diffusion process. It includes an image description step, the

construction of a kNN graph connecting similar images, and

a label diffusion algorithm.

3.1. Image description

A meaningful semantic image representation and an as-

sociated metric is required to match instances of classes that

have not been seen beforehand. While early works on semi-

supervised labelling [14] were using ad-hoc semantic global

descriptors like GIST [27], we extract activation maps from

a CNN trained on images from a set of base classes that are

independent from the novel classes on which the evaluation

is performed. See the experimental section for more details

about the training process for descriptors.

The mean class classifier introduced for low-shot learn-

ing [26] is another way to perform dimensionality reduc-

tion while improving accuracy thanks to a better compari-

son metric. We do not consider this approach since it can

be seen as part of the descriptor learning.

3.2. Affinity matrix: approximate kNN graph

As discussed in the related work, most diffusion pro-

cesses use as input the kNN graph representing the N ×N

sparse similarity matrix, denoted by W, which connects

the N images of the collection. We build this graph us-

ing approximate k-nearest neighbor search. Thanks to re-

cent advances in efficient similarity search [10, 21], trading

some accuracy against efficiency drastically improves the

graph construction time. As an example, with the FAISS

library [21], building the graph associated with 600k im-

ages takes 2 minutes on 1 GPU. In our preliminary experi-

ments, the approximation in the knn-graph does not induce

any sub-optimality, possibly because the diffusion process

compensates the artifacts induced by the approximation.

Different strategies exist to set the weights of the affin-

ity matrix W. We choose to search the k nearest neighbors

of each image, and set a 1 for each of the neighbors in the

corresponding row of a sparse matrix W0. Then we sym-

metrize the matrix by adding it to its transpose. We subse-

quently ℓ1-normalize the rows to produce a sparse stochas-

tic matrix: W = D−1(W⊤
0 + W0), with D the diagonal

matrix of row sums.

The handling for the test points is different: test points

do not participate in label propagation because we classify

each of them independently of the others. Therefore, there

are no outgoing edges on test points; they only get incoming

edges from their k nearest neighbors.

3.3. Label propagation

We now give details about the diffusion process itself,

which is summarized in Figure 1. We build on the straight-

forward label propagation algorithm of [38]. The set of

images on which we perform diffusion is composed of nL

labelled seed images and nB unlabelled background images

(N = nL+nB). Define the N×C matrix L, where C is the

number of classes for which we want to diffuse the labels,

i.e., the new classes not seen in the training set. Each row

li in L is associated with a given image, and represents the

probabilities of each class for that image. A given column

corresponds to a given class, and gives its probabilities for

each image. The method initializes li to a one-hot vector for

the seeds. Background images are initialized with 0 proba-

bilities for all classes. Diffusing from the known labels, the

method iterates as Lt+1 = WLt.

We can optionally reset the L rows corresponding to

seeds to their 1-hot ground-truth at each iteration. When

iterating to convergence, all li would eventually converge

to the eigenvector of W with largest eigenvalue (when not

resetting), or to the harmonic function with respect to W

with boundary conditions given by the seeds (when reset-

ting). Empirically, for low-shot learning, we observe that

resetting is detrimental to accuracy. Early stopping per-

forms better in both cases, so we cross-validate the number

of diffusion iterations.

Classification decision & combination with logistic re-

gression We predict the class of a test example i as the

the column that maximizes the score li. Similar to Zhou

et al. [37], we have also optimized a loss balancing the fit-

ting constraint with the diffusion smoothing term. However

we found that a simple late fusion (weighted mean of log-

probabilities, parametrized by a single cross-validated co-

efficient) of the scores produced by diffusion and logistic

regression achieves better results.

3.4. Variations

Using priors The label propagation can take into account

several priors depending on the assumptions of the problem,

which are integrated by defining a normalization operator η

and by modifying the update equation as

Lt+1 = η(WLt). (1)

Multiclass assumption. For instance, in the ILSVRC chal-

lenge built upon the Imagenet dataset [31], there is only one

label per class, therefore we can define η as a function that

ℓ1-normalizes each row to provide a distribution over la-

bels (by convention the normalization leaves all-0 vectors

unchanged).

Class frequency priors. Additionally, we point out that la-

bels are evenly distributed in Imagenet. If we translate this



setup to our semi-unsupervised setting, it would mean that

we may assume that the distribution of the unlabelled im-

ages is uniform over labels. This assumption can be taken

into account by defining η as the function performing a ℓ1
normalization of columns of L.

While one could argue that this is not realistic in gen-

eral, a more realistic scenario is to consider that we know

the marginal distribution of the labels, as proposed by Zhu

et al. [38], who show that the prior can be simply enforced

(i.e., apply column-wise normalization to L and multiply

each column by the prior class probability). This arises in

situations such as tag prediction, if we can empirically mea-

sure the relative probabilities of tags, possibly regularized

for lowest values.

Combined Multiclass assumption and class frequency pri-

ors. We propose a variant way to use both a multiclass

setting and prior class probabilities by enforcing the matrix

L to jointly satisfy the following properties:

L1C = 1N 1⊤

NL ∝ pC (2)

where pC is the prior distribution over labels. For this pur-

pose, we adopt a strategy similar to that of Cuturi [9] in

his work on optimal transport, in which he shows that the

Sinkhorn-Knopp algorithm [32] provides an efficient and

theoretically grounded way to project a matrix so that it sat-

isfies such marginals. The Sinkhorn-Knopp algorithm iter-

ates by alternately enforcing the marginal conditions, as

L← L diag(L1C)
−1diag(pC) (3)

L← diag(1⊤

NL)
−1L (4)

until convergence. Here we assume that the algorithm only

operates on rows and columns whose sum is strictly posi-

tive. As discussed by Knight [24], the convergence of this

algorithm is fast. Therefore we stop after 5 iterations. This

projection is performed after each update by Eqn. 1. Note

that Zhu et al. [38] solely considered the second constraint

in Eqn. 2, which can be obtained by enforcing the prior, as

discussed by Bengio et al.[3]. We evaluate both variants in

the experimental section 4.

Non-linear updates. The Markov Clustering (MCL) [13]

is another diffusion algorithm with nonlinear updates orig-

inally proposed for clustering. In contrast to the previous

algorithm, MCL iterates directly over the similarity matrix

as

W′

t
←Wt ·Wt Wt+1 ← Γr(W

′

t
), (5)

where Γr is an element-wise raising to power r of the ma-

trix, followed by a column-wise normalization [13]. The

power r ∈ (1, 2] is a bandwidth parameter: when r is high,

small edges quickly vanish along the iterations. A smaller

r preserves the edges longer. The clustering is performed

by extracting connected components from the final matrix.

In Section 4 we evaluate the role of the non-linear update

of MCL by introducing the Γr non-linearity in the diffu-

sion procedure. More precisely, we modify Equation 1 as

Lt+1 = Γr (η(WLt)) .

3.5. Complexity

For the complexity evaluation, we distinguish two

stages. In the off-line stage, (i) the CNN is trained on

the base classes, (ii) descriptors are extracted for the back-

ground images, and (iii) a knn-graph is computed for the

background images. In the on-line stage, we receive train-

ing and test images from novel classes, (i) compute features

for them, (ii) complement the knn-graph matrix to include

the training and test images, and (iii) perform the diffusion

iterations. Here we assume that the N × N graph matrix

W0 is decomposed in four blocks

W0 =

[

WLL WLB

WBL WBB

]

∈ {0, 1}(nL+nB)×(nL+nB) (6)

The largest matrix WBB ∈ {0, 1}
nB×nB is computed off-

line. On-line we compute the three other matrices. We com-

bine WBL and WBB by merging similarity search result

lists, hence each row of W0 contains exactly k non-zero

values, requiring to store the distances along with WBB.

We are mostly interested in the complexity of the on-

line phase. Therefore we exclude the descriptor extraction,

which is independent of the classification complexity, and

the complexity of handling the test images, which is negli-

gible compared to the training operations. We consider the

logistic regression as a baseline for the complexity compar-

ison:

Logistic regression the SGD training entails O(Ilogreg ×
B×C × d) multiply-adds, with d denotes the descrip-

tor dimensionality and C the number of classes. The

number of iterations and batch size are Ilogreg and B.

Diffusion the complexity is decomposed into: comput-

ing the matrices WLL, WLB and WBL, which in-

volves O(d × nL × nB) multiply-adds using brute-

force distance computations; and performing Idif it-

erations of sparse-dense matrix multiplications, which

incursO(k×N×C×Idif) multiply-adds (note, sparse

matrix operations are more limited by irregular mem-

ory access patterns than arithmetic operations). There-

fore the diffusion complexity is linear in the number

of background images nB. See the supplemental for

more details.

Memory usage. One important bottleneck of the algo-

rithm is its memory usage. The sparse matrix W0 occu-

pies 8Nk bytes in RAM, and W almost twice this amount,



because most nearest neighbors are not reciprocal; the L

matrix is 4CN bytes. Fortunately, the iterations can be per-

formed one column of L at a time, reducing this to 2× 4N
bytes for Lt and Lt+1 (in practice, when memory is an is-

sue, we group columns by batches of size C ′ < C).

4. Experiments

4.1. Datasets and evaluation protocol

We use Imagenet 2012 [11] and follow a recent

setup [16] previously introduced for low-shot learning. The

1000 Imagenet classes are split randomly into two groups,

each containing base and novel classes. Group 1 (193 base

and 300 novel classes) is used for hyper-parameter tuning

and group 2 (196+311 classes) for testing with fixed hyper-

parameters. We assume the full Imagenet training data is

available for the base classes. For the novel classes, only n

images per class are available for training. Similar to [16]

the subset of n images is drawn randomly and the random

selection is performed 5 times with different random seeds.

As a large source of unlabelled images, we use the

YFCC100M dataset [33]. It consists of 99 million repre-

sentative images from the Flickr photo sharing site1. Note

that some works have used this dataset with tags or GPS

metadata as weak supervision [22].

Learning the image descriptors. We use the 50-layer

Resnet trained by Hariharan et al. [16] on all base classes

(group 1 + group 2), to ensure that the description calcu-

lation has never seen any image of the novel classes. We

run the CNN on all images, and extract a 2048-dim vec-

tor from the 49th layer, just before the last fully connected

layer. This descriptor is used directly as input for the logis-

tic regression. For the diffusion, we PCA-reduce the fea-

ture vector to 256 dimensions and L2-normalize it, which

is standard in prior works on unsupervised image matching

with pre-learned image representations [2, 34].

Performance measure and baseline In a given group (1

or 2), we classify the Imagenet validation images from both

the base and novel classes, and measure the top-5 accu-

racy. Therefore the class distribution is heavily unbalanced.

Since the seed images are drawn randomly, we repeat the

random draws 5 times with different random seeds and av-

erage the obtained top-5 accuracy (the ±xx notation gives

the standard deviation).

The baseline is a logistic regression applied on the la-

belled points. We employ a per-class image sampling strat-

egy to circumvent the unbalanced number of examples per

class. We optimize the learning rate, batch size and L2 reg-

ularization factor of the logistic regression on the group 1

1Of the 100M original files, some are videos and some are not available

anymore. We replace them with uniform white images.

background none F1M Imagenet

edge weighting

constant 62.7±0.68 65.4±0.55 73.3±0.72

Gaussian weighting* 62.7±0.66 65.4±0.58 73.6±0.71

meaningful neighbors* 62.7±0.68 40.0±0.20 73.6±0.62

η operator

none 40.6±0.18 41.1±0.10 42.3±0.19

Sinkhorn 61.1±0.69 56.8±0.50 72.3±0.72

column-wise 62.7±0.68 65.4±0.55 73.3±0.72

non-linear transform* Γr 62.7±0.68 65.4±0.55 73.3±0.72

class frequency prior* 62.7±0.66 65.4±0.60 73.3±0.65

Table 1. Variations on weighting for edges and normalization

steps on iterates of L. The tests are performed for n = 2 and

k = 30, with 5 runs on the group 1 validation images. Variants

that require a parameter (e.g., the σ of the Gaussian weighting) are

indicated with a “*”. In this case we report only the best result,

see the supplementary material for full results. In the rest of the

paper, we use the variants indicated in bold, since they are simple

and do not add any parameter.

images. It is worth noticing that our baseline outperforms

the reported state of the art in this setting.

Background images for diffusion We consider the fol-

lowing sets of background images:

1. None: the diffusion is directly from the seed images to

the test images;

2. In-domain setting: the background images are the Im-

agenet training image from the novel classes, but with-

out labels. This corresponds to a use case where all

images are known to belong to a set of classes, but

only a subset of them have been labelled;

3. Out-of-domain setting: the nB background images are

taken from YFCC100M. We denote this setting by

F100k, F1M, F10M or F100M, depending on the num-

ber of images we use (e.g., we note F1M for nB =
106). This corresponds to a more challenging setting

where we have no prior knowledge about the image

used in the diffusion.

4.2. Parameters of diffusion

We compare a few settings of the diffusion algorithm as

discussed in section 3.4. In all cases, we set the number of

nearest neighbors to k = 30 and evaluate with n = 2. The

nearest neighbors are computed with Faiss [21], using the

IVFFlat index. It computes exact distances but occasionally

misses a few neighbors (see the supplementary material for

details).

Graph edge weighting. We experimented with different

weightings for W0, that were proposed in the literature. We
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Figure 2. Classification performance with n = 2, with various

settings of k and nB, ordered by total number of edges (average of

5 test runs, with cross-validated number of iterations).

compared a constant weight, a Gaussian weighting [25, 3],

(with σ a hyper-parameter), and a weighting based on the

“meaningful neighbors” proposal [28].

Table 1 shows that results are remarkably independent of

the weighting choice, which is why we set it to 12. The best

normalization that can be applied to the L matrix is a simple

column-wise L1 normalization. Thanks to the linear itera-

tion formula, it can be applied at the end of the iterations.

4.3. Large­scale diffusion

Figure 2 reports experiments by varying the number of

background images nB and the number k of neighbors, for

n = 2. All the curves have an optimal point in terms of ac-

curacy vs computational cost at k=30. This may be a intrin-

sic property of the descriptor manifold. An additional num-

ber: before starting the diffusion iterations, with k=1000

and no background images (the best setting) we obtain an

accuracy of 60.5%. This is a knn-classifier and this is the

fastest setting because the knn-graph does not need to be

constructed nor stored.

4.4. Comparison with low­shot classifiers

We compare the performance of diffusion against the lo-

gistic baseline classifiers and a recent method of the state of

the art [16], using the same features.

In-domain scenario. For low-shot learning (n ≤ 5), the

in-domain diffusion outperforms the other methods by a

large margin, see Table 2. The combination with logistic

regression is not very effective.

2Note that our parametric experiments use the set of baseline image

descriptors used in the arXiv version of [16], and the table compares all

methods using those underlying features, so the results are not directly

comparable with the rest of the paper.

Hariharan logistic in-domain diffusion

n et al. [16] regression diffusion + logistic

1 63.6 60.4±0.78 69.7±0.86 69.76±0.88

2 71.5 68.8±0.82 75.4±0.64 75.60±0.69

5 80.0 79.1±0.35 79.9±0.17 81.35±0.22

10 83.3 83.4±0.16 82.1±0.14 84.56±0.12

20 85.2 86.0±0.15 83.6±0.12 86.72±0.09

Table 2. In-domain diffusion on Imagenet: We compare against

logistic regression and a recent low-shot learning technique [16]

on this benchmark. Results are reported with k = 30 for diffusion.

Out-of-domain diffusion. Table 3 shows that the perfor-

mance of diffusion is competitive only when 1 or 2 images

are available per class. As stated in Section 3.2, we do not

include the test points in the diffusion, which is standard

for a classification setting. However, if we allow this, as

in a fully transductive setting, we obtain a top-5 accuracy

of 69.6%±0.68 with n = 2 with diffusion over F1M, i.e., on

par with diffusion over F100M.

Classifier combination. We experimented with a very

simple late fusion: to combine the scores of the two clas-

sifiers, we simply take a weighted average of their predic-

tions (log-probabilities), and cross validate the weight fac-

tor. Both in the in-domain (Table 2) and out-of-domain (Ta-

ble 3) cases, the results are significantly above the best of

the two input classifiers. This shows that the logistic re-

gression classifier and the diffusion classifier access dif-

ferent aspects of image collection. We also experimented

with more complicated combination methods, like using the

graph edges as a regularizer during the logistic regression,

which did not improve this result.

Comparison with the state of the art. With the in-

domain diffusion, we notice that our method outperforms

the state-of-the-art result of [16] and which, itself, outper-

forms or is closely competitive with [35, 36] in this setting.

In the out-of-domain setting, out results are better only for

n=1. However, their method is a complementary combi-

nation of a specific loss and a learned data augmentation

procedure that is specifically tailored to the experimental

setup with base and novel classes. In contrast, our diffusion

procedure is generic and has only two parameters (nB and

k). Note that the out-of-domain setting is comparable with

the standard low-shot setting, because the unlabeled images

from F100M are generic, and have nothing to do with Ima-

genet; and because the neighbor construction and diffusion

are efficient enough to be run on a single workstation.

4.5. Complexity: Runtime and memory

We measured the run-times of the different steps in-

volved in diffusion process and report them in Table 4. The



out-of-domain diffusion logistic diffusion+logistic Hariharan

n none F1M F10M F100M regression +F10M + F100M et al. [16]

1 58.5±0.52 61.4±0.61 62.7±0.76 63.6±0.61 60.4±0.78 63.3±0.73 64.0±0.70 63.6

2 63.6±0.60 66.8±0.71 68.4±0.74 69.5±0.60 68.8±0.82 70.6±0.80 71.1±0.82 71.5

5 69.0±0.46 72.5±0.27 74.0±0.35 75.2±0.40 79.1±0.35 79.4±0.34 79.7±0.38 80.0

10 73.9±0.15 76.2±0.19 77.4±0.31 78.5±0.34 83.4±0.16 83.6±0.13 83.9±0.10 83.3

20 78.0±0.15 79.1±0.23 80.0±0.27 80.8±0.18 86.0±0.15 86.2±0.12 86.3±0.17 85.2

Table 3. Out-of-domain diffusion: Comparison of classifiers for different values of n, with k = 30 for the diffusion results. The “none”

column indicates that the diffusion solely relies on the labelled images. The results of the rightmost column [16] are state-of-the-art on this

benchmark to our knowledge, generally outperforming the results of matching networks and model regression [35, 36] in this setting.

background none F1M F10M F100M

optimal iteration 2 3 4 5

timing: graph completion 2m57s 8m36s 40m41s 4h08m

timing: diffusion 4.4s 19s 3m44s 54m

Table 4. Timings for the different steps on a 24-core 2.5GHz

machine, for a varying number of unlabelled images from

YFCC100M. Note, the timing of 4h08m for graph completion over

F100M takes only 23m when executed on 8 GPUs.

graph construction time is linear in nB, thanks to the pre-

computation of the graph matrix for the background images

(see Section 3.5). For comparison, training the logistic re-

gression takes between 2m27s and 12m, depending on the

cross-validated parameters.

In terms of memory usage, the biggest F100M experi-

ments need to simultaneously keep in RAM a W matrix

of 5.3 billion non-zero values (39.5 GiB), and Lt and Lt+1

(35.8 GiB, using slices of C ′ = 96 columns). This is the

main drawback of using diffusion. However Table 3 shows

that restricting the diffusion to 10 million images already

provides most of the gain, while dividing by an order of

magnitude memory and computational complexity.

4.6. Analysis of the diffusion process

We discuss how fast L “fills up” (it is dense after a few

iterations). We consider the rate of nodes reached by the

diffusion process: we consider very large graphs, few seeds

and a relatively small graph degree. Figure 3 measures the

sparsity of the matrix L (on one run of validation), which in-

dicates the rate of (label, image) tuples that have not been at-

tained by the diffusion process at each diffusion step. While

the graph is not necessarily fully connected, we observe that

most images can be reached by all labels in practice.

The fraction of nodes reached by all labeled points grows

rapidly and converges to a value close to 1 in a few iter-

ations when k ≥ 10. In order to relate this observation

with the performance attained along iterations, it is interest-

ing to compare what happens in this plot to the one on the

right. The plot on the right shows that the iteration number

at which the matrix close to 1 is similar to the iteration at

which accuracy is maximal, as selected by cross-validation.
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Figure 3. Statistics over iterations, for n = 2. Top: Rate of non-

zero element in the matrix L. Bottom: corresponding accuracy.

The maximum occurs later if nB is larger and when k is

smaller. Note also that early stopping is important.

4.7. Qualitative results

Figure 4 shows paths between a seed image and test im-

ages, which gives a partial view of the diffusion. Given a

class, we backtrack the path: for a given node (image) and

iteration i, we look up the preceding node that contributed

most to the weight in Li that node at that iteration. At it-

eration 0, the backtracking process always ends in a source

node. Each row of the figure is one such paths. For a test im-

age (right), we show the path for the ground-truth class and

that for the found class, or a single row for both when the

image is classified correctly. Note that the preceding node
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Figure 4. Images visited during the diffusion process from a seed (left) to the test image (right). We give ground-truth class for Imagenet

images (test images marked by parentheses). The first two rows are classified correctly. The two bottom ones are failure cases. Imagenet

images are not shown for copyright reasons, but the labels are shown. For YFCC100M images, we provide the Flickr id of their creators.

can be the image itself, since the diagonal of the W matrix

is not set to 0. Thanks to the size of the dataset, the paths

are quite “smooth”: they evolve through similar images.

5. Conclusion

We experimented on large-scale label propagation for

low-shot learning. Unsurprisingly, we have found that per-

forming diffusion over images from the same domain works

much better than images from a different domain. We

clearly observe that, as the number of images over which

we diffuse grows, the accuracy steadily improve. The main

performance factor is the total number of edges, which also

reasonably reflects the complexity. We also report neutral

results for most sophisticated variants, for instance we show

that edge weights are not useful. Furthermore, labeled im-

ages should be included in the diffusion process and not just

used as sources, i.e., not enforced to keep their label.

The main outcome of our study is to show that diffusion

over a large image set is superior to state-of-the-art methods

for low-shot learning when very few labels are available.

Interestingly, late-fusion with a standard classifier’s result is

effective. This shows the complementary of the approaches,

and suggests that it could be combined with forthcoming

methods for low-short learning.

When more labels are available, simple logistic regres-

sion becomes superior to the methods we describe (and to

other state of the art low-shot learning methods). However,

we note that there are many circumstances where even a

few labels per class are more difficult to get than building

(and then keeping) a graph over unlabeled data. For exam-

ple, if there are a large number of “tail” classes which we

will need to classify, a few examples per class can multi-

ply to many labels. In these cases diffusion combined with

logistic regression is the best method.
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