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Abstract

We propose a method for lossy image compression based
on recurrent, convolutional neural networks that outper-
forms BPG (4:2:0), WebP, JPEG2000, and JPEG as mea-
sured by MS-SSIM. We introduce three improvements over
previous research that lead to this state-of-the-art result us-
ing a single model. First, we modify the recurrent architec-
ture to improve spatial diffusion, which allows the network
to more effectively capture and propagate image informa-
tion through the network’s hidden state. Second, in addition
to lossless entropy coding, we use a spatially adaptive bit
allocation algorithm to more efficiently use the limited num-
ber of bits to encode visually complex image regions. Fi-
nally, we show that training with a pixel-wise loss weighted
by SSIM increases reconstruction quality according to mul-
tiple metrics. We evaluate our method on the Kodak and
Tecnick image sets and compare against standard codecs as
well as recently published methods based on deep neural
networks.

1. Introduction

Previous research showed that deep neural networks can
be effectively applied to the problem of lossy image com-
pression [21, 22, 23, 10, 17, 4, 19]. Those methods ex-
tend the basic autoencoder structure and generate a binary
representation for an image by quantizing either the bottle-
neck layer or the corresponding latent variables. Several
options have been explored for encoding images at differ-
ent bit rates including training multiple models [4], learn-
ing quantization-scaling parameters [21], and transmitting
a subset of the encoded representation within a recurrent
structure [10, 23].

Our method takes the recurrent approach and builds on
the architecture introduced by [23]. The model uses a recur-
rent autoencoder where each iteration encodes the residual
between the previous reconstruction and the original image
(see Figure 1). At each step, the network extracts new in-

formation from the current residual and combines it with
context stored in the hidden state of the recurrent layers. By
saving the bits from the quantized bottleneck after each it-
eration, the model generates a progressive encoding of the
input image.

Our method provides a significant increase in compres-
sion performance over previous models due to three im-
provements. First, by “priming” the network, that is, run-
ning several iterations before generating the binary codes
(in the encoder) or a reconstructed image (in the decoder),
we expand the spatial context, which allows the network
to represent more complex representations in early itera-
tions. Second, we add support for spatially adaptive bit rates
(SABR), which dynamically adjusts the bit rate across each
image depending on the complexity of the local image con-
tent. Finally, we train our model with a more sophisticated
loss function that guides the pixel-wise loss using structural
similarity (SSIM) [26, 28]. Combining three techniques
yields a rate-distortion (RD) curve that exceeds state-of-the-
art codecs (BPG 444 (YCbCr 4:4:4) [5], BPG 420 (YCbCr
4:2:0), WebP [9], JPEG2000 [12], and JPEG [25]) as well as
other learned models based on deep neural networks ([21]
and [23]), as measured by MS-SSIM [27].

We review previous work in Section 2 and describe our
method in detail in Section 3. The description focuses on
the network architecture (Section 3.1), how we combine
that with hidden-state priming and diffusion (Section 3.2),
and how we use spatially adaptive bit rates (Section 3.3).
Section 3 also covers our training loss (Section 3.4), which
provides better generalization results than unweightedL1 or
L2 loss. In Section 4 we discuss the training setup used for
our networks. Section 5 summarizes the results and com-
pares them to existing codecs and to other recent research
in neural-network-based compression [21, 19].

2. Related Work

Lossy image compression is a long-standing problem
with many standard codecs. JPEG [25] remains the
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Figure 1. The layers in our compression network, showing the en-
coder (Ei), binarizer (checkerboard), and decoder (Dj). Each
layer is labeled with its relative resolution (below) and depth
(above). The inner label (“I / H”) represents the size of the convo-
lutional kernels used for input (I) and for the hidden state (H).

most widely used method for lossy compression of digi-
tal photographs [7] while several more sophisticated stan-
dards have gained in popularity including JPEG2000 [12],
WebP [9], and Better Portable Graphics (BPG) [5]. To our
knowledge, BPG currently has the highest coding efficiency
for lossy image compression amongst public codecs.

Recently, there has been a surge in research apply-
ing neural networks to the problem of image compres-
sion [21, 22, 23, 10, 4, 20, 2, 19]. While such methods were
explored since at least the late 1980s [18, 13], few neural-
network-based systems improve upon JPEG or match the
coding efficiency of JPEG2000.

Autoencoders with a bottleneck have been used to learn
compact representations for many applications [11, 16, 24]
and form the basis for most network-based compression
models. Theis et al. used an ensemble of encoders and
target multiple bit rates by learning a scaling parameter that
changes the effective quantization granularity. Ballé et al.
use a similar architecture but use a form of local gain control
called generalized divisive normalization [3] and replace the
non-differentiable quantization step with continuous relax-
ation by adding uniform noise [4]. Rippel et al. achieve im-
pressive performance by directly training for the target met-
ric (MS-SSIM). In addition they use an ensemble of multi-
scale models, an adaptive coding module, and adversarial
loss.

A different method for targeting multiple bit rates uses
recurrent autoencoders [10, 22, 23]. In this approach, a sin-
gle model generates a progressive encoding that grows with
the number of recurrent iterations. Different bit rates are
achieved by transmitting only a subset (prefix) of the pro-
gressive code. Gregor et al. use a generative model so miss-
ing codes are replaced by sampling from the learned distri-
bution [10]. Our model uses a recurrent architecture similar
to Toderici et al. where missing codes are ignored [23]. The
decoder thus runs fewer iterations for low bit rate encodings
and will generate a valid, but less accurate, reconstruction
compared to high bit rate encodings.

Figure 2. Network operation: (a) without priming, (b) with prim-
ing, and (c) with diffusion.

3. Methods

In this section, we first describe the network architec-
ture used in our research along with an analysis of its spa-
tial support. We then describe each of the three techniques
that we leverage to achieve our results: hidden-state prim-
ing, spatially adaptive bit rates, and a perceptually-weighted
training loss.

3.1. Network Architecture

Figure 1 shows the architecture used for our encoder and
decoder networks. The depth of each layer is marked above
the back corner of each plane. The name and type of layer
is depicted as “Ei : I/H” for the encoder (and “Dj : I/H”
for the decoder) inside the bottom of each plane. The con-



volutional kernels for input have size I×I and the convolu-
tional kernels for the hidden state areH×H . Feed-forward,
non-recurrent layers have H = 0. The input to the encoder
is the residual image: the difference between the original
image and previous iteration’s reconstruction. For the first
iteration, this residual is simply the original image.

The first and last layers on both the encoder and decoder
networks use feed-forward convolutional units (H = 0)
with tanh activations. The other layers contain convolu-
tional Gated Recurrent Units (GRU) [8].

To ensure accurate bit-rate counts, the binarizer (shown
as a checkerboard in Figure 1) quantizes its input to be
±1 [22]. This will give us our nominal (pre-entropy cod-
ing) bit rate. Given our choice of downsampling rates and
binarizer depths, each iteration adds 1

8 bpp to the previous
nominal bit rate.

The spatial context used by each reconstruction pixel,
as a function of either the “bit stacks” (that is, the outputs
of the binarizer at a single spatial position) or the origi-
nal image pixels, can be computed by examining the com-
bined spatial supports of the encoder, the decoder, and all
state vectors.1 The dependence of the output reconstruction
on the bit stacks varies by output-pixel position by one bit
stack (in each spatial dimension), so we will discuss only
the maximum spatial support:

max(SB(Ft)) = 6t+ 6 (1)
SI(Ft) = 16SB(Ft) + 15 (2)

where SB(Ft)×SB(Ft) and SI(Ft)×SI(Ft) are the spatial
support of the reconstruction on the bit stacks and on the
original image pixels, respectively.

3.2. Hidden-state Priming

On the first iteration of our compression networks, the
hidden states of each GRU layer are initialized to zero (Fig-
ure 2-a). In our experiments, we have seen a strong visual
improvement in image quality across the first several iter-
ations. Our hypothesis is that not having a good hidden-
state initialization degrades our early bit-rate performance.
Since both encoder and decoder architectures stack several
GRU layers sequentially, it takes several iterations for the
hidden-state improvement from the first GRU layer to be
observable at the binarizer (for the encoder) or in the recon-
struction (for the decoder). Our approach to tackling this
problem is to generate a better initial hidden-state for each
layer with a technique called hidden-state priming.

Hidden-state priming, or “k-priming”, increases the
recurrent-depth of the first iteration of the encoder and de-
coder networks, separately, by an additional k steps (Fig-

1Detailed derivations of these equations, as well as
the ones for the priming and diffusion supports, are
given in the Supplementary material. This is addition-
ally available at https://storage.googleapis.com/compression-
ml/prime sabr results/supplemental 2018.pdf

Figure 3. Left: Crop of the original Tecnick image 98. Center:
Reconstruction using the DSSIM network at 0.125 bpp. Right:
Reconstruction using the Prime network at 0.125 bpp. Notice the
reduced artifacts from right versus center, especially in the sun-
flower in the lower left corner. Best viewed with zoom.

Figure 4. Cropped reconstructions of Tecnick image 98, taken at
0.25 bpp. From left to right, the results are from networks with
no diffusion (0-diffusion) up to 3-diffusion. Notice the increased
petal definition as more diffusion is used. Best viewed with zoom.

ure 2-b). To avoid using additional bandwidth, we run
these additional steps separately, without adding the extra
bits produced by the encoder to the actual bit stream. For
the encoder, this means processing the original image k
times, while discarding the generated bits but keeping the
changes to the hidden state within the encoder’s recurrent
units. For the decoder, this means taking the first valid set
of bits transmitted and generating a decoded image multi-
ple times but only keeping the final image reconstruction
(and the changes to the decoder’s hidden states). Figure 3
depicts an example patch of an image from our evaluation
set and the reconstructions from our networks trained with
and without priming. The reconstruction with priming is
both visually and quantitatively better than without prim-
ing, without using any additional bits.

Priming can be performed between iterations as well.
When k steps are added in between each emitting iteration,
we call this “k-diffusion” (Figure 2-c). Diffusion has exper-
imentally shown better results (Figure 4), but at the cost of
runtime and training time. As we increase k, we both in-
crease the maximum support of the system along with com-
putation and training time.

For example, in a 16 iteration network with “k-priming”,
k iterations of the encoder would take place before we gen-
erate our first set of bits, expanding the number of steps of
computation from 16 to 16 + k. This is done similarly on
the decoder. In a 16 iteration network with “k-diffusion”,
the k iterations of the encoder would happen between every
generation of bits, increasing computation from 16 steps to
16×k steps. So instead of taking the output atO(i) we take
use the output at O(k × i)

In addition to achieving a better hidden-state representa-

https://storage.googleapis.com/compression-ml/prime_sabr_results/supplemental_2018.pdf
https://storage.googleapis.com/compression-ml/prime_sabr_results/supplemental_2018.pdf


tion for our networks, priming and diffusion also increase
the spatial extent of the hidden-states, in the decoder, where
the last two layers of the hidden kernels are 3×3, and in later
iterations of the encoder, when the increased decoder sup-
port propagates to increased encoder support. This changes
max(SB(Ft)) from Equation 1 to

max(SB(Ft)) = d1.5kd + 5.5e t+ d1.5kp + 5.5e

with kp = kd when kd > 0.

3.3. Spatially Adaptive Bit Rates

By construction, our recurrent models generate image
representations at different bit rates according to the num-
ber of iterations used, but those bit rates are constant across
each image. That means that the local (nominal) bit rate is
fixed regardless of the complexity of the underlying image
content, which is inefficient in terms of quantitative and per-
ceptual quality (e.g., consider the number of bits needed to
accurately encode a clear sky compared to a flower bed).

In practice, the entropy coder introduces some spatial
adaptivity based on the complexity and predictability of the
binary codes, but our training procedure does not directly
encourage the encoder to generate low-entropy codes. In-
stead, the loss function only pushes the network to maxi-
mize reconstruction quality over image patches. In order to
maximize quality across a full image for a target (average)
bit rate, we introduce a spatially adaptive bit rate (SABR)
post-process to dynamically adjust the local bit rate accord-
ing to a target reconstruction quality.

The results presented in Section 5 use a very simple bit
allocation algorithm, though a more sophisticated method
can be easily substituted. Given a target quality, each image
tile is reconstructed using as many iterations as necessary to
meet the target. As shown in Figure 1, each spatial location
in the code tensor corresponds to a 16 × 16 tile of pixels
in the original image. We calculate the per-tile quality by
first dividing the image into a grid of 8× 8 blocks and com-
puting the mean L1 error for each block. The quality score
for the 16 × 16 tiles is then taken as the maximum error
over its four sub-blocks. We use this approach because it
empirically balances noise-tolerance with local adaptivity,
e.g. we found that averaging over the full 16× 16 tile led to
visible artifacts for tiles that span both simple and visually
complex image content. Finally, we enforce a heuristic that
every tile must use between 50% and 120% of the target bit
rate to avoid potential boundary artifacts between tiles with
significantly different bit rates. We expect that the use of a
more accurate perceptual metric would make this heuristic
unnecessary.

Our decoder architecture requires a full tensor of bits so
missing entries must be filled. Although the network was
trained by mapping binary values to ±1, we found that us-
ing a fill value of zero led to the best reconstruction qual-
ity. We believe zero works well because the convolutional

layers use zero-padding, which pushes the network to learn
that zero values are uninformative. Zero is also halfway be-
tween the standard bit values, which can be interpreted as
the least biased value.

SABR requires a small addition to the bitstream gener-
ated by our model to inform the decoder about how many
bits are used at each location. This “height map” is loss-
lessly compressed using gzip and added to the bitstream.
To ensure a fair comparison, the total size of this metadata
is included in all of the bit rate calculations in Section 5.

3.4. SSIM Weighted Loss

Training a lossy image compression network introduces
a dilemma: ideally we would like to train the network using
a perceptual metric as the underlying loss but these metrics
are either non-differentiable or have poorly conditioned gra-
dients. The other option is to use the traditional L1 or L2

loss; however, these two metrics are only loosely related to
perception. To keep the best of both worlds, we propose a
weighted L1 loss between image y and a reference image x

L(x, y) = w(x, y)||y − x||1, w(x, y) =
S(x, y)

S̄

where S(x, y) is a perceptual measure of dissimilarity be-
tween images x and y and where S̄ is a dissimilarity base-
line. When doing compression, y is the decompressed ver-
sion of x: y = fθ(x) where θ are the compression model
parameters. During training, the baseline S̄ is set to the
moving average of S(x, y). It is not constant but can be con-
sidered as almost constant over a short training window. In
our experiments, the moving average decay was α = 0.99.
To actually perform the gradient update, the trick is to con-
sider the weight w(x, y) = S(x,fθ(x))

S̄
as fixed. This leads

to updating using θ′ = θ − ηw(x, fθ(x))∇θ||fθ(x)− x||1.
Intuitively, this weighted L1 loss is performing dynamic

importance sampling: it compares the perceptual distortion
of an image against the average perceptual distortion and
weighs more heavily the images with high perceptual dis-
tortion and less heavily the images for which the compres-
sion network already performs well.

In practice, we use a local perceptual measure of dis-
similarity. The image is first split into 8 × 8 blocks. Over
each of these blocks, a local weight is computed using
D(x, y) = 1

2 (1 − SSIM(x, y)) as the dissimilarity mea-
sure (DSSIM), where SSIM refers to the structural simi-
larity index [26]. The loss over the whole image is then
the sum of all these locally weighted losses. The weighting
process can then be thought as a variance minimization of
the perceptual distortion across the image, trying to ensure
the quality of the image is roughly uniform: any 8×8 block
whose perceptual distortion is higher than the average will
be over-weighted in the loss.



Kodak AUC (dB) Tecnick AUC (dB)
Method MS-SSIM SSIM PSNR MS-SSIM SSIM PSNR
Baseline 32.96 19.06 59.42 35.49 22.35 64.16
DSSIM 33.43 20.17 60.46 36.02 23.03 64.82
Prime 33.84 20.56 60.94 36.34 23.29 65.19
Best 34.20 21.02 61.40 36.85 23.67 65.66

Table 1. AUC for MS-SSIM (dB), SSIM (dB), and PSNR across
Kodak and Tecnick. Baseline uses Figure 2-a and is trained using
L1 reconstruction loss. DSSIM also uses Figure 2-a but is trained
using DSSIM reconstruction loss. Prime uses 3-priming (similar
to Figure 2-b) and DSSIM training loss. Best is the same as Prime
after more training steps.3 3-priming shows the best results, which
then continue to improve with additional training (last row).

4. Training

All experiments use a dataset of a random sampling of
6 million 1280 × 720 images on the web. Each minibatch
uses 128 × 128 patches randomly sampled from these im-
ages. The Adam optimizer [14] is used with an ε = 1.0,
β1 = 0.9 and a β2 = 0.999. All experiments were run with
10 asynchronous workers on NVIDIA Tesla K80 GPUs and
clipping all gradient norms over 0.5.

To understand the improvement due to perceptual train-
ing metric, separate from those due to hidden-state refine-
ments, we trained two baseline models (Figure 2-a): one
using L1 error for our training loss and the second using
our DSSIM loss. Both of these models were trained with a
learning rate of 0.5 and a batch size of 8, for 3.8M steps.

We then built on the improvements seen with DSSIM
training to investigate the improvements from hidden-state
priming (Figure 2-b) for 3-priming. This 3-Prime model as
trained in the same way as our two baseline models: with
same hyperparameters as above.

Finally, we trained additional models (all using DSSIM
training) to investigate k-diffusion for k = 0 (which is the
same as the DSSIM-trained baseline model), 1, 2, and 3.
For k = 1 to 3, we repeat the “Encoder Diffusion” and
“Decoder Diffusion” steps (Figure 2-c) k times before tak-
ing the next step’s outputs (bits, for the encoder, or recon-
structions, for the decoder) and we do that before every iter-
ation (not just the first, as in priming). For a fair comparison
between these models and the DSSIM-trained baseline, we
used a learning rate of 0.2, a batch size of 4, and a total of
2.2M steps.2

5. Results

In this section, we first evaluate the performance im-
provements provided to our compression architecture, us-
ing our proposed techniques: DSSIM training; priming; and
diffusion. Due to the fact that our methods are intended
to preserve color information, the computation of all the

2The smaller batch size was needed due to memory constraints, which
forced our learning rate to be lower.

k steps of Kodak AUC (dB) Tecnick AUC (dB)
Diffusion MS-SSIM SSIM PSNR MS-SSIM SSIM PSNR

0 31.89 18.75 58.73 34.34 21.78 63.18
1 33.05 19.62 59.91 35.41 22.52 64.23
2 32.85 19.38 59.81 35.28 22.12 64.13
3 33.40 19.87 60.35 35.68 22.70 64.70

Table 2. AUC for MS-SSIM (dB), SSIM (dB), and PSNR across
Kodak and Tecnick. All methods in this table used DSSIM for
training loss and used diffusion (similar to Figure 2-c) with differ-
ent numbers of steps between iterations.3 3-diffusion provides the
best performance in this test (but at a high computational cost).

metrics we report is performed in the RGB domain, follow-
ing [21, 23].

Next, we show the results for the best model that we have
trained to date, which uses 3-priming, trained with DSSIM
(but has trained for more steps than the models used in Sec-
tion 5.1). We compare this model against contemporary im-
age compression codecs (BPG (4:2:0); JPEG2000; WebP;
and JPEG) as well as the best recently published neural-
network-based approach [21] and [23].

We present results on both Kodak [15] and Tecnick [1]
datasets. The Kodak dataset is a set of 24 768×512 images
(both landscape and portrait) commonly used as a bench-
mark for compression. We also compare using the Tecnick
SAMPLING dataset (100 1200 × 1200 images). We feel
the Tecnick images are more representative of contempo-
rary, higher resolution content.

5.1. Comparative Algorithm Evaluation

In this subsection, all of our experiments use nominal
bit rates: neither entropy coding nor SABR were applied to
the RD curves before computing the area under the curve
(AUC) values listed in Tables 1 and 2.

We evaluate our results using AUC for peak signal-to-
noise ratio (PSNR), SSIM (dB) and MS-SSIM (dB). SSIM
(dB) and MS-SSIM (dB) are −10 log10(1−Q) where Q is
either SSIM [26] or MS-SSIM [27]. Both of these metrics
tend to have significant quality differences in the range be-
tween 0.98 and 1.00, making them difficult to see on linear
graphs and difficult to measure with AUC. This dB trans-
form is also supported by the original MS-SSIM [27] pub-
lication, which showed the mean opinion score is linearly
correlated with the MS-SSIM score after transforming that
score to the log domain. Subsequent compression studies
have also adopted this convention, if the methods were able
to achieve high-quality–compression results [9].

The Baseline and DSSIM models differ only in the train-
ing loss that was used (L1 or DSSIM). As shown in Table 1,
the DSSIM model does better (in terms of AUC) for all of
the metrics on both image test sets. Surprisingly, this is true
even of PSNR, even though the L1 loss function should be

3For Tables 1 and 2, no entropy compression or SABR was used: these
AUC numbers can not be compared to those in Section 5.2.



a)

b)

Figure 5. Our full method outperforms existing codecs at all but
the lowest bit rate where only BPG 420 matches our performance.
This figure shows MS-SSIM (dB) on Kodak: (a) our method com-
pared to [21], [19] and [23] (without entropy coding), and (b)
compared to standard image compression codecs. Graphs best
viewed on a display.

a)

b)

Figure 6. On the larger Tecnick dataset, our full method outper-
forms existing codecs at all but the lowest bit rate where BPG 420
has a small advantage. This figure shows MS-SSIM (dB) on Tec-
nick: (a) our method compared to [23] (results on Tecnick were
not available for [21] and [19]), and (b) compared to standard
image codecs. Graphs best viewed on a display.

closer to PSNR than the DSSIM-weighted L1 loss. The
Prime model (trained with DSSIM loss) does better than
the non-priming model, even when both are evaluated at the
same number of training steps (“Prime” versus “DSSIM” in
Table 1). The Prime model continues to improve with ad-
ditional training, as shown by the results labeled “Best” in
Table 1. While the runtime computation is increased by the
use of priming, the percent increase is limited since these
extra steps only happen before the first iteration (instead of
between all iterations, as with diffusion).

Table 2 reports our AUC results on a second set of mod-
els, comparing different numbers of diffusion steps (ex-
tensions of Figure 2-c). The results from this experiment
show that more diffusion (up to the 3 we tested) increases
reconstruction quality. However, as the number of diffu-
sion steps goes up, the resources used also increases: for
a k-diffusion network, compression/decompression compu-
tation and training times goes up linearly with k. In light
of these practical trade offs, we have focused on the Prime
model for our comparisions in Section 5.2.

5.2. Best Results Evaluation

The Prime model trained for 4.1 million steps is our best
model to date (called “Best” in the tables above). This sec-
tion evaluates the results when adding entropy coding and
SABR to this model.

In Figure 5-a, we compare our best model, with and
without entropy coding, to the work reported by Theis et
al. [21]. For our entropy coding we train the probability
modeler, described in [23], using the codes generated by
our model operating on the set of 6 million web images,
mentioned in Section 4.

Figures 5-a and 6-a also show our results using SABR
(in conjunction with entropy coding) to obtain even higher
compression rates. It should be noted that we do not re-
train the compression model (or the entropy-coding model)
to handle SABR: we use the previously trained models un-
changed. This is an area in which we could expect even
better performance from our model, if we did some amount
of retraining for SABR.

Compared to neural network-based methods, our best
model has a better MS-SSIM RD curve than [21, 23]. Our
model’s curve improves with entropy coding and improves
further with SABR.

In Figures 5-b and 6-b, we compare our best model
against many popular image compression codecs. We pro-
vide examples of our compression results, and those of
other popular codecs, in Figure 7.4 For these image exam-
ples, since each of the codecs allows only coarse-level con-
trol of the output bit rate, we bias our comparisons against

4Full-image examples are available in Supplementary material.



JPEG2000 WebP BPG 420 Our Method

0.250 bpp 0.252 bpp 0.293 bpp 0.234 bpp

0.502 bpp 0.504 bpp 0.504 bpp 0.485 bpp

0.125 bpp 0.174 bpp 0.131 bpp 0.122 bpp

0.125 bpp 0.131 bpp 0.125 bpp 0.110 bpp

0.250 bpp 0.251 bpp 0.251 bpp 0.233 bpp
Figure 7. Example patches comparing our Best-model results with JPEG2000 (OpenJPEG), WebP and BPG 420. For the most visible
differences, consider: (first row) the cross bar on door; (second row) the handrail and the hanging light in front of the dark wood; (third
row) the text; (fourth row) the pan edge and the plate rim; (fifth row) the outlines of the oranges and the crate edge. Image best viewed
zoomed in on a display.



Kodak Rate Difference % Tecnick Rate Difference %
Method MS-SSIM SSIM PSNR MS-SSIM SSIM PSNR

Rippel et al.[19] 58.11 – – – – –
Prime (EC + SABR) 43.17 39.97 27.14 45.65 40.08 17.36

Prime (EC) 41.70 36.51 19.29 44.57 36.82 9.73
BPG 444 40.04 44.86 56.30 44.10 44.25 55.54
BPG 420 37.04 46.94 54.85 36.27 43.02 48.68

Prime 36.32 30.89 12.20 35.05 26.86 -6.09
JPEG2000 (Kakadu) 31.75 22.23 28.29 35.18 27.44 27.08

WebP 26.85 29.85 36.33 24.28 23.35 23.14
JPEG2000 (OpenJPEG) 15.99 24.80 38.28 14.34 20.70 26.08

Theis et al.[21] 15.10 28.69 29.04 – – –
Toderici et al.[23] 12.93 -1.86 -13.34 -25.19 -44.98 -67.52

Table 3. Bjøntegaard rate-difference on MS-SSIM, SSIM and
PSNR for Kodak and Tecnick datasets. This shows the bit rate
difference across each metric (larger numbers are better). Codecs
are sorted in order of MS-SSIM bit-rate difference, while the best
result in each metric is bolded.

Kodak

Figure 8. Our approach (Prime) outperforms standard codecs and
many existing neural-network-based methods. This figure shows
rate savings (Bjøntegaard Delta) relative to JPEG under MS-SSIM
for the Kodak dataset. Standard codecs are shown in green, purple
represents recent research using neural networks [21, 23, 19], and
our methods are shown in blue.

Tecnick

Figure 9. Rate savings (Bjøntegaard Delta) relative to JPEG under
MS-SSIM for the Tecnick dataset. By this measure, two of our
approaches outperform current standard codecs and all of our ap-
proaches outperform previous research in network-based codecs.

our own model. Specifically, when doing our comparisons,
we always choose an average bit rate that is the same or
larger than the bit rate produced by our method (giving an
advantage to the other methods in the comparison). Quali-
tatively, our method tends to oversmooth at low bitrates at
the cost of improved color fidelity.

Finally, Table 3 and Figures 8 and 9 summarizes the rate
savings using Bjøntegaard Delta (BD) rate differences [6].
BD rate differences are the percent difference in area be-
tween two RD curves, after a logarithmic transform of the
bit rate. When computing BD rate savings on methods that
fail to deliver the full quality range, the difference in area

is only computed across quality levels provided by both
curves. BD rate differences use the log rate since the human
visual system is more sensitive to low-bit-rate areas than to
the high-bit-rate areas.5 The BD difference was originally
defined for PSNR, but since its publication, better measures
of quality have been proposed [27]. As a result, we are re-
porting the BD rate computed on the logarithmic transform
of MS-SSIM.

6. Conclusion

We introduced three techniques — hidden-state prim-
ing, spatially adaptive bit rates, and perceptually-weighted
training loss — and showed that they boost the perfor-
mance of our baseline recurrent image compression ar-
chitecture. Training with a perceptually-weighted L1 loss
improved our model’s performance on MS-SSIM, SSIM,
and PSNR. Hidden-state priming provides further improve-
ments to reconstruction quality, similar to that of diffusion
but with lower computational requirements during inference
and training. The quality improvements seen with priming
are related to initializing the hidden states within the net-
work with content-dependent values. Additionally, we’re
confident that this technique can be applied to other recur-
rent networks, not just compressive recurrent autoencoders.

The additional quality improvements seen with diffusion
are probably related to the increased spatial context avail-
able in the decoder: with 3-diffusion, the decoder’s context
nearly doubles, increasing from about 6(t+ 1) to 10(t+ 1)
“bit stacks” (where a bit stack occurs each 16 × 16 pix-
els). Finally, SABR can reduce the bit rate in the areas of
the image that are easier to compress. In our models, this
adaptivity more than makes up for the additional overhead
needed to send the SABR height map.

Combining these three techniques improves the MS-
SSIM rate-distortion curve for our GRU-based architec-
ture, surpassing that of recent neural-network-based meth-
ods ([21] and [23]) and many standard image codecs (BPG
420, WebP, JPEG2000, and JPEG). Our approach is still
not state of the art in MS-SSIM on Kodak when comapred
to [19]. The first main difference in our approach is we
present one model for all points on the rate-distortion plot
instead of needing multiple models for the entire range.
Secondly, our perceptually-weighed L1 loss function gave
a boost across all three of our tracked metrics, MS-SSIM,
SSIM and PSNR, while initial evidence showed optimizing
for MS-SSIM directly can give a large boost in SSIM based
metrics with a substantial decrease in others.

Our approach is the first recurrent neural-network-based
codec shown to outperform WebP and provide competitive
coding efficiency with some variants of BPG.

5The Supplementary material provide additional details about comput-
ing Bjøntegaard measures, as well as the quality-improvement BD results.
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