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Abstract

Recent advances in multi-stage algorithms have shown

great promise, but two important problems still remain.

First of all, at inference time, information can’t feed back

from downstream to upstream. Second, at training time,

end-to-end training is not possible if the overall pipeline in-

volves non-differentiable functions, and so different stages

can’t be jointly optimized. In this paper, we propose a novel

environment upgrade reinforcement learning framework to

solve the feedback and joint optimization problems. Our

framework re-links the downstream stage to the upstream

stage by a reinforcement learning agent. While training the

agent to improve final performance by refining the upstream

stage’s output, we also upgrade the downstream stage (envi-

ronment) according to the agent’s policy. In this way, agent

policy and environment are jointly optimized. We propose

a training algorithm for this framework to address the dif-

ferent training demands of agent and environment. Experi-

ments on instance segmentation and human pose estimation

demonstrate the effectiveness of the proposed framework.

1. Introduction
Combining different building blocks of computer vi-

sion to perform more sophisticated tasks is an appealing
idea, especially with the impressive advancement achieved
in building blocks algorithms such as object detection
[13, 12, 39, 27, 25, 20, 38], semantic segmentation[9, 24, 5,
14, 34, 35] and pose estimation [36, 43, 44, 2, 32, 8]. Some
recent works [11, 33] attempt to utilize these improve-
ments, making huge progress over previous methods[37,
17]. For example, Fang et al.[11] propose a framework
for multi-person pose estimation. They first adopt a hu-
man detector[27] to detect human instances then apply sin-
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Figure 1: (a) Error case of two-stage pose estimation. If
the object detection generates a wrong bounding box, the
pose estimation algorithm will fail too. (b) An illustration of
our multi-stage feedback pipeline. ⌦ is the output of Stage
1. An agent observes the output of Stage 2 and choose an
action to refine ⌦.

gle person pose estimation algorithm [31] to each human
instance, achieving state-of-the-art performance on multi-
ple datasets.

However, two important problems exist in these multi-
stage algorithms. First of all, information can’t feed back
from downstream (second stage) to upstream (first stage).
Therefore, the overall performance heavily relies on the ac-
curate output of the first stage. An inaccurate output from
the first stage will result in the failure of the second stage,
and there is no way to correct this error. For instance,
in [11], if the human regions are wrong, the pose estima-
tion will fail too. See Figure 1a. Nevertheless, the second
stage’s output can provide useful information to guide the
first stage’s output.

Second, not all multi-stage frameworks can be trained
in an end-to-end manner. The connection among different
stages often involves non-differentiable functions, such as
cropping or distortion. In this situation, different stages
can only be trained separately and fine-tuned to fit each
other. This training setting fails to jointly optimize different
stages, which is obviously less optimal. Also, we demon-
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strate in Section 4.2.2 that the finetuned model may not per-
form as well as the original model, again proving the short-
comings of this strategy.

To address the above problems, a novel environment up-
grade reinforcement learning framework is proposed. As
illustrated in Figure 1b, this framework uses a reinforce-
ment learning agent to re-link the two separate stages. The
agent observes the output of the second stage and chooses
an action to refine the output of the first stage. In this way,
information can feed back from the second stage to the first
stage.

Specifically, the goal of this framework is to improve the
final performance, which reduces to two subtasks: for the
agent to learn a policy to refine the imperfect output of the
first stage; and for the second stage to improve its recog-
nition performance under the agent’s policy. For the first
task, by designing a reward function that encourages im-
provement of the final recognition result, we can train the
agent to learn a good policy through reinforcement learn-
ing techniques[30, 29]. For the second task, we upgrade the
second stage’s network using data generated by the agent’s
policy under supervised learning. Different from traditional
reinforcement learning frameworks which have fixed envi-
ronments, our framework upgrades the environment with
the agent policy. As the agent policy improves, the envi-
ronment also improves; in turn, the enhanced environment
can help the agent learn a more advantageous policy. In
this way, we achieve joint optimization of environment and
agent policy.

We present the training algorithm for this framework.
Training this framework is a non-trivial problem because
it involves the interaction of reinforcement learning and su-
pervised learning. Care must be taken to combine them to-
gether. We propose an iterative training process to satisfy
the different demands of training the agent and the second
stage’s network. Finally, we demonstrate the effectiveness
of our framework in an instance segmentation task and a
pose estimation task.

To summarize, the contribution of this paper is:

• We propose a novel environment upgrade reinforce-
ment learning framework for non-differentiable multi-
stage pipeline, enabling information to feed back from
the second stage to the first stage as well as joint opti-
mization of the environment and the agent.

• We present the training algorithm for this framework,
which can address the different demands of training
the agent and the second stage’s network.

2. Related Work
2.1. Recognition

Since our ultimate goal is to improve the final recogni-
tion performance, some recent progress of recognition is

investigated. Convolutional neural network (ConvNet, or
CNN) has been the cornerstone in many image recognitions
algorithm for its significant performance on feature extrac-
tion.

Human pose estimation. Compared to traditional
methods[36] that used pictorial structures model to sim-
ulate the articulation connection of human body, Con-
vNet can accomplish better performance due to its higher
model capacity and more sophisticated representation abil-
ity. DeepPose[43] was the first work that applied ConvNet
to estimate human pose, and significantly improved the ac-
curacy. After that, a large body of work [44, 2, 32] fur-
ther promoted the performance by designing better network
architectures as well as a more reasonable loss function.
Nowadays, generative adversarial networks (GAN)[7, 6] are
applied to predict poses by exploiting more geometric con-
straints of joint interconnectivity, achieving remarkable re-
sults.

Instance segmentation. [34] uses a kind of discrimina-
tive convolutional network which performs class-agnostic
segmentation and then object classification in two stages.
They go on to propose an augmented feed-forward net for a
novel top-down refinement approach in [35]. [9] proposes a
cascaded structure containing differentiating instances, esti-
mating masks, and categorizing objects. [24] first presents a
fully convolutional end-to-end solution with instance mask
prediction and classification training jointly, winning the
first prize in COCO 2016 segmentation challenge. [14] adds
a branch for predicting an object mask in parallel with the
existing branch for bounding box recognition in Faster R-
CNN, defeating the state-of-the-art method.

2.2. Reinforcement learning for vision tasks
Reinforcement learning has attracted attention from re-

searchers in computer vision with its general framework and
the potential to be applied to non-differentiable tasks.

Active search. [3, 28, 21] apply reinforcement learning
to active object search. [3] views finding an object in an im-
age as a sequential decision-making process. It starts from
the entire image and gradually narrows down the bounding
box to an object. Different from [3], [28] trains an agent to
predict where to look in each step and samples a set of pro-
posals from there. Compared to sliding window methods,
this achieves a speed-up of two orders in magnitude. [21]
proposes a collaborative multi-agent reinforcement learning
algorithm to utilize the contextual information and allows
multiple agents to communicate with each other. Different
from these works whose environments are fixed, we incor-
porate a set of parameters into the environment so that en-
vironment can also be improved.

Additional topics. [40] proposes an actor-critic frame-
work to apply reinforcement learning in image captioning,
achieving state-of-the-art results in MSCOCO dataset. [22]



trains an agent to gradually refine 6D pose estimation. The
agent directly views pose estimation algorithm as a pol-
icy network and its task is to choose which joint to refine
next. Different from [22], we integrate the pose estimation
as a recognition network in the environment, and the action
operates on the previous stage’s output rather than the or-
der of joints to refine. [41] applies reinforcement learning
techniques to the video tracking problem. Benefiting from
the sparse reward of reinforcement learning, [41] is able to
quickly train on massive datasets, achieving several orders
of magnitude speed-up.

3. Approach
Our goal is to improve the final recognition performance,

which reduces to two subtasks: training an agent to refine
the imperfect output of the first stage; and upgrading the
second stage’s network to improve its performance under
the agent’s policy. We model these two objectives under a
unified environment upgrade reinforcement learning frame-
work (EU-RL).

We start with an overview of this framework and de-
scribe each component in detail. Lastly, we present the
training and inference algorithm for this framework.

3.1. Overview
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Figure 2: Pipeline of EU-RL framework. At each step,
g(I;⌦) generates input sIt for the recognition network,
which then generates a recognition prediction sRt . The agent
takes (sIt , s

R
t ) as input, samples an action at from policy

⇡(at|st; ✓p) to refine ⌦. This changes the recognition net-
work’s input at next step. This process is repeated until the
agent decides to terminate the process.

Notation: We denote the input image as I and the out-
put of the first stage to be a set of parameters ⌦. A function
g(I;⌦) then uses ⌦ to generate input for the second stage’s
network. Since the second stage’s network is usually re-
sponsible for the recognition task, without loss of general-

ity, we use ‘recognition network’ to represent the second
stage’s network.

Overview: The pipeline of this framework is illustrated
in Figure 2. We view the process of refining the first stage’s
output to improve final recognition performance as a se-
quential decision-making process. At each step, the agent
observes both the recognition network’s input and output,
and chooses an action to refine the first stage’s output ⌦.
This interaction determines the input of the recognition net-
work in the next step. A new recognition output is then
generated and fed into the agent again, along with the new
input. This process repeats until the agent decides to termi-
nate the process.

3.2. Components

Environment: Typically, given a dataset of images
D = {I1, I2, · · · , IN}, each image is viewed as an envi-
ronment. Different from traditional reinforcement learning
frameworks which maintain a fixed environment, our envi-
ronment contains a recognition network f(·; ✓r), where ✓r
are the parameters of the recognition network. In this set-
ting, the environment can be upgraded to help agent learn a
better policy.

State: The state representation st in EU-RL contains two
components: (sIt , sRt ). sIt is the input of the recognition net-
work, which is generated by a non-differentiable function
g(I;⌦). For example, g(·;⌦) is a cropping function which
crops a rectangle region ⌦ from image I . Then sIt is fed
into the recognition network to generate a recognition out-
put sRt = f(sIt ; ✓r). These two components are essential
and complementary because sRt indicates how accurate the
recognition output is, while sIt provides visual cues for the
agent to tune ⌦.

Action: The action set A is defined as a set of operations
that change the parameters ⌦, and thus change the state of
the environment. For example, if g(I;⌦) is a cropping func-
tion, then action set A can be defined as the actions that
change a bounding box’s location, scale and aspect ratio,
e.g.,

A = { move left, move right, move up, move down, scale

up width, scale down width, scale up height, scale down

height }.
A also includes another action terminate that indicates

the agent has finished the refinement process, leaving sRt as
the final recognition result.

Reward: At each step, after choosing an action at, the
agent receives a reward rt from the environment. Reward rt
directly relates to the quality of recognition prediction. We
hope the agent can improve the recognition prediction at
each step and keep the loss from the last step under a small
threshold. Therefore, we introduce a loss function L(·, ·) for
each recognition prediction sRt and the ground truth label lt,



and formulate the reward function as

rt =

⇢
↵ · sign

⇥
L(sRt , lt)� L(sRt+1, lt+1)

⇤
; at 6= terminate

sign
⇥
✏� L(sRt , lt)

⇤
; at = terminate

(1)
where ✏ is a threshold and sign[ · ] returns 1 (-1) for pos-

itive (negative) value. Scale factor ↵ is set to 0.1 in this
paper. Eq. (1) indicates the agent receives a positive reward
if the chosen action improves the recognition quality and
receives a penalty if it decreases the quality. If the agent
chooses to terminate the process, the final recognition pre-
diction must be good enough, otherwise it would receive a
large penalty.

Agent: Our agent is an actor-critic agent [19] which con-
sists of a policy network and a value network. The policy
network parameterizes a policy ⇡(at|st; ✓p) with parame-
ters ✓p, serving as the actor. The value network V (st; ✓v)
approximates the total expected reward of state st with pa-
rameters ✓v , serving as the critic. The policy ⇡(at|st) is the
probability of choosing action at under state st.

3.3. Training and Inference
Training this framework involves two tasks: training the

agent by reinforcement learning and upgrading the recogni-
tion network for the agent by supervised learning. We start
by introducing the learning algorithm of the agent and then
discuss how to upgrade the environment for the agent.

Training agent. Under the framework of reinforcement
learning, the goal of the agent is to maximize its expected
reward over all the images. The objective function for this
goal is formulated as:

J = max

"
1

N

NX

i=1

1X

t=0

�trit

#
, (2)

where � is a discount factor.
At each step, an action at is sampled according to the

policy ⇡(at|st; ✓p) and the value network outputs a value
V (st; ✓v) to estimate the expected total reward in current
state st. We use Temporal Difference (TD) learning[42] to
update the agent’s parameters. The output of the value net-
work at next state st+1 is approximated as the real reward
at st+1 and is used to update the agent’s parameters. There-
fore, the TD error Et is given by

Et  rt + � · V (st+1; ✓v)� V (st; ✓v).

According to [45], the formula for the policy gradient is

r✓pJ = r✓p log ⇡(at|st; ✓p) · Et.

In this way, we can train the policy network using stan-
dard back-propagation algorithms.

Upgrading environment. Next, we describe how to up-
grade the recognition network for the agent. Intuitively, we

would use all data generated by the agent to train the recog-
nition network. However, in our experiment, this results
in a decrease of the final accuracy. The reason is that we
are only concerned about the recognition performance in
the last step. If we use all the data to train the recognition
network, the goal of the recognition network is then to min-
imize the loss function over the entire sequence, which may
not result in the same accuracy as simply minimizing the
loss function in the last step.

Note that since the policy network uses the recogni-
tion network’s prediction as input, intuitively, we can back-
propagate the gradient from the policy network to the recog-
nition network. However, our experiment shows back-
propagating the gradient from the policy network would in
fact decrease the recognition network’s performance. We
argue that the goal of the policy network is not in line
with the recognition network’s, and the resulting informa-
tion may be useless, or even harmful, for the recognition
network’s learning.

The details of the training algorithm are outlined in Al-
gorithm 1.

Algorithm 1 EU-RL training
Initialize recognition network parameters ✓r
Initialize policy network parameters ✓p and value net-
work parameters ✓v
Initialize agent learning rate ↵, recognition network
learning rate �
Initialize discount factor �
for episode = 1,M do

Set t 1
Get initial RGB observation sIt
Get initial recognition prediction sRt  f(sIt ; ✓r)
State st  (sIt , s

R
t )

// Learning Agent
repeat

Sample at from policy ⇡(at|st; ✓p)
Execute action at, get new RGB image observa-

tion sIt+1

Get new recognition prediction sRt+1  
f(sIt+1; ✓r)

State st+1  (sIt+1, s
R
t+1)

Receive reward rt
// TD-learning
Et  rt + � · V (st+1; ✓v)� V (st; ✓v)
✓p  ✓p + ↵ ·r✓p log ⇡(at|st; ✓p) · Et

✓v  ✓v + ↵ · 2Et · @V (st;✓v)
@✓v

t t+ 1
until t = tmax + 1 or at�1 = terminate
// Upgrading Environment

✓r  ✓r + � · @L(sRt�1 , lt�1)

@sRt�1

@sRt�1

@✓r

end for



Inference. At inference stage, the agent keeps sampling
an action at at each step by choosing the one with maximal
probability in the policy ⇡(at|st; ✓p) until the terminate ac-
tion is sampled. The recognition output at the last step is
returned as the final prediction. Please see Algorithm 2.

Algorithm 2 EU-RL inference
Initialize ✓r, ✓p, ✓v from pre-trained model
Set t 1
Get initial RGB image observation sIt
Get initial recognition prediction sRt  f(sIt ; ✓r)
State st  (sIt , s

R
t )

repeat
at  argmaxat

⇡(at|st; ✓p)
Execute action at, get new RGB image observation

sIt+1

Get new recognition prediction sRt+1  f(sIt+1; ✓r)
State st+1  (sIt+1, s

R
t+1)

t t+ 1
until t = tmax + 1 or at�1 = terminate
return sRt�1

4. Experiment
In this section, we design two experiments to verify the

effectiveness of our framework. We begin with an instance
segmentation experiment to examine the performance of
our framework under different conditions. Then, we con-
duct a multi-person pose estimation experiment, where our
framework achieves state-of-the-art performance in a chal-
lenging dataset. Finally, we explain that the finetuned
model may not perform as well as the original model.

4.1. Instance Segmentation
In two-stage pipelines, because the different stages are

trained separately, it’s often the case that the output of the
first stage doesn’t quite match the training data of the second
stage. In this situation, the input data distribution is differ-
ent from the training data distribution and the second stage’s
model may not perform very well. This experiment is de-
signed to explore how our framework can help improve the
performance when the input data doesn’t match the training
data.

To satisfy our demand, we construct a subset from the
MSCOCO dataset [26] and design several rules for all our
baseline models. We first introduce dataset construction de-
tails and the rules for this task. Then, we set up several
baselines to offer fair comparisons and report the results of
the experiments.

Dataset construction: To satisfy our purpose, we ex-
tract a subset D from the MSCOCO dataset [26]. Specifi-
cally, we remove images that contain more than one object

and images in which the object’s size is too small (less than
32 x 32 pixels). Keeping images that only contain one ob-
ject allows us to perform further processing without caus-
ing too many problems. The total number of images in D is
14028, 9334 of which are used for training and the rest for
testing.

Design rules:

• A pretrained Deepmask model [34] is used for all
baselines as the segmentation network. This model is
trained on the tight-bounding-box cropped images.

• The characteristics of the data provided in this task
don’t match the training data of the Deepmask model.
For example, not all images in D are tightly cropped
and object-centric. This shows the difference in data
distribution for our setting — a setting in which the
pretrained Deepmask model does not work well.

Baselines setting: We design several baselines to offer a
fair comparison. The first one is to finetune the pretrained
Deepmask model to directly predict the mask for the images
in D. We denote this as “Finetune-Deepmask”. The second
one is to train an agent under our framework to gradually
narrow down the cropping area from the entire image to the
object’s location. This one is called “Agent-Deepmask”.
The third baseline is to train a network to directly regress
a bounding box and then apply the pretrained Deepmask
model on this bounding box. This one is called “Regress-
Deepmask”. The fourth one is to insert an agent between
the regressing network and pretrained Deepmask model and
jointly optimize the agent and Deepmask model under our
EU-RL framework. This one is called “Regress-Agent-
Deepmask”. To compare with the Spatial Transformer Net-
work (STN), we also insert a STN module between the re-
gressing network and Deepmask module, calling this base-
line “Regress-STN-Deepmask”. Last, we directly apply the
Deepmask model on the ground truth bounding box to test
the upper bound of these baselines. This one is called “GT
Bbox-Deepmask”.

Segmentation
Model Average IoU
Finetune-Deepmask 23.4%
Agent-Deepmask 39.2%
Regress-Deepmask 38.5%
Regress-STN-Deepmask 41.7%
Regress-Agent-Deepmask 55.4%
GT Bbox-Deepmask 62.6%

Table 1: Instance segmentation results on the MSCOCO
subset D.

Results and analysis: The results for each baseline are
reported in Table 1. As we can see, the “Agent-Deepmask”



performs much better than the “Finetune-Deepmask” base-
line and on par with the “Regress-Deepmask” baseline.
This demonstrates the agent can learn a policy to narrow
down the entire image to a smaller region where Deepmask
can generate high activation. This has a similar effect to
regressing a tight bounding box.

We also observe an improvement of the “Regress-Agent-
Deepmask” over the “Agent-Deepmask” baseline. This
is because “Regress-Agent-Deepmask” starts from the re-
gressed bounding box, which has narrowed down the search
space, so it’s easier for the agent to find a better region than
the “Agent-Deepmask” baseline.

Finally, we notice that “Regress-Agent-Deepmask” out-
performs the “Regress-Deepmask” baseline by a large mar-
gin. The improvement is due to the fact that “Regress-
Agent-Deepmask” can utilize the segmentation predic-
tion to further refine the bounding box, while “Regress-
Deepmask” cannot. Also, the “Regress-Agent-Deepmask”
significantly outperforms “Regress-STN-Deepmask” base-
line, suggesting that the advantage of RL-based method
over the weak-supervised method. Some results of
“Regress-Deepmask” and “Regress-Agent-Deepmask” are
shown in Figure 3.

Implementation details. The action set A for this task
changes the bounding box’s location, scale and aspect ratio.
The Move actions can shift the bbox center in four direc-
tions by 0.1 ⇥ width/height. The Scale actions can scale
up/down the width/height by a factor of 0.2. A terminate

action is also included in the action set A, thus A contains
9 actions. At intermediate steps, a reward of 0.1 is returned
if the mask IoU is improved, otherwise, �0.1 is returned.
At the last step, a reward of 1 is returned if the final mask
IoU is greater than 0.5, otherwise, a reward of �1 is re-
turned. The policy network is initialized with a Resnet-18
network[15] pretrained on ImageNet[10]. The last layer is
replaced with a fully connected layer with 9 output units.
The learning rate starts from 1e-4 and decreases by a factor
of 5 whenever it reaches validation plateau.

4.2. Human Pose Estimation
We apply our algorithm to a challenging multi-person

pose estimation dataset. In Section 4.2.1, we first introduce
the dataset and briefly recap a two-stage framework named
RMPE for multi-person pose estimation. Then, we conduct
an experiment in Section 4.2.2 to demonstrate our argument
that the finetuned model may not perform as well as the
original model. In Section 4.2.3, we apply our framework
to the multi-person pose estimation task and achieve state-
of-the-art performance.

4.2.1 Dataset and baseline model

Dataset. MPII Human Pose[1] is a standard pose esti-
mation benchmark that contains more than 28000 training

Figure 3: Results of “Regress-Deepmask” and “Regress-
Agent-Deepmask”. The first column is the output of
“Regress-Deepmask”. The second to the last columns de-
pict the refinement process of “Regress-Agent-Deepmask”.
We can see the “Regress-Agent-Deepmask” gradually re-
fines the imperfect bounding box to improve the mask pre-
diction.

samples for single person pose estimation and about 3800
training samples for multi-person pose estimation. Large
variances of body shape, serious part occlusion and com-
plex relationships among keypoints make it a very challeng-
ing task in computer vision.

Baseline. Fang et al. [11] propose a two-stage frame-
work named RMPE for multi-person pose estimation. The
basic idea is to first apply an object detection algorithm to
generate multiple human proposals and then apply single-
person pose estimation algorithm on each proposal to gener-
ate keypoint detection. At last, a non-maximal suppression
algorithm is performed to eliminate redundant pose estima-
tions. Specifically, they adopt SSD [27] as their object de-
tection algorithm and an 8-stacked hourglass model [32] as
their pose estimation algorithm. SSD[27] is trained to gen-
erate tight bounding boxes. The 8-stacked hourglass model
is pretrained on loose-bounding-box cropped images, then
finetuned to fit tight-bounding-box cropped images.

4.2.2 Finetune v.s. Origin model

We demonstrate in this section that the finetuned model may
not perform as well as the original model. Specifically,
we compare the performance of hourglass model which is
pretrained on loose-bbox cropped images then finetuned to
tight-bbox cropped images.

Loose bbox. The annotation provided by MPII Human
Pose [1] contains an item ‘center’ and an item ‘scale’ that
indicate the location and size of a person. A square region
centered in the location ‘center’ with length (200 ⇥ scale)



Head Shoulder Elbow Wrist Hip Knee Ankle Total
Iqbal&Gall [18] 58.4 53.9 44.5 35.0 42.2 36.7 31.1 43.1

Insafutdinov et al. [17] 78.4 72.5 60.2 51.0 57.2 52.0 45.4 59.5
Levinkov et al. [23] 89.8 85.2 71.8 59.6 71.1 63.0 53.5 70.6

Insafutdinov et al. [16] 88.8 87.0 75.9 64.9 74.2 68.8 60.5 74.3
Cao et al. [4] 91.2 87.6 77.7 66.8 75.4 68.9 61.7 75.6

Fang et al. [11] 88.4 86.5 78.6 70.4 74.4 73.0 65.8 76.7
Newell et al. [31] 92.1 89.3 78.9 69.8 76.2 71.6 64.7 77.5

ours 91.4 88.3 79.8 71.7 75.8 75.2 67.2 78.5

Table 2: Results on the MPII multi-person full test set (mAP).

Figure 4: The first row are training and validation accuracy
curves of ”Tight bbox model” and ”Loose bbox model”.
The second row are training and validation accuracy curves
of upgrading the recognition network at each intermediate
step and upgrading the recognition network at the last step.

pixels is cropped from the original image and used as the
input for the network. See Figure 5a.

Tight bbox. Provided with the joints’ locations, we can
construct a tight bounding box by taking the minimal and
maximal coordinates on the x and y axes of all the joints’
coordinates. We further scale up the bounding box by a
factor of 0.3 to make sure the entire human is included. This
region is cropped from the original image and used as the
input for the network. See Figure 5b.

Comparison. We separately train a two-stacked hour-
glass model on loose-bbox cropped images and tight-bbox
cropped images. The training settings are the same (learn-
ing rate, train/valid split, etc.) The models are called “Loose
bbox model” and “Tight bbox model”, respectively.

The training and validation accuracy curves are shown in
Figure 4a, Figure 4b . As we can see, the performance of

“Tight bbox model” is lower than the “Loose bbox model”.
The reason is that in the loose bbox case, much contex-
tual information is included and other people show up in
the cropped area. This may help improve the robustness of
the ‘Loose bbox model’. In contrast, the training data for
‘Tight bbox’ contains less contextual information and only
one person shows up in the cropped area. Therefore, the
model gets confused when another person is also included
in the image. See Figures 5c, 5d for comparison between
the two predictions.

(a) Loose bbox input (b) Tight bbox input

(c) Loose bbox prediction (d) Tight bbox prediction

Figure 5: Different input format and prediction of pose es-
timation algorithms

4.2.3 Experiment setting and results

Since RMPE[11] has set up a general framework and
achieves excellent performance, we adopt similar settings
from their framework. Specifically, we maintain the same



Methods Head Shoulder Elbow Wrist Hip Knee Ankle Total
Ours, full 87.3 85.6 80.5 71.2 75.4 70.8 62.3 76.2
(a) w/o feedback 72.5 69.8 59.2 54.1 57.6 52.4 47.8 59.1
(b) w/o upgrading recognition 81.6 80.4 75.3 65.7 69.1 62.2 56.4 70.1
(c) back-propagate policy gradient 77.4 75.1 70.1 59.3 61.9 58.3 51.8 64.8

Table 3: Ablation studies on the MPII multi-person validation set (mAP). “w/o X” means without X in our framework.

object detection, pose estimation, and pose level NMS al-
gorithms. Additionally, we insert an agent among the ob-
ject detection and pose estimation algorithms. The agent’s
goal is to improve the pose estimation network’s prediction
by refining the bbox generated by the object detector. This
new pipeline is then trained under our EU-RL framework.

Implementation detail. We use the same action set A
as in Section 4.1, which contains 9 actions to change the
bounding box. We initialize the policy network with a pre-
trained Resnet-18 model [15] and change the number of
output units of the last layer to 9. The value network shares
most layers with the policy network, except in the last layer,
where the number of output units is 1. The loss function for
pose estimation is the mean-squared error. We give a pos-
itive reward of 0.1 when the agent improves the pose esti-
mation at an intermediate step, and negative reward of�0.1
if the performance decreases. At the last step, a reward of
1 is returned if the final loss is less than 1e-3; otherwise,
the reward is �1. The learning rate starts from 2.5e-4 and
decreases by a factor of 5 whenever it reaches validation
plateau.

Results. We report results on the test set in Table 2. As
we can see, our method improves the RMPE model by 1.8
mAP, achieving state-of-the-art performance on MPII Hu-
man Pose dataset. We present some results in supplemen-
tary material.

5. Ablation studies
In this section, we study the influences of different com-

ponents in our framework on the pose estimation task. All
experiments are evaluated on our held out validation set. We
use a two-stacked hourglass model as the pose estimation
network.

We start by studying the influence of feeding the recog-
nition network’s output to the agent. We train an agent with
only the RGB images as its input. The result is reported
in Table 3(a). As we can see, removing the recognition
network’s output from the agent’s input greatly decreases
the overall performance. This demonstrates that the com-
plementary nature of our state representation is essential in
providing an accurate estimation.

We then study the influence of upgrading the recognition
network. We train an agent without upgrading the recog-
nition network and compare the overall performance to the
environment-upgraded agent. The result is showed in Table

3(b). We can observe there is a decrease of performance for
the non-upgraded agent, which verifies upgrading the envi-
ronment helps the agent learn a better policy, as well as train
the recognition network to perform better under that policy.

We also study the influence of back-propagating the pol-
icy gradient into the recognition network. Since the recog-
nition network’s output is fed into the policy network, we
can back-propagate the policy gradient into the recognition
network’s output and jointly train the two networks. In fact,
this setting results in a significant decrease of performance
(Table 3(c)). We argue that the inconsistent goals of the two
networks introduce the discrepancy: the policy network is
for decision making while the recognition network is for
perception. Another reason is that, compared to the recog-
nition gradient generated by supervised learning, the pol-
icy gradient has much higher variance due to the trial-and-
error nature in reinforcement learning. Back-propagating
a high-variance gradient negatively affects the recognition
network, and results in a decrease of performance.

At last, we test upgrading the environment at each inter-
mediate step and report the training and validation accuracy
curves in Figure 4c, Figure 4d. We notice that upgrading the
environment at each intermediate step degrades the recogni-
tion network’s performance by about 2 points. In this case,
the recognition network’s goal is to minimize the average
loss through the entire sequence. This may differ from our
original goal of improving the final performance, and so we
suffer a loss of accuracy.

6. Conclusions and Future Work
In this paper, we proposed a novel environment upgrade

reinforcement learning framework to re-link the separately
trained stages in non-differentiable multi-stage pipelines.
The framework utilizes an agent to feed back information
from downstream to upstream. We upgrade the environ-
ment (downstream) to fit the agent’s policy, which in term
helps the agent learn a better policy. Extensive experiments
verify the effectiveness of the proposed framework on both
instance segmentation and pose estimation task. For the fu-
ture work, since only two-stage framework is discussed,
we will explore how to apply this framework into larger
pipeline systems.
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