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Abstract

The recent advances in deep neural networks have con-
vincingly demonstrated high capability in learning vision
models on large datasets. Nevertheless, collecting expert
labeled datasets especially with pixel-level annotations is
an extremely expensive process. An appealing alternative
is to render synthetic data (e.g., computer games) and gen-
erate ground truth automatically. However, simply apply-
ing the models learnt on synthetic images may lead to high
generalization error on real images due to domain shift. In
this paper, we facilitate this issue from the perspectives of
both visual appearance-level and representation-level do-
main adaptation. The former adapts source-domain images
to appear as if drawn from the “style” in the target domain
and the latter attempts to learn domain-invariant represen-
tations. Specifically, we present Fully Convolutional Adap-
tation Networks (FCAN), a novel deep architecture for se-
mantic segmentation which combines Appearance Adapta-
tion Networks (AAN) and Representation Adaptation Net-
works (RAN). AAN learns a transformation from one do-
main to the other in the pixel space and RAN is optimized
in an adversarial learning manner to maximally fool the
domain discriminator with the learnt source and target rep-
resentations. Extensive experiments are conducted on the
transfer from GTA5 (game videos) to Cityscapes (urban
street scenes) on semantic segmentation and our proposal
achieves superior results when comparing to state-of-the-
art unsupervised adaptation techniques. More remarkably,
we obtain a new record: mIoU of 47.5% on BDDS (drive-
cam videos) in an unsupervised setting.

1. Introduction

Deep Neural Networks have successfully proven highly
effective for learning vision models on large-scale dataset-
s. To date in the literature, there are various datasets (e.g.,
ImageNet [26] and COCO [14]) that include well-annotated
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Figure 1. Semantic segmentation on one example frame in street-
view videos by (a) directly applying FCN trained on images from
video games and (b) domain adaptation of FCAN in this work.

images available for developing deep models to a variety of
vision tasks, e.g., recognition [8, 27, 29], detection [6, 24],
captioning [34] and semantic segmentation [1, 16]. Nev-
ertheless, given a new dataset, the typical solution is still
to perform intensive manual labeling despite expensive ef-
forts and time-consuming process. An alternative is to uti-
lize synthetic data which is largely available from computer
games [25] and the ground truth could be freely generated
automatically. However, many previous experiences have
also shown that reapplying a model learnt on synthetic data
may hurt the performance in real data due to a phenomenon
known as “domain shift” [35]. Take the segmentation re-
sults of one frame from real street-view videos in Figure
1 (a) as an example, the model trained on synthetic data
from video games fails to properly segment the scene in-
to semantic categories such as road, person and car. As a
result, unsupervised domain adaptation would be desirable
on addressing this challenge, which aims to utilize labeled
examples from the source domain and a large number of un-
labeled examples in the target domain to reduce a prediction
error on the target data.

A general practice in unsupervised domain adaptation
is to build invariance across domains by minimizing the
measure of domain shift such as correlation distances [28]
or maximum mean discrepancy [32]. We novelly consid-
er the problem from the viewpoint of both appearance-
level and representation-level invariance. The objective of



appearance-level invariance is to recombine the image con-
tent in one domain with the “style” from the other domain.
As such, the images in two domains appear as if they are
drawn from the same domain. In other words, the visual
appearances tend to be domain-invariant. The inspiration of
representation-level invariance is from the advances of ad-
versarial learning for domain adaptation, which is to mod-
el domain distribution via an adversarial objective with re-
spect to a domain discriminator. The spirit behind is from
generative adversarial learning [7], that trains two model-
s, i.e., a generative model and a discriminative model, by
pitting them against each other. In the context of domain
adaptation, this adversarial principle is then equivalent to
guiding the representation learning in both domains, mak-
ing the difference between source and target representation
distributions indistinguishable through the domain discrim-
inator. We follow this elegant recipe and capitalize on ad-
versarial mechanism to learn image representation that is
invariant across domains. In this work, we are particularly
investigating the problem of domain adaptation on semantic
segmentation task which relies on probably the most accu-
rate pixel-level annotations.

By consolidating the idea of appearance-level and
representation-level invariance into unsupervised domain
adaption for enhancing semantic segmentation, we present
a novel Fully Convolutional Adaptation Networks (FCAN)
architecture, as shown in Figure 2. The whole framework
consists of Appearance Adaptation Networks (AAN) and
Representation Adaptation Networks (RAN). Ideally, AAN
is to construct an image that captures high-level content in
a source image and low-level pixel information of the target
domain. Specifically, AAN starts with a white noise im-
age and adjusts the output image by using gradient descen-
t to minimize the Euclidean distance between the feature
maps of the output image and those of the source image or
mean feature maps of the images in target domain. In RAN,
a shared Fully Convolutional Networks (FCN) is first em-
ployed to produce image representation in each domain, fol-
lowed by bilinear interpolation to upsample the outputs for
pixel-level classification, and meanwhile a domain discrim-
inator to distinguish between source and target domain. An
Atrous Spatial Pyramid Pooling (ASPP) strategy is particu-
larly devised to enlarge the field of view of filters in feature
map and endow the domain discriminator with more power.
RAN is trained by optimizing two losses, i.e., classification
loss to measure pixel-level semantics and adversarial loss
to maximally fool the domain discriminator with the learnt
source and target representations. With both appearance-
level and representation-level adaptations, our FCAN could
better build invariance across domains and thus obtain en-
couraging segmentation results in Figure 1 (b).

The main contribution of this work is the proposal of Ful-
ly Convolutional Adaptation Networks for addressing the

issue of semantic segmentation in the context of domain
adaptation. The solution also leads to the elegant views of
what kind of invariance should be built across domains for
adaptation and how to model the domain invariance in a
deep learning framework especially for the task of semantic
segmentation, which are problems not yet fully understood
in the literature.

2. Related Work
We briefly group the related works into two categories:

semantic segmentation and deep domain adaptation.
Semantic segmentation is one of the most challenging

tasks in computer vision, which attempts to predict pixel-
level semantic labels of the given image or video frame.
Inspired by the recent advance of Fully Convolutional Net-
works (FCN) [16], there have been several techniques, rang-
ing from multi-scale feature ensemble (e.g., Dilated Convo-
lution [36], RefineNet [13], DeepLab [1] and HAZNet [33])
to context information preservation (e.g., ParseNet [15], P-
SPNet [37] and DST-FCN [23]), being proposed. The orig-
inal FCN formulation could also be improved by exploit-
ing some post processing techniques (e.g., conditional ran-
dom fields [38]). Moreover, as most semantic segmentation
methods rely on the pixel-level annotations which require
extremely expensive labeling efforts, researchers have also
strived to leverage weak supervision instead (e.g., instance-
level bounding boxes [3], image-level tags [22]) for seman-
tic segmentation task. To achieve this target, the techniques
such as multiple instance learning [20], EM algorithm [18]
and constrained CNN [19] are exploited in the literature. An
alternative in [10] utilizes the pixel-level annotations from
auxiliary categories to generalize semantic segmentation to
categories where only image-level labels are available. The
goal of this work is to study the exploration of freely acces-
sible synthetic data with annotations and largely unlabeled
real data for annotating real images on the pixel level, which
is an emerging research area.

Deep Domain adaptation aims to transfer model learn-
t in a labeled source domain to a target domain in a deep
learning framework. The research of this topic has proceed-
ed along three different dimensions: unsupervised adap-
tation, supervised adaptation and semi-supervised adapta-
tion. Unsupervised domain adaptation refers to the setting
when the labeled target data is not available. Deep Corre-
lation Alignment (CORAL) [28] exploits Maximum Mean
Discrepancy (MMD) to match the mean and covariance of
source and target distributions. Adversarial Discriminative
Domain Adaptation (ADDA) [31] optimizes the adaptation
model with adversarial training. In contrast, when the la-
beled target data is available, we refer to the problem as
supervised domain adaptation. Tzeng et al. [30] utilizes
a binary domain classifier and devises the domain confu-
sion loss to encourage the predicted domain labels to be u-
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Figure 2. An overview of our Fully Convolutional Adaptation Networks (FCAN) architecture. It consists of two main components: the
Appearance Adaptation Networks (AAN) on the left and the Representation Adaptation Networks (RAN) on the right. AAN transfers
images from one domain to the other one and thus the visual appearance tends to be domain-invariant. RAN learns domain-invariant rep-
resentations in an adversarial manner by maximally fooling the domain discriminator with the learnt source and target representations. An
extended Atrous Spatial Pyramid Pooling (ASPP) layer is particularly devised to leverage the regions across different scales for enhancing
the discriminative capability. RAN is jointly optimized with supervised segmentation loss on source images plus adversarial loss.

niformly distributed. Deep Domain Confusion (DDC) [32]
applies MMD as well as the regular classification loss on the
source to learn representations that are both discriminative
and domain invariant. In addition, semi-supervised domain
adaptation methods have also been proposed, which exploit
both labeled and unlabeled target data. Deep Adaptation
Network (DAN) [17] embeds all task specific layers in a re-
producing kernel Hilbert space. Both semi-supervised and
unsupervised settings are considered.

In short, our work in this paper mainly focuses on unsu-
pervised adaptation for semantic segmentation task, which
is seldom investigated. The most closely related work is
the FCNWild [9], which addresses the cross-domain seg-
mentation problem by only exploiting fully convolutional
adversarial training for domain adaptation. Our method
is different from [9] in that we solve the domain shift
from the perspectives of both visual appearance-level and
representation-level domain adaptation, which bridges the
domain gap in a more principled way.

3. Fully Convolutional Adaptation Networks
(FCAN) for Semantic Segmentation

In this section we present our proposed Fully Convolu-
tional Adaptation Networks (FCAN) for semantic segmen-
tation. Figure 2 illustrates the overview of our framework.
It consists of two main components: the Appearance Adap-
tation Networks (AAN) and the Representation Adaptation
Networks (RAN). Given the input images from two domain-
s, AAN is first utilized to transfer images from one do-
main to the other from the perspective of visual appearance.
By recombining the image content in one domain with the
“style” from the other one, the visual appearance tends to be

domain-invariant. We take the transformation from source
to target as an example in this section, and the other options
will be elaborated in our experiments. On the other hand,
RAN learns domain-invariant representations in an adver-
sarial manner and a domain discriminator is devised to clas-
sify which domain the image region corresponding to the
receptive field of each spatial unit in the feature map comes
from. The objective of RAN is to guide the representation
learning in both domains, making the source and target rep-
resentations indistinguishable through the domain discrim-
inator. As a result, our FCAN addresses domain adaptation
problem from the viewpoint of both visual appearance-level
and representation-level domain invariance and is potential-
ly more effective at undoing the effects of domain shift.

3.1. Appearance Adaptation Networks (AAN)

The goal of AAN is to make the images from differen-
t domains visually similar. In other words, AAN tries to
adapt the source images to appear as if drawn from the tar-
get domain. To achieve this, the low-level features over all
the images in target domain should be separated and regard-
ed as the “style” of target domain, as these features encode
the low-level forms of the images, e.g., texture, lighting and
shading. In contrast, the high-level content in terms of ob-
jects and their relations in the source image should be ex-
tracted and recombined with the “style” of target domain to
produce an adaptive image.

Figure 3 illustrates the architecture of AAN. Given a set
of images Xt = {xit|i = 1, . . . ,m} in target domain and
one image from source domain xs, we begin with a white
noise image and iteratively render this image with the se-
mantic content in xs plus the “style” of Xt to produce an
adaptive image xo. Specifically, a pre-trained CNN is u-
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Figure 3. The architecture of Appearance Adaptation Networks
(AAN). Given the target image set Xt and one source image xs,
we begin with a white noise image and adjust it towards an adap-
tive image xo, which appears as if it is drawn from target domain
but contains semantic content in the source image. A pre-trained
CNN is utilized to extract feature maps. The high-level image con-
tent of xs is preserved by minimizing the distance between feature
maps of xs and xo, while the style of target domain is kept by min-
imizing the distance between feature correlations of xo and Xt.

tilized to extract feature maps for each image. Suppose
every convolutional layer l in the CNN has Nl response
maps, where Nl is the number of channels, and the size
of each response map is Hl × Wl, where Hl and Wl de-
notes the height and width of the map, respectively. As
such, the feature maps in the layer l could be represented
as M l ∈ RNl×Hl×Wl . Basically the responses in different
convolutional layers characterize image content on differ-
ent semantic level, where deeper layer responds to higher
semantics. To better govern the semantic content in source
image xs, different weights are assigned to different layers
to reflect the contribution of each layer. The objective func-
tion is then formulated as

min
xo

∑
l∈L

wl
s Dist(M

l
o,M

l
s) , (1)

where L is the set of layers to be considered for measure-
ment. wl

s is the weight of layer l, M l
o and M l

s is the feature
map of layer l on xo and xs, respectively. By minimizing
the Euclidean distance in Eq.(1), the image content in xs is
expected to be preserved in the adaptive image xo.

Next, the “style” of one image is in general treated as
a kind of statistical measurement or pattern, which is ag-
nostic to spatial information [4]. In CNN, one of such sta-
tistical measurements is the correlations between different
response maps. Hence, the “style” of an image Gl on layer
l could be computed by

Gl,ij = M l,i �M l,j . (2)

Gl,ij is the inner product between the vectorized i-th and j-
th response map ofM l. In our case, we extend the “style” of

one image to that of one domain (Ḡl
t of the target domain)

by averaging Gl over all the images in target domain. In
order to synthesize the “style” of target domain into xo, we
formulate the objective in each layer as

min
xo

∑
l∈L

wl
t Dist(G

l
o, Ḡ

l
t) , (3)

where wl
t is the weight for layer l. Finally, the overall loss

function LAAN to be minimized is

LAAN (xo) =
∑
l∈L

wl
s Dist(M

l
o,M

l
s) + α

∑
l∈L

wl
t Dist(G

l
o, Ḡ

l
t) ,

(4)
where α is the weight to balance semantic content in the
source image and the style of target domain. In the train-
ing, similar to [5], AAN adjusts the output image by back-
propagating the gradients derived from Eq. (4) to xo, result-
ing in the domain-invariant appearance.

3.2. Representation Adaptation Networks (RAN)

With the Appearance Adaptation Networks, the images
from different domains appear to be from the same domain.
To further reduce the impact of domain shift, we attemp-
t to learn domain-invariant representations. Consequent-
ly, Representation Adaptation Networks (RAN) is designed
to adapt representations across domains, which is derived
from the idea of adversarial learning [7]. The adversari-
al principle in our RAN is equivalent to guiding the learn-
ing of feature representations in both domains by fooling
a domain discriminator D with the learnt source and tar-
get representations. Specifically, RAN first utilizes a shared
Fully Convolutional Network (FCN) to extract the repre-
sentations of images or adaptive images through AAN from
both domains. This FCN model F here aims to learn in-
distinguishable image representations across two domains.
Furthermore, the discriminator D attempts to differentiate
between source and target representations, whose outputs
are the domain prediction of each image region that corre-
sponds to the spatial unit in the final feature map. Formally,
given the training set Xs = {xis|i = 1, . . . , n} in source
domain and Xt = {xit|i = 1, . . . ,m} in target domain, the
adversarial loss Ladv is the average classification loss over
all spatial units, which is formulated as

Ladv(Xs,Xt) = −Ext∼Xt [
1

Z

Z∑
i=1

log(Di(F (xt)))]

− Exs∼Xs [
1

Z

Z∑
i=1

log(1−Di(F (xs)))] ,

(5)

where Z is the number of spatial units in the output of D.
Similar to the standard GANs, the adversarial training of
our RAN is to optimize the following minimax function

max
F

min
D
Ladv(Xs,Xt) . (6)



Given the fact that there are many different objects of
various size in real data, we further take the utilization of
multi-scale representations into account to enhance the ad-
versarial learning. One traditional multi-scale strategy is to
resize the images with multiple resolutions, which indeed
improves the performance but at the cost of large compu-
tation. In this work, we extend Atrous Spatial Pyramid
Pooling (ASPP) [1] to implement this, as shown in Figure
2. Specifically, k dilated convolutional layers with different
sampling rates are exploited in parallel to produce k feature
representations on the output of FCN independently, each
with c feature channels. All the feature channels are then
stacked up to form a new feature map with ck channels,
followed by a 1× 1 convolutional layer plus a sigmoid lay-
er to generate the final score map. Each spatial unit in the
score map presents the probability of the corresponding im-
age region belonging to the target domain. In addition, we
simultaneously optimize the standard pixel-level classifica-
tion loss Lseg for supervised segmentation on the images
from source domain, where the labels are available. Hence,
the overall objective of RAN integrates Lseg and Ladv as

max
F

min
D
{Ladv(Xs,Xt)− λLseg(Xs)} , (7)

where λ is the tradeoff parameter. Through fooling the do-
main discriminator with the source and target representa-
tions, our RAN is able to produce domain-invariant repre-
sentations. In test stage, the images in target domain are fed
into the learnt FCN to produce representations for pixel-
level classification.

4. Implementation

4.1. Appearance Adaptation

We adopt the pre-trained ResNet-50 [8] architec-
ture as the basic CNN. In particular, we only include
the five convolutional layers in the set, i.e., L =
{conv1, res2c, res3d, res4f, res5c}, as the representa-
tions of these layers in general have the highest capability in
each scale. The weights wl

s and wl
t of layers for the images

in source and target domain are generally determined on the
visual appearances of adaptive images. In addition, when
optimizing Eq. (4), a common problem is the need to set the
tradeoff parameter α to balance content and “style.” As the
ultimate goal is to semantically segment each pixel in the
images, it is required to preserve the semantic content pre-
cisely. As a result, the impact of “style” is regarded as only
a “delta” function to adjust the appearance and we empiri-
cally set a small weight of α = 10−14 for this purpose. The
number of maximum iteration I is fixed to 1k. In each itera-
tion i, the image xo is updated by xio = xi−1o −wi−1 gi−1

‖gi−1‖1 ,

where gi−1 =
∂Lapp(x

i−1
o )

∂xi−1
o

, wi−1 = β I−i
I and β = 10.

4.2. Representation Adaptation

In our implementations, we employ dilated fully convo-
lutional network [1] originated from ResNet-101 [8] as our
FCN, which has proven to be effective on generating power-
ful representations for semantic segmentation. The feature
maps of the last convolutional layer (i.e., res5c) are fed into
both segmentation and adversarial branches. In supervised
segmentation branch, we also augment the outputs of FCN
with Pyramid Pooling [37] to integrate contextual prior into
representation. In adversarial branch, we use k = 4 dilated
convolutional layers in parallel to produce multiple feature
maps, each with c = 128 channels. The sampling rate of
different dilated convolution kernel is 1, 2, 3 and 4, respec-
tively. Finally, a sigmoid layer is utilized next to the ASPP
to output the predictions, which are in the range of [0, 1].

4.3. Training Strategy

Our proposal is implemented on Caffe [12] framework
and mini-batch stochastic gradient descent algorithm is ex-
ploited to optimize the model. We pre-train RAN on source
domain with only segmentation loss. The initial learning
rate is 0.0025. Similar to [1], we use the “poly” learning
rate policy with power fixed to 0.9. Momentum and weight
decay is set to 0.9 and 0.0005, respectively. The batch size
is 6. The maximum iteration number is 30k. Then, we fine-
tune RAN jointly with segmentation loss and adversarial
loss. The tradeoff parameter λ is set to 5. The initial learn-
ing rate is 0.0001. The batch size is 8 and the maximum
iteration number is 10k. The rest hyper-parameters are the
same with those in pre-training.

5. Experiments
5.1. Datasets

We conduct a thorough evaluation of our FCAN on the
domain adaptation from GTA5 [25] (game videos) dataset
to Cityscapes (urban street scenes) dataset [2].

The GTA5 dataset contains 24,966 images (video
frames) from the game Grand Theft Auto V (GTA5) and
the pixel-level ground truth for each image is also created.
In the game, the images are captured on the virtual city of
Los Santos, which is originated from the city of Los Ange-
les. The resolution of each image is 1914 × 1052. There
are 19 classes which are compatible with other segmenta-
tion datasets for outdoor scenes (e.g., Cityscapes) and uti-
lized in the evaluation. The Cityscapes dataset is one pop-
ular benchmark for semantic understanding of urban street
scenes, which contains high quality pixel-level annotation-
s of 5,000 images (frames) collected in street scenes from
50 different cities. The image resolution is 2048 × 1024.
Following the standard protocol in segmentation task (e.g.,
[2]), 19 semantic labels (car, road, person, building, etc.)
are used for evaluation. In between, the training, validation,



Table 1. The mIoU performance comparisons between different
ways of utilizing AAN.

Train Validation FCN RAN
Src Tar 29.15 44.81
Src Tar Ada 34.68 45.03
Src Ada Tar 31.71 46.21
Src Ada Tar Ada 36.25 45.59

Late Fusion 37.61 46.60

(a) GTA5 to Cityscapes (b) Cityscapes to GTA5

Figure 4. Examples of appearance-level adaptation through AAN.

and test sets contains 2,975, 500, and 1,525 frames, respec-
tively. Following the settings in [9, 21], only the validation
set (500 frames) are exploited for validating the unsuper-
vised semantic segmentation in our experiments.

In addition, we also take the Berkeley Deep Driving Seg-
mentation (BDDS) dataset [9] as another target domain for
verifying the merit of our FCAN. The BDDS dataset con-
sists of thousands of dashcam video frames with pixel-level
annotations, which share compatible label space with C-
ityscapes. The image resolution is 1280 × 720. Following
the settings in [9, 21], 1,500 frames are used for evaluation.

In all experiments, we adopt the Intersection over Union
(IoU) per category and mean IoU over all the categories as
the performance metrics.

5.2. Evaluation of AAN

We first examine the effectiveness of AAN on semantic
segmentation from two aspects: 1) images from which do-
main are adapted by AAN, and 2) adaptation by only per-
forming AAN or plus RAN. Source Adaptation (Src Ada)
here is to render source images with the “style” of the tar-
get domain, and vice versa for Target Adaptation (Tar Ada).
FCN refers to the setting of semantic segmentation by di-
rectly exploiting the FCN learnt on source domain to do
prediction on target images. In contrast, RAN further per-
forms representation-level adaptation by our RAN.

The mIoU performances between different ways of uti-
lizing AAN are summarized in Table 1. Overall, adapting
images in source domain through AAN plus RAN achieves
the highest mIoU of 46.21%. The results by applying AAN
to images in source or target or both domains consistent-
ly exhibits better performance than the setting without the
use of AAN (the first row) when directly employing FCN

Table 2. Performance contribution of each design in FCAN.
Method ABN ADA Conv ASPP AAN mIoU
FCN 29.15
+ABN

√
35.51

+ADA
√ √

41.29
+Conv

√ √ √
43.17

+ASPP
√ √ √ √

44.81
FCAN

√ √ √ √ √
46.60

in segmentation. The results basically indicate the advan-
tage of exploring appearance-level domain adaptation. The
performance in each setting is further improved by RAN,
indicating that visual appearance-level and representation-
level adaptation are complementary to each other. Anoth-
er observation is that the performance gain of RAN tends
to be large when performing AAN on source images. The
gain is however decreased when adapting target images by
AAN. We speculate that this may be the result of synthe-
sizing some noise into the adapted target images by AAN
especially at the boundary of objects and that in turn affects
the segmentation stability. Furthermore, when late fusing
the score maps of segmentation predicted by the four set-
tings, the mIoU performance could be boosted up to 46.6%.
We refer to this fusion version as AAN in the following e-
valuations unless otherwise stated.

Figure 4 shows four examples of appearance-level trans-
fer for images in source and target domain, respectively. As
illustrated in the figure, the semantic content in original im-
ages are all well-preserved in the adaptive images. When
rendering the images in GTA5 with “style” of Cityscapes,
the overall color of the images becomes bleak and the color
saturation tends to be low. In contrast, when reversing the
transfer direction, the color of images in Cityscapes gets
much brighter and with high saturation. The results demon-
strate a good appearance-level transfer in between.

5.3. An Ablation Study of FCAN

Next, we study how each design in FCAN influences
the overall performance. Adaptive Batch Normalization
(ABN) simply replaces the mean and variance of BN layer
in FCN learnt in source domain with those computed on the
images in target domain. Adversarial Domain Adaptation
(ADA) leverages the idea of adversarial training to learn
domain-invariant representations and the domain discrimi-
nator judges the domain on image level. When the domain
discriminator is extended to classify each image region, this
design is named as Conv. ASPP further enlarges the field
of view of filters to enhance the adversarial learning. AAN
is our appearance-level adaptation.

Table 2 details the mIoU improvement by considering
one more factor for domain adaptation at each stage in F-
CAN. ABN is a general way to alleviate domain shift irre-
spective of any domain adaptation frameworks. In our case,
ABN successfully brings up the mIoU performance from



Image Ground Truth FCN +ABN +ADA +Conv +ASPP +AAN (FCAN)

Figure 5. Examples of semantic segmentation results in Cityscapes. The original images, their ground truth and comparative segmentation
results at different stages of FCAN are given.

Table 3. Performance comparisons with the state-of-the-art unsu-
pervised domain adaptation methods on Cityscapes.

Method mIoU
DC [30] 37.64
ADDA [31] 38.30
FCNWild [9] 42.04
FCAN 46.60
FCAN(MS) 47.75

29.15% to 35.51%. This demonstrates that ABN is a very
effective and practical choice. ADA, Conv and ASPP are
three specific designs in our RAN and the performance gain
of each is 5.78%, 1.88% and 1.64%, respectively. In other
words, our RAN leads to a large performance boost of 9.3%
in total. The results verify the idea of representation-level
adaptation. AAN further contributes an mIoU increase of
1.79% and the mIoU performance of FCAN finally reaches
46.6%. Figure 5 showcases four examples of semantic seg-
mentation results at different stages of our FCAN. As illus-
trated in the figure, the segmentation results are becoming
increasingly accurate as more adaptation designs are includ-
ed. For instance, at the early stages, the majority categories
such as road and sky cannot be well segmented. Instead,
even the minority classes such as bicycle and truck are seg-
mented nicely during the latter steps.

5.4. Comparisons with State-of-the-Art

We compare with several state-of-the-art techniques.
Domain Confusion [30] (DC) aligns domains via domain
confusion loss, which is optimized to learn a uniform distri-
bution across different domains. Adversarial Discriminative
Domain Adaptation [31] (ADDA) combines untied weight
sharing and adversarial learning for discriminative feature
learning. FCNWild [9] adopts fully convolutional adver-
sarial training for domain adaptation on semantic segmen-
tation. For fair comparison, the basic FCN utilized in all
the methods are originated from ResNet-101. The perfor-
mance comparisons are summarized in Table 3. Compared
to DC and ADDA in which domain discriminator are both
devised on image level, FCNWild and FCAN performing
domain-adversarial learning on region level exhibit better
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Figure 6. Per-category IoU performance of different approaches
and mIoU performance averaged over all the 19 categories.

Image Ground Truth FCAN Prediction Domain Prediction

Figure 7. Examples of semantic segmentation results and the pre-
diction maps by domain discriminator where brightness indicates
the high probability of the region belonging to target domain.

performance. Furthermore, FCAN by additionally incor-
porating ASPP strategy and reinforcing by AAN, leads to
an apparent improvement over FCNWild. The multi-scale
(MS) scheme boosts up the mIoU performance to 47.75%.
Figure 6 details the performance across different categories.
Our FCAN achieves the best performance in 17 out of 19
categories, which empirically validate the effectiveness of
our model on category level.

To examine domain discriminator learnt in FCAN, Fig-
ure 7 illustrates four image examples, including the original
images, their ground truth, segmentation results by FCAN
and prediction maps by domain discriminator. The bright-
ness indicates that the region belongs to target domain with



Table 4. Results of Semi-supervised adaptation for Cityscapes.

# of images FCN FCAN
(On Cityscapes) (Semi-supervised)

0 - 46.60
50 47.57 56.50
100 54.41 59.95
200 59.53 63.82
400 62.53 66.80
600 65.39 67.58
800 67.01 68.42

1000 68.05 69.17

Table 5. Comparisons of different unsupervised domain adaptation
methods on BDDS.

Method mIoU
FCNWild [9] 39.37
FCAN 43.35
FCAN(MS) 45.47
FCAN(MS+EN) 47.53

high probability. Let’s recall that adversarial learning is
to maximally fool the domain discriminator. That means
ideally the prediction map of the images in target domain
should be dark. For example, the domain discriminator pre-
dicts wrongly on the regions in the red bounding box in the
first two images, which indicates that the representations on
these regions tend to be indistinguishable. Hence, these re-
gions (sky) are precisely segmented by FCAN. In contrast,
domain discriminator predicts correctly on the regions in
the last two images, indicating that the region representa-
tions are still domain-dependent. As such, the segmentation
results on those regions (bicycle) are not that good.

5.5. Semi-Supervised Adaptation

Another common scenario in practice is that there is a
small number of labeled training examples in target do-
main. Hence, we extend our FCAN to a semi-supervised
version, which takes the training set of Cityscapes as la-
beled data X l

t . Technically, the pixel-level classification
loss on images in target domain is further taken into ac-
count and the overall objective in Eq.(7) then changes
to maxF minD

{
Ladv(Xs,Xt)− λsLseg(Xs)− λtLseg(X l

t )
}

.
Table 4 shows the mIoU performances with the increase of
labeled training data from target domain. It is also worth
noting that here FCN is directly learnt on the labeled data in
target domain and FCAN refers to our semi-supervised ver-
sion. As expected, the performance gain of FCAN tends to
be large if only a few hundred images in target domain are
included in training. The gain is gradually decreased when
increasing the number of images from Cityscapes. Even
when the number reaches 1k, our semi-supervised FCAN is
still slightly better than supervised FCN.

5.6. Results on BDDS

In addition to Cityscapes dataset, we also take BDDS as
target domain to evaluate the unsupervised setting of our

Image FCN Prediction FCAN Prediction

Figure 8. Examples of semantic segmentation results in BDDS.

FCAN. The performance comparisons are summarized in
Table 5. In particular, the mIoU performance of FCAN
achieves 43.35%, making the improvement over FCNWild
by 3.98%. The multi-scale setting, i.e., FCAN(MS), in-
creases the performance to 45.47%. Finally, the ensem-
ble version FCAN(MS+EN) by fusing the models derived
from ResNet-101, ResNet-152 and SENet [11], could boost
up the mIoU to 47.53%. Figure 8 shows three semantic
segmentation examples in BDDS, which are output by FC-
N and FCAN, respectively. Clearly, FCAN obtains much
more promising segmentation results. Even in the case of
a reflection (second row) or patches of cloud (third row) in
the sky, our FCAN can segment the sky well.

6. Conclusion

We have presented Fully Convolutional Adaptation Net-
works (FCAN) architecture, which explores domain adap-
tation for semantic segmentation. Particularly, we study the
problem from the viewpoint of both visual appearance-level
and representation-level adaptation. To verify our claim, we
have devised Appearance Adaptation Networks (AAN) and
Representation Adaptation Networks (RAN) respectively in
our FCAN for each purpose. AAN is to render an im-
age in one domain with the domain “style” from the other
one, resulting in invariant appearance across two domains.
RAN aims to guide the representation learning in a domain-
adversarial manner, which ideally outputs domain-invariant
representations. Experiments conducted on the transfer
from game videos (GTA5) to urban street-view scenes (C-
ityscapes) validate our proposal and analysis. More remark-
ably, we achieve new state-of-the-art performances when
transferring game videos to drive-cam videos (BDDS). Our
possible future works include two directions. First, more
advanced techniques of rendering the semantic content of
an image with another statistical pattern will be investigat-
ed in AAN. Second, we will further extend our FCAN to
other specific segmentation scenarios, e.g., indoor scenes
segmentation or portrait segmentation, where the synthetic
data could be easily produced.
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