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Abstract

Facial expression recognition (FER) is a challenging
task due to different expressions under arbitrary poses.
Most conventional approaches either perform face frontal-
ization on a non-frontal facial image or learn separate clas-
sifiers for each pose. Different from existing methods, in
this paper, we propose an end-to-end deep learning model
by exploiting different poses and expressions jointly for si-
multaneous facial image synthesis and pose-invariant facial
expression recognition. The proposed model is based on
generative adversarial network (GAN) and enjoys several
merits. First, the encoder-decoder structure of the genera-
tor can learn a generative and discriminative identity repre-
sentation for face images. Second, the identity representa-
tion is explicitly disentangled from both expression and pose
variations through the expression and pose codes. Third,
our model can automatically generate face images with d-
ifferent expressions under arbitrary poses to enlarge and
enrich the training set for FER. Quantitative and qualita-
tive evaluations on both controlled and in-the-wild datasets
demonstrate that the proposed algorithm performs favor-
ably against state-of-the-art methods.

1. Introduction

Facial expression recognition (FER) is one of the most
important tasks in computer vision which plays a crucial
role in numerous applications in psychology, medicine, se-
curity, digital entertainment, and driver monitoring, to name
a few [41} 15 14} 16} 3]. The main challenge of the FER is
to account for large appearance changes of human faces.
Despite of significant progress in recent years, it remains a
difficult task for developing robust algorithms to recognize
facial expression in scenarios with challenging factors such
as pose variations, unconstrained facial expressions, illumi-
nation changes, and insufficient training data.

The facial expression recognition aims to analyze and
classify a given facial image into several emotion types,
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Figure 1. Facial expression recognition is a challenging task due
to different expressions under arbitrary poses.

such as, angry, disgust, fear, happy, sad and surprise [9]. To
achieve this goal, numerous algorithms of FER [28} 121} 27]]
have been proposed in the literatures during the past sev-
eral years. Among the existing methods, most of them are
based on frontal or nearly frontal view facial images and
the non-frontal or the in-the-wild facial expression recogni-
tion problem is largely unexplored. In contrast to the frontal
FER, expression recognition from non-frontal facial images
is challenging because it needs to deal with the issues of
face occlusions, accurate non-frontal face alignment, and
accurate non-frontal facial points location as shown in Fig-
ure |1} As a result, only a small part of algorithms among
the proposed various methods address this challenging is-
sue (62, [10, 58]. Different from the existing methods, we
focus on the pose-invariant FER, which is to perform FER
by identifying or authorizing individuals’ expressions with
facial images captured under arbitrary poses. Therefore, it
is more challenging and more applicable in real scenarios.
However, it is not easy to perform the pose-invariant
FER as shown in Figure I} The main challenge here is to
perform decoupling of the rigid facial changes due to the
head-pose and non-rigid facial changes due to the expres-
sion, as they are non-linearly coupled in 2D images [66].
In details, the rigid rotation of the head results in self-
occlusion, which means there is loss of information for fa-
cial expression recognition. Besides, the shape of facial
texture is warped nonlinearly along with the pose change,
which causes serious confusion with the inter-personal tex-
ture difference. This calls for a joint analysis of head-pose



Table 1. The details of existing benchmarks for pose-invariant FER
including the number of pose, expression, and training samples.

Dataset Pose Expression Training Samples

SFEW - 7 700
Multi-PIE 5 6 7,655
BU-3DFE 35 6 21,000

and facial expressions. Nonetheless, this remains a signif-
icant research challenge, mainly due to the large variation
in appearance of facial expressions in different poses and
difficulty in decoupling these two sources of variation. In
order to deal with the above issues, the traditional methods
usually have three distinct perspectives: (1) Extract pose-
robust features as facial expression representations and em-
ploy conventional classifiers for recognition. (2) Perfor-
m pose normalization before conducting the pose-invariant
FER. (3) Learn multiple classifiers for each specific poses.
The success of these approaches can be attributed in good
part to the quality of the feature representation used as in-
put to the classifier. Most methods are conducted on classi-
cal hand-crafted visual features, such as local binary pattern
(LBP) [64], histograms of oriented gradients (HOG) [11]],
and scaled-invariant feature transform (SIFT) [46l], which
have the limited representation power and may not handle
the challenge of nonlinear facial texture warping caused by
pose variation well [2} 18]].

Recently, deep networks have been successfully applied
on a wide range of visual tasks, such as image classification
[24], object detection [11]], segmentation [34]], and pose es-
timation [33]]. Inspired by the success of deep networks, an
intuitive idea is to learn semantic features for the FER vi-
a deep learning. However, deep models need to be trained
with enough labeled data [23]. Thus, the first step in creat-
ing any such image classification system is gathering suffi-
cient annotated data where each image is labeled with the
correct category. For the pose-invariant FER, the publicly
available datasets typically contain a very limited number
of labeled samples. As shown in Table [1| there are three
standard benchmarks. The Static Facial Expressions in the
wild (SFEW) dataset [7]] contains only 700 images (includ-
ing both training and testing) while the Multi-PIE [13] has
7,655 images (5 poses and 6 expressions).

In this case, a common solution is to employ deep net-
works pre-trained on the ImageNet [39] and do fine tuning
to further improve the feature representation power. As a
result, the networks are trained separately from the FER,
and the extracted features hardly benefit from the end-to-
end training. End-to-end training of deep architectures is
generally preferable to training individual components sep-
arately. The reason is that in this manner the free parameter-
s in all components can co-adapt and cooperate to achieve
a single objective. The other solution is to generate train-
ing data automatically. It is almost impossible to manually
label training data because our goal is to perform the FER
with arbitrary poses. In recent times, GAN-based approach-
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es have been successfully used to generate impressively re-
alistic faces [26, 20], house-numbers [60], bedrooms [35]
and a variety of other image categories [[15, |65] through a
two-player game between a generator GG and discriminator
D. This inspires us to resort to the GAN to enlarge and en-
rich the training set. Despite many promising developments
[59! 20, 29]], image synthesis remains the main objective of
GAN, which cannot be straightforwardly applied to facial
expression recognition task.

Inspired by the above discussions, on the one hand, we
design a GAN-based structure to generate facial images
with different expressions and poses. On the other hand, we
embed a classifier into the network to facilitate the image
synthesis and conduct facial expression recognition. To dis-
entangle the attributes (expression, pose) from the identity
representation, we construct the G with an encoder-decoder
structure, which serves as a facial image changer. The input
to the encoder G, is a face image of any expression and
pose, the output of the decoder G 4. is a synthetic facial im-
age at a target expression and pose, and the learnt identity
representation bridges G, and Gg... Besides, we intro-
duce two discriminators (Dgy; and D;) into the generative
adversarial network. The D, is used to disentangle the
pose, expression and identity from a facial image in a latent
space to change the attributes (pose and expression) but re-
tain the identity. To smooth the pose and expression trans-
formation, the D; is adopted to control the distribution of
identity features. With an additional classifier Ce,,, it can
strive for the generated facial image to have the same ex-
pression as the input real facial image, which has two effects
on G: (1) The generated facial image looks more like the in-
put subject in terms of expression. (2) The learnt representa-
tion is more generative to synthesize an identity-preserving
facial image but with different expressions and poses, and
the generated facial images can facilitate the FER in turn.

The major contributions of this work can be summarized
as follows. (1) We propose an end-to-end learning mod-
el by exploiting different poses and expressions jointly for
simultaneous facial image synthesis and pose-invariant fa-
cial expression recognition. (2) The identity representation
learning is explicitly disentangled from both expression and
pose variations through the expression and pose codes in G
and D. As a result, the proposed model can automatically
generate facial images with an arbitrary expression under an
arbitrary pose. (3) The proposed model achieves state-of-
the-art facial expression recognition performance on Multi-
PIE [13], BU-3DFE [51], and SFEW [7]] datasets.

2. Related Work

In this section, we mainly discuss methods that are relat-
ed to facial expression recognition and generative adversar-
ial network.

Facial Expression Recognition. Extensive efforts have
been devoted to recognizing facial expressions [30} 5l 54}



61, 3]]. Most of existing methods on the FER study the ex-
pressions of six basic emotions including happiness, sad-
ness, surprise, fear, anger and disgust because of their
marked reference representation in our affective lives and
the availability of the relevant training and test data [S3]].
Generally, the learning system mainly includes two stages,
i.e., feature extraction and expression recognition. In the
first stage, features are extracted from facial images to
characterize facial appearance/geometry changes caused by
activation of a target expression. According to whether
the features are extracted by manually designed descrip-
tors or by deep learning methods, they can be grouped in-
to engineered features [10, 162, 40] and learning-based fea-
tures [14} 18 21} 27]. For the engineered features, it can be
further divided into texture-based local features, geometry-
based global features, and hybrid features. The texture-
based features mainly include SIFT [62]], HOG [11]], His-
tograms of LBP [64]], Haar features [45], and Gabor wavelet
coefficients [49]. The geometry-based global features are
mainly based on the landmark points around eyes, mouth,
and noses [37, 38]]. And the hybrid features usually refer
to the features by combining two or more of the engineered
features [10]. The learning-based features are based on deep
neutral networks [27, [36]. Not surprisingly, almost all of
them use some form of unsupervised pre-training/learning
to initialize their models. It is mainly because the scarcity of
labeled data prevent the authors from training a complete-
ly supervised model due to the overfitting problem. The
most direct and effective solution to this problem is manu-
ally labeling more data. However, it may be infeasible for
the FER with arbitrary poses. After feature extraction, in
the next stage (expression classification), the extracted fea-
tures are fed into a supervised classifier, e.g., Support Vector
Machines (SVMs) [16], softmax [18], and logistic regres-
sion [36], to train a facial expression recognizer for a target
expression. Different from existing methods, we use a vari-
ation of GAN to automatically generate facial images with
different expressions and poses. Furthermore, our classifier
is trained with the GAN in an end-to-end framework.
Generative Adversarial Network. In [12]], Goodfellow et
al. introduce the Generative Adversarial Network (GAN).
They train generative models through an objective function
that implements a minimax two-player game between a dis-
criminator D - a function aiming to tell apart real from fake
input data - and a generator G - a function that is optimized
to generate input data (from noise) that *fools’ the discrim-
inator. And through this game, the generator and discrim-
inator can both improve themselves. Concretely, D and G
play the game with a value function V(D, G):

mén max V(D,G) =Egp,(x)llog D(x)]+

E.p.(»)log(l — D(G(2)))]
The two parts, G and D, are trained alternatively. One of the
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biggest issues of GAN is that the training process is unsta-
ble, and the generated images are often noisy and incompre-
hensible. The CGAN [31]] is an extension of the GAN [12],
where GG and D receive an additional variable y as input.
The objective function of CGAN can be rewritten as:

Inén mgx V(D,G) = Em,y'vpd(m,y) [log D(x, )]+
Eop.(2)y~py () [log(1 — D(G(z,9),v))]

This model allows the generator output to be controlled by
y. Besides, during the last three years, several approach-
es [4} 165 155} 25| 129] have been proposed to improve the
original GAN from different perspectives. For example,
the DCGAN [33]] adopts deconvolutional and convolution-
al neural networks to implement G and D, respectively. It
also provides empirical instructions on how to build a sta-
ble GAN, e.g., replacing the pooling by strides convolution
and using batch normalization. More recent methods focus
on incorporating constraints on the input data of generator
or leveraging side information for better synthesis. For ex-
ample, Mirza and Osindero [31] feed the class label to both
G and D to generate images conditioned on the class label.
Springenberg [44] and Luan et al. [50] generalize GAN to
learn a discriminative classifier where D is trained to not
only distinguish between real and fake, but also classify the
images. Different from the methods [31), 44]], our model
can explicitly disentangle the identity representation learn-
ing from both expression and pose variations by using their
codes. Compared to [50], which generates images only re-
stricted by a discriminator, we introduce another discrim-
inator and a content-similarity loss to make the generated
facial images look like the inputs.

3. Proposed Method

In this section, we first give a brief overview of the pro-
posed network for simultaneous facial image synthesis and
pose-invariant FER. We then describe the learning process
and show the difference with existing models.

(@)

3.1. Joint Pose and Expression Modeling for FER

We propose an end-to-end learning model by exploit-
ing different poses and expressions jointly for simultaneous
facial image synthesis and pose-invariant facial expression
recognition. The architecture of our model is shown in Fig-
ure 2} which incorporates a generator, two discriminators,
and a classifier. Before passing an image into our model, we
first perform face detection using a lib face detection algo-
rithm with 68 landmarks [52]]. After the preprocessing, we
feed the facial images into an encoder-decoder structured
generator GG to learn an identity representation. Specifical-
ly, Genc learns a mapping from the input image to the iden-
tity feature representation f(x). The representation is then
concatenated with the expression and pose codes e and p to
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Figure 2. The overall architecture of the proposed model, which incorporates a generator GG, two discriminators Dq¢; and D;, and a classifier
Cezp. Conditioned by the expression and pose codes e and p, the proposed model can generate facial images with different expressions
under arbitrary poses to enlarge and enrich the training set for the FER task.

feed to G 4., for face changing. Through the minimax two-
player game between the generator GG and the discriminator
D, we can get the new labeled facial images with different
poses and expressions by adding the corresponding label-
s to the decoder’s input. Here, we use a two-discriminator
structure including D, and D;. The D,y is to learn dis-
entangling representations, and the other D; is to improve
the quality of the generated images. After the facial image
synthesis, a classifier Ce.), is then used to perform our FER
task. We adopt a deep modeling approach for the classifier,
which guarantees that, at each layer, the features become
increasingly invariant to nuisance factors while maintaining
discriminative information with respect to the task of facial
expression recognition.

3.2. Learning

Given a facial image x with label y = {y°, y?}, where
y© represents the label for expression and y? for pose, the
objectives of our learning problem are threefold: (1) Syn-
thesize a facial image & with the corresponding expression
and pose labels specified by the expression and pose codes
e and p. (2) Train a pose-invariant FER classifier with the
generated images & and the input x. (3) Retain the identity
representation with a content-similarity loss. Next we will
introduce them in details.

Generator G and Discriminator D,;;. The discriminator
Dy 1s to distinguish between ’fake’” images 2 produced by
the generator GG, and ’real’ images from the input images
2. We denote the distribution of the training data as P;(x).
Conditioned by the expression and pose label y, it can help
the generater GG learn the disentangling representation from
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the facial images to change the poses and expressions but
retain the identity, which is useful for our FER task, be-
cause when we generate new facial images, we just want to
modify the facial expression or pose of the input = but with-
out compromising the person’s identity. The discriminator
on attributes disentangling, D¢, and G with condition y
(expression and pose) can be trained by:

mén max ;, yp. (2. 108 Date (2, y)]+

D att
B ympa(a,y) [log(1 — Datt(G(z,y), y)]-

Generator G and Discriminator D;. The discriminator
D; imposes the uniform distribution on the identity repre-
sentation f(z), which can help to smooth the pose and ex-
pression transformation. Here, the f(z) is the identity rep-
resentation from Ge,.. Assuming the Prior(f) is a prior
distribution, and f* ~ Prior(f) denotes the random sam-
pling process from Prior(f). A min-max objective func-
tion can be used to train the G and D;:

3)

min max Epe prior(p)[log Di(f7)]+

Ezwpd(w) [log(l - Dz(Genc(w)))]

Classifier C.,,. The classifier C,), is a task-specific loss.
In the case of generation, it can be used to penalize the gen-
erator loss, which is helpful for improving the performance
of the original generator G. And in the case of classifica-
tion, it tries to classify the expression. We use a typical
softmax cross-entropy loss for the classifier:

LC(G7 C) =FE, yﬁ[ - ye log C(G(ZE), ye)
—y°log C(z,y°)].

“)

®)



Content-similarity loss. The content-similarity loss at-
tempts to ensure the output face sharing the expression,
pose, and identity representation with the input facial image
2 (during training). Therefore, the input and output faces
are expected to be similar as expressed in (6, where L(:,:)
denotes the ¢1 norm.

Lcon(G) = L(l - G(fE, yea yp)) (6)
The Objective Function. Finally, the objective function is
defined as in (/) by considering the above factors.

Icl;l’iél Jmax aLeon(G) + BTV (G(f(2),y)) + LG, C)

+ Eaympa(a,y) [log Dati(, y)]
+ Epympa(e.y) [108(1 = Dart(G(z, y))]-
+ Efen prior(s)[log Di(f7)]
+ Eorpata) [log(1 — D;i(Gene(w)))],
(7

where TV (.) denotes the total variation which is effective
in removing the ghosting artifacts. The coefficients o and
[ balance the smoothness and high resolution. Sequential-
ly updating the network by (3), @), () and (6), we could
finally learn the pose-invariant FER model.

3.3. Discussion

In this section, we show the differences of the proposed
model with three most relevant GAN models including Ad-
versarial Autoencoder (AAE) [29]], disentangled representa-
tion learning-GAN (DR-GAN) [50], and conditional adver-
sarial autoencoder (CAAE) [59]. (1) In the AAE [29], G is
the encoder of an autoencoder. The AAE has two objectives
in order to turn an autoencoder into a generative model:
the autoencoder reconstructs the input image, and the latent
vector generated by the encoder matches an arbitrary prior
distribution by training D. Different from AAE, our method
can explicitly disentangle the identity representation learn-
ing from both expression and pose variations by using their
codes. (2) The DR-GAN [50] generalizes GAN to learn
a discriminative classifier where D is trained to not only
distinguish between real and fake images, but also classify
real images into K classes. It is a variational autoencoder-
based method mainly for disentangled representation learn-
ing for face recognition task. Different from the DR-GAN,
the proposed model is mainly for generating more labeled
facial images to train a deep network classifier for FER, be-
cause the training samples is the main bottleneck in facial
expression recognition. Furthermore, we disentangle both
the expression and pose from the facial images, and intro-
duce a separated classifier for expression recognition. (3)
The CAAE [59]] extends adversarial autoencoder (AAE) to
generate face images with different ages. Different from

4325

this method, our model embeds a classifier in the network
and can strive for the generated facial image to have the
same expression as the input real facial image.

4. Experimental Results

In this section, we show experimental results of our mod-
el for facial images synthesis and pose-invariant facial ex-
pression recognition. For the former task, we show quali-
tative results of the generated facial images under different
poses and expressions. For the latter one, we quantitatively
evaluate the expression recognition performance using the
generated and original facial images.

4.1. Datasets

To demonstrate the effectiveness of the proposed mod-
el, we conduct extensive experiments on three standard
datasets including (1) Multi-PIE [13]]: the public multi-pose
facial expression dataset, (2) BU-3DFE [31]: the 3D facial
expression dataset, and (3) SFEW [7]: the static facial ex-
pressions in the wild dataset. The details are as follows.

Multi-PIE: The Multi-PIE is for evaluating facial expres-
sion recognition under pose and illumination variations in
the controlled setting. Following the setting in [[10], we use
images of 270 subjects depicting acted facial expressions
of Neutral (NE), Disgust (DI), Surprise (SU), Smile (SM),
Scream(SC), and Squint (SQ), captured at five pan angles
—30°, —15°, 0°, 15° and 30°, resulted in 1531 images per
pose. Consequently, we have 1,531 x 5 = 7,655 facial
images in total for our experiments. We perform five-fold
subject independent cross-validation on the Multi-PIE. As
a result, the training dataset comprises 6, 124 facial images
whereas the testing one comprises 1, 531 facial images. We
train the classifier using both the generated and original im-
ages, whose total number is 6124 x 5 x 6+6124=189,844.

BU-3DFE: The BU-3DFE is a 3D facial expression dataset
having 100 subjects with 3D models and facial images. It
contains images depicting seven facial expressions Anger
(AN), Disgust (DI), Fear (FE), Happiness (HA), Sadness
(SA), Surprise (SU) and Neutral (NE). With the exception
of the neutral expression, each of the six prototypic expres-
sions includes four levels of intensity. Following the set-
ting in [46l 47, 48} [17], we render 2D facial images from
the 3D models at the fourth level of intensity, six univer-
sal facial expressions (AN, DI, FE, HA, SA, SU), and 35
poses including 7 pan angles (0°, +15°, +30°, £45°), and
5 tilt angles (0°,£15°,430°)). Consequently, we have
100 x 6 x 35 x 1 = 21,000 face images in total for our
experiments. We randomly divide the 100 subjects into a
training set with 80 subjects and a testing one with 20 sub-
jects, such that there are no overlaps between the training
subjects and the testing subjects. As a result, the training
set comprises 16, 800 facial images whereas the testing one
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Figure 3. Overall performance on the Multi-PIE dataset.

comprises 4, 200 facial images.

SFEW: The SFEW is a dataset in the wild with 95 subjects.
It consists of 700 images (346 images in Set 1, 354 images
in Set 2) extracted from movies covering unconstrained fa-
cial expressions, varied head poses, changed illumination,
large age range, different face resolutions, occlusions, and
varied focus. The images are labeled with Anger (AN), Dis-
gust (DI), Fear (FE), Happiness (HA), Sadness (SA), Sur-
prise (SU) and Neutral (NE). We use this dataset for cross-
dataset experiments. We train the model on the BU-3DFE,
and test it on the SFEW. Specifically, we generate facial im-
ages with different poses and expressions on Set 1. Thus,
we totally have 346 4 346 x 7 x 35 = 85, 116 training sam-
ples. Then we use these images to train a classifier with the
same structure used on the Multi-PIE and BU-3DFE.

4.2. Implementation Details

We construct the network according to Figure[2] We first
use the lib face detection algorithm with 68 landmarks [52]]
to crop out the faces, and resize them as 224 x 224. The
image intensities are then linearly scaled to the range of [-
1,1]. To stabilize the training process, we design the net-
work architectures of GG, D, and D; based on the tech-
niques in the CAAE [59]. Specifically, G is a convolutional
neural network without batch normalization, and includes
Gence and G g, that are bridged by the disentangled iden-
tity representation f(z), which is the fully connected lay-
er output in the network. Then f(z) is concatenated with
the expression code e and pose code p, which is a one-hot
vector with the target expression y° and pose y? being 1.
A series of fractionally-strided convolutions (FConv) [35]
transforms the concatenated vector into a synthetic image
& = G(x,y° y”), which is the same size as the z. D;,,, and
Dy is trained to optimize the object functions (3)) and (@).
In the discriminators D;,,, and D, the batch normalization
is applied after each convolution layer. We adopt the VGG-
Net-19 network [43] as the classifier Cez;,. And it is trained
by using the generated images % and the original images x
to optimize the objective function (3). The model is im-
plemented by using TensorFlow [1] and is trained with the
ADAM optimizer [22]], which is used with a learning rate of
0.0002 and momentum 0.5. All weights are initialized from
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Figure 4. The average confusion matrix. The average recognition
rate is 91.80% and 81.20%, respectively.

a zero-centered normal distribution with a standard devia-
tion of 0.02. The details of our architecture are included in
the supplementary material.

4.3. Quantitative Results
4.3.1 Experiments on the Multi-PIE Dataset

The overall performances over each facial expression and
each pose are shown in Figure [3(a)] and Figure 3(b)} The
average FER accuracy is 91.80% showed in the last bar
in Figurd3(b)] A closer look at the figure reveals that, a-
mong the six expressions, there are four expressions (SC,
SM, SU, and NE) with higher accuracy over 91.5%. The
detailed performance of our model is provided in the confu-
sion matrix in Figure [(a)] from which we can see that two
of the most likely to be confused expressions are disgust and
squint. This confusion may be due to these two expressions
having similar muscle deformation around eyes.

We then evaluate our method by comparing its perfor-
mance with the current state-of-the-art methods reported
in [10] including kNN, LDA, LPP, D-GPLVM, GPLREF,
GMLDA, GMLPP, MvDA, and DS-GPLVM. The detailed
results across all views are summarized in Table The
mean FER accuracy is reported in the last column. The re-
sults clearly show that our method outperforms all existing
methods with a 15.65% to 1.2% improvement in terms of
FER accuracy. Note that all other models cannot achieve
good performances in the frontal view. However, our model
can significantly improve the performance attained by the
generated images with arbitrary poses and expressions.

We also compare our method with the models trained by
different number of generated images. Given the original
N images, we can obtain 5 x 6 x N generated images. To
evaluate the effect of the training data size, we randomly
choose 0 x N, 1 x N,5x N,10 x N,15 x N,20 x N im-
ages from the generated facial images during each training
epoch, and then incorporate them with the original images
to train the classifier, where 0 x N means that the classifier
is trained only using the original images. Specifically, we
denote them as ON,1N,5N, 10N, 15N,20N. The overal-
1 performance with different training samples is shown in
Figure 3] It is clear that our model achieves the best recog-



Table 2. Comparison of state-of-the-art methods on the Multi-PIE
dataset. The highest accuracy for each pose is highlighted in bold.

Poses
Methods 30 13 0 13 30 Average
kNN 80.88 | 81.74 | 68.36 | 75.03 | 74.78 76.15
LDA 92.52 | 9437 | 77.21 | 87.07 | 87.47 87.72
LPP 92.42 | 94.56 | 77.33 | 87.06 | 87.68 87.81
D-GPLVM | 91.65 | 93.51 | 78.70 | 85.96 | 86.04 87.17
GPLRF 91.65 | 93.77 | 77.59 | 85.66 | 86.01 86.93
GMLDA 90.47 | 94.18 | 76.60 | 86.64 | 85.72 86.72
GMLPP 91.86 | 94.13 | 78.16 | 87.22 | 87.36 87.74
MvDA 92.49 | 9422 | 77.51 | 87.10 | 87.89 87.84
DS-GPLVM | 93.55 | 96.96 | 82.42 | 89.97 | 90.11 90.60
Ours 90.97 | 94.72 | 89.11 | 93.09 | 91.30 91.80
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Figure 5. Effect of the number of training samples.

nition results. Besides, we can also find out that the average
accuracy of the FER can be improved with the increase of
the number of training samples, which further indicates the
necessity of generating more labeled training samples.

4.3.2 Experiments on the BU-3DFE Dataset

The results are shown in Table 3] The rightmost colum-
n represents the average recognition error rates for differ-
ent views (a total of 35 views), the bottom row represents
the average recognition error rates for different facial ex-
pressions (a total of six universal facial expressions), and
the bottom-right corner cell represents the average overal-
1 recognition error rate. The results show that our method
achieves the average recognition accuracy of 81.20%. Fur-
thermore, among the six expressions, surprise and happi-
ness are easier to be recognized with accuracy over 89%.
This is most likely due to the fact that the muscle deforma-
tions of both expressions are relatively large compared with
others. Moreover, fear is the most difficult expression to
be recognized, with the lowest at 67.30%, followed by sad-
ness. In Figure we show the confusion matrix for fa-
cial expression recognition by using our method. One could
interpret that a contributing factor to the poor performance
of fear is its confusion with happiness. This coincides with
the finding of Moore and Bowden in [32]], where the authors
point out that the confusion is due to the expressions of fear
and happiness having similar muscle deformation around
the mouth. In addition, another two expressions likely to
be confused are sadness and anger. These two expressions
have the least amount of facial movement and thus are dif-
ficult to distinguish.
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Table 3. Results on the BU-3DFE dataset in terms of the recogni-
tion rates (%). The leftmost column indicates different views (pan
and tilt angles x, y in degrees), and the top row indicates different
facial expressions. The highest accuracy is highlighted in bold.

[Posc/Exp. ]| SU___SA _HA _FE__ DI AN | Aw. |
—45,-30 || 9048 6667 9048 6190 8571 7143 | 77.18
—45,-15 || 100 8095 9524 66.67 8571 76.19 | 84.13
—45,40 || 100 80.96 90.00 76.19 76.19 76.19 | 8325
—45,+15 || 90.48 8095 9048 8571 9048 76.19 | 85.71
—45,+30 || 89.48 70.00 87.50 8095 9048 7143 | 81.64
—30,-30 || 100 7619 9524 6190 90.00 76.19 | 8325
—30,-15 || 8571 7619 9524 7143 9048 76.19 | 82.54
—30,40 || 8571 8571 9048 8571 9048 80.95 | 86.51
—30,+15 || 100 8095 9048 76.19 9048 71.43 | 84.92
—30,+30 || 85.00 66.67 8500 76.19 9048 61.90 | 77.54
~15,-30 || 90.00 7619 9048 66.67 80.00 80.95 | 80.71
—15,—15 || 85.00 8095 9524 6190 80.95 76.19 | 80.04
—15,40 || 80.95 80.95 9524 7143 8095 80.95 | 81.75
—15,+15 || 90.00 76.19 9048 7143 9048 8571 | 84.05
—15,4+30 || 9048 7143 8571 7619 9048 80.95 | 82.54
+0,—-30 || 8947 7619 7143 57.14 8095 57.14 | 72.06
+0,—15 || 9048 75.00 9048 57.14 8571 8571 | 80.75

40,40 || 9048 7619 9048 66.67 76.19 8571 | 80.95
+0,+15 || 100 80.00 8571 8571 8571 90.00 | 87.86
+0,+30 || 89.47 6842 8235 7000 90.00 8571 | 80.99
+15,-30 || 90.00 7143 8571 66.67 8571 80.95 | 80.08
+15,—15 || 90.00 7143 90.00 57.14 76.19 8571 | 78.41
+15,40 || 9048 76.19 9524 66.67 7619 8571 | 8175
+15,+15 || 100 7619 9500 6190 9048 76.19 | 83.29
+15,430 || 9500 8095 8571 66.67 95.00 80.95 | 84.05
+30,-30 || 8500 7143 7619 5238 85.00 9048 | 76.75
+30,—15 || 9048 7143 90.00 5238 80.95 8571 | 78.49
+30,40 || 9048 7619 9048 57.14 8571 80.95 | 80.16
+30,+15 || 100 8095 9524 6190 8571 8571 | 8492
+30,430 || 9500 80.00 95.00 66.67 8571 76.19 | 83.10
+45,-30 || 90.00 66.67 9048 5238 9048 57.14 | 7452
+45,—15 || 9048 7143 9524 5238 9048 80.95 | 80.16
+45,40 || 8571 7619 9524 6667 8571 61.90 | 78.57
+45,+15 || 90.00 6190 9048 76.19 9048 76.19 | 80.87
+45,4+30 || 8235 6500 8333 7142 80.95 80.00 | 77.18

Average || 91187500 89.82 6730 85.80 78.04 | 81.20

We then compare our method with eight previously pub-
lished methods in literatures [63} 132,162, 158|,146, 47, 148, [17].
Specifically, the methods [63} 132} 162} |58]] conduct the FER
on a relatively small set of discrete poses containing 5 pan
angles. The algorithms [46) |47, |48 [17]] use the facial im-
ages with 35 poses to train their model, which are the same
as ours. Expect [58]], all of other methods train their model-
s with engineered features, such as LBP [32| 162} [17], SIFT
[6211461147.148]], and geometry features (83 landmark points)
[63]. In [S8], the SIFT feature is used as the input of DNN
to learn features. Here, the model is trained separately for
each step. Different from this method, ours is an end-to-end
learning model. The accuracy of each model is shown in Ta-
ble[d] The average FER accuracy is reported in the last col-
umn of the table. We can see that our model achieves the av-
erage recognition accuracy of 81.20%. A closer look at this
table reveals that although the methods in [63} [32] |62 58]
are trained/tested on a small set of discrete poses contain-
ing only the pan rotation, our method is also competitive to
the results achieved by these methods with a 1.1% to 15.2%
improvement on the FER accuracy. Moreover, compared
with the methods [46l 47, 148 [17], the proposed model also
achieves the best accuracy (2.56% to 5.9% higher than oth-
ers). This may attribute to the feature learning, which can



Table 4. Comparison of the average recognition accuracy with
state-of-the-art methods for the FER on the BU-3DFE dataset.

Table 5. Comparison of the average recognition accuracy (%)
with state-of-the-art methods on the SFEW dataset. The highest
accuracy for each expression is highlighted in bold.

better deal with the nonlinear facial texture warping caused
by pose and individual difference.

4.3.3 Experiments on the SFEW Dataset

We finally evaluate our method on a more challenging
database SFEW, in which the facial expressions are spon-
taneously displayed in real-world environment. As train-
ing samples in this dataset are insufficient, we adopt cross
dataset experiments. Specially, we first train the generated
model on the BU-3DFE dataset with 35 poses and 7 expres-
sions (AN, DI, FE, HA, SA, SU, NE). Then we generate the
corresponding facial images for the images in Set 1 in the
SFEW dataset. Finally, we train the classification model on
the generated and original images, and test it on Set 2.

We compare our method with five previously published
methods [[7, [10], which include the baseline obtained
by the dataset creators, and four other state-of-the-art meth-
ods. The detailed results over each expression obtained
from different methods are shown Table [5] The average
FER accuracy is reported in the last column of the table.
The difficulty of the task is further evidenced by the results
in this table, where we observe a significant drop in accu-
racy of all methods. Overall, our method outperforms all
existing methods with a 1.88% to 7.68% improvement in
terms of the FER accuracy. This may attribute to the gener-
ated facial images, which can help learn discriminative fea-
tures to better deal with the nonlinear facial texture warping
caused by poses and individual difference.

4.4. Qualitative Results

The qualitative results of our model are illustrated in Fig-
ure[6] We randomly select a facial image from the test set,
which is shown in the pink rectangle. The generated fa-
cial images with different expressions (each column) and
poses (each row) are shown in the orange rectangle. And
the images in the green rectangle are the ground truth. By
comparing the generated images with the ground truth, it
is clear that the personality has been preserved by the pro-
posed model, and the attributes (expression and pose) have
been jointly modeled in the identity representation as shown
in the red rectangles. Due to limited space, more qualitative
results are reported in the supplementary material.
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Methods - Poses Ave. . . .
tilt pan total Method / Emotion | Angry | Disgust| Fear |Happy |Neutral| Sad |Surprise | Average
Zheng et al. 2009 [63] - (0°,+90°) 5 78.3 Baseline 23.00 | 13.00 [13.90]29.00 | 23.00 [17.00] 13.50 | 18.90
Moore and Bowden 2011[32] (0°,4+90°) 5 71.1 MvDA 23.21| 17.65 |27.27|40.35 | 27.00 |10.10| 13.19 | 22.70
Zheng 2014 [62] (0°, +90°) 5 66.0 GMLDA 23.21| 17.65 |29.29|21.93 | 25.00 [11.11| 10.99 | 19.99
Zheng 2014 [62] (0°, +90°) 5 78.9 GMLPP 16.07 | 21.18 |27.27|39.47 | 20.00 [19.19| 16.48 | 22.80
Zhang et al. 2016 [58] (0°, +90°) 5 80.1 . 17.17] 42.98
Tang et al. 2010 (—30°,+30°) [ (—45°,+45°) [ 35 75.3
Tariq et al. 2013 [47] (—30°,+30°) | (—45°,+45°) [ 35 [ 7634
Tariq et al. 2014 (—30°,+30°) | (—45°, +45°%) | 35 | 76.60
Jampour et al. 2015 [17] (—30°,+30°) | (—45°, +45°%) | 35 | 78.64
Ours (—30°,+30°) | (—45°,+45°) | 35 | 81.20

Figure 6. Example results of the generated facial images with dif-
ferent poses and expressions via the proposed model.

5. Conclusion

In this paper, we present an end-to-end learning model
for simultaneous facial images synthesis and pose-invariant
facial expression recognition. By disentangling the at-
tributes (expression and pose) from the facial image, we can
generate facial images with arbitrary expressions and poses
to help train the deep neutral classification model. Experi-
ments on three standard datasets demonstrate the effective-
ness of our model. In the future, we will take other aspects
in images into consideration for facial image synthesis, such
as illumination, occlusion [56} [57]]. The proposed model is
general and can be applied to other classification tasks, such
as face recognition, image classification, and audio event
recognition, which we leave as future work.
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