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Abstract

This paper is about temporal segmentation of human
actions in videos. We introduce a new model – temporal
deformable residual network (TDRN) – aimed at analyzing
video intervals at multiple temporal scales for labeling video
frames. Our TDRN computes two parallel temporal streams:
i) Residual stream that analyzes video information at its full
temporal resolution, and ii) Pooling/unpooling stream that
captures long-range video information at different scales.
The former facilitates local, fine-scale action segmentation,
and the latter uses multiscale context for improving accuracy
of frame classification. These two streams are computed by
a set of temporal residual modules with deformable convo-
lutions, and fused by temporal residuals at the full video
resolution. Our evaluation on the University of Dundee 50
Salads, Georgia Tech Egocentric Activities, and JHU-ISI
Gesture and Skill Assessment Working Set demonstrates that
TDRN outperforms the state of the art in frame-wise segmen-
tation accuracy, segmental edit score, and segmental overlap
F1 score.

1. Introduction
In this paper, we address action segmentation where the

goal is to label video frames with appropriate action classes.

Action segmentation is a basic vision problem, and of great

importance to a wide range of applications, including video

surveillance and robot navigation.

Recent approaches typically address this problem in

two steps: i) Extraction of spatial or spatiotemporal fea-

tures using convolutional neural networks, e.g., two-stream

CNNs [36] or local 3D ConvNets [43], and ii) Classifica-

tion of the extracted features using a one-directional model,

e.g., encoder-decoder temporal convolutional networks (ED-

TCN) [22], or bi-directional LSTM networks (Bi-LSTM)

[37, 17]. Although recurrent deep models have shown

promise in capturing latent temporal patterns [37, 17, 6],

they are hard to train [28], and have a limited span of atten-

tion [37].
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Figure 1: For action segmentation, TDRN takes frame-level

CNN features as input and outputs frame-wise action la-

bels. TDRN computes two processing streams: Residual

stream (marked red) that analyzes video information at its

full temporal resolution for precise action segmentation, and

Pooling/unpooling stream (marked blue) that captures tem-

poral context at different scales for accurate action recogni-

tion. The two streams are fused through a set of deformable

temporal residual modules (DTRMs). Best viewed in color.

Toward overcoming these limitations, we present a new

temporal convolutional model, named temporal deformable

residual network (TDRN). TDRN classifies every video

frame using a deep temporal residual network. The residual

network takes frame-level CNN features as input and com-

putes deformable convolutions along time at multiple tem-

poral scales, starting at the frame-level resolution. As shown

in Fig. 1, this computation is done in two parallel temporal

streams: i) Residual stream that analyzes video information
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at its full temporal resolution, and ii) Pooling/unpooling

stream that captures long-range video information at dif-

ferent scales. The first stream is aimed at resolving ambi-

guities about local, frame-to-frame segmentation, and the

second stream uses multiscale context for improving accu-

racy of frame classification. The temporal residual stream

and the temporal pooling stream are fused through a set of

deformable temporal residual modules (DTRMs), and cou-

pled with temporal residuals at the full temporal resolution.

In addition, TDRN computes deformable temporal convolu-

tions for modeling variations in temporal extents of human

actions, similar to deformable spatial convolution that has

been shown to improve object detection in images [3].

As our results demonstrate, the two-stream residual com-

putation and deformable temporal convolutions make TDRN

more robust against temporal transformations than recent

deep networks, including encoder-decoder temporal convolu-

tional networks (ED-TCNs) [25, 22], temporal convolutional

U-networks (TUNets) [34], and temporal residual networks

(TResNets) [15], illustrated in Fig. 2. As can be seen in

Fig. 2, ED-TCNs use a sequence of regular temporal convo-

lutions and temporal pooling/unpooling layers within a sin-

gle processing stream. TUNets simply concatenate features

computed in their unpooling path with the corresponding

features at the same temporal scale from the pooling path, as

indicated by the cyan arrows. TResNets add shortcut con-

nections (marked brown) between a layer and its succeeding

layer for allowing the gradients to propagate more effec-

tively through the network in learning. None of these models

use deformable temporal convolutions and two processing

streams since they all compute regular temporal convolutions

in a single processing stream. Unlike these related models,

we use two processing streams and deformable temporal con-

volutions, enabling robust action classification and accurate

action segmentation in videos.

We evaluate TDRN on the following benchmark datasets:

University of Dundee 50 Salads (50Salads), Georgia Tech

Egocentric Activities (GTEA) and JHU-ISI Gesture and Skill

Assessment Working Set (JIGSAWS). Our results demon-

strate that TDRN is capable of accurately capturing action

durations and transitions between distinct actions. Also,

TDRN outperforms the state of the art in frame-wise seg-

mentation accuracy, segmental edit score, and segmental

overlap F1 score.

Our key contributions include:

• A new fully-convolutional temporal residual network

that consists of two processing streams aimed at extract-

ing both multiscale temporal abstractions and frame-

level features for reliable action recognition and precise

action segmentation.

• We are not aware of any prior work that uses deformable

temporal convolutions; we show they improve action

segmentation over regular temporal convolutions.
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Figure 2: Deep architectures of recent work: (a) Encoder-

decoder temporal convolutional networks (ED-TCNs) [25],

(b) Temporal convolutional U-networks (TUNets) [34], (c)

Temporal residual networks (TResNets) [15]. A compari-

son of these architectures with our TDRN shown in Fig. 1

makes our differences obvious: none of these models use de-

formable temporal convolutions and two processing streams.

Best viewed in color.

• We outperform the state of the art in action segmenta-

tion on the 50Salads, GTEA and JIGSAWS datasets.

2. Related Work

This section reviews the most related work for action seg-

mentation and detection in which most of them are about

temporal modeling. A host of work on spatiotemporal mod-

eling for video recognition [41, 19, 45, 43, 36, 51, 2, 10, 11,

13, 46] and action detection [35, 18, 38, 16, 5] are beyond

the scope of this paper.

Action Segmentation. Existing approaches typically

first extract frame-level features, and then pass them to a

temporal model for frame labeling. For example, Yeung et

al. [48] use an attention LSTM network to model feature de-

pendencies over a fixed temporal interval. Singh et al. [37]

present a multi-stream bi-directional recurrent neural net-

work for fine-grained action detection. Fathi et al. [7, 9, 8]

use a segmental model that captures object states at the ac-

tion’s start and end. Richard et al. [32] resort to a statistical

language model for representing temporal and contextual

structure in videos of varying lengths. Kuehne et al. [21]

use Hidden Markov Models (HMMs) on dense-trajectory

features and propose an end-to-end generative approach for

action segmentation.

The approach of Lea et al. [22] is the most related to ours,

as they use two temporal convolutional networks for action

segmentation and detection. However, their model computes

regular temporal convolutions in a single processing stream,

whereas our TDRN computes deformable temporal convo-

lutions in two temporal streams. Ding et al. [6] replace the

convolutional decoder in the approach of Lea et al. [22]



with a bi-directional LSTM (Bi-LSTM) [14]. However, their

network is a hybrid of temporal convolutional network and

temporal recurrent network, and thus inherits the well-known

limitations of recurrent models, including difficult training

[28], and limited attention span [37].

Action Detection. A number of approaches to action

detection is also related to ours. For example, for action

detection, (a) Multi-region two-stream network [29] links

frame-level detections of the faster R-CNN [31]; (b) Re-

current models are learned from 3D skeleton data [26] and

under weak supervision [33]; (c) Reinforcement learning

is used for predicting temporal bounds of actions based on

observing only a fraction of the video [49]; (d) Structured

temporal pyramid models the temporal structure of actions

[52]; (e) Region convolutional 3D network (R-C3D) with

3D ROI pooling encodes video streams [47]; (f) Flow net-

work searches for temporal intervals with a maximum sum

of frame-wise classification scores [50]; (g) Temporal convo-

lutional model extracts context of action proposals through

a pair-wise sampling layer [4]; and (h) Temporal single shot

action detector network detects action instances [27].

In some of the aforementioned approaches, video features

are usually sampled at two temporal scales for generating

good action proposals. Also, some of the approaches consist

of modules that are typically not jointly trained end-to-end.

In contrast, our TDRN fuses multiscale temporal abstractions

with features extracted at the frame-wise temporal scale, and

can be trained in an end-to-end fashion.

There are some similarities between TDRN and recent

work on semantic image segmentation [30], which uses a

two-stream spatial residual network to compute pixel-level

semantic labeling in the image. In contrast, TDRN com-

putes temporal residual convolutions, which are additionally

deformable [3], i.e., capable of modeling variations of tempo-

ral extents of actions via deformable temporal convolutions.

Hence, we extend [30, 3] from the spatial to temporal do-

main, where TDRN also analyzes multiple temporal scales.

3. Temporal Deformable Residual Network
TDRN computes the residual and pooling/unpooling

streams in parallel. As shown in Fig. 1, features along the

residual stream are computed using a sequence of residuals at

the full temporal resolution, whereas features in the temporal

pooling stream are computed at coarser temporal scales by a

sequence of deformable temporal convolutions followed by

temporal pooling and corresponding unpooling. The residual

stream operates at the finest temporal scale for accurately lo-

calizing action boundaries. The temporal pooling/unpooling

stream computes contextual features at multiple temporal

scales for accurate action recognition using a sequence of

deformable temporal residual modules (DTRMs).

Fig. 3 shows key differences between a common temporal

residual module and our DTRM. The former has only one

+f1:T/2n
L-1

f1:T/2n
L

Temporal Residual Module

F(         ;      )f1:T/2
n

L-1
W

L

Deformable Temporal Residual Module

F( , ; )

G( , ; )

f1:T
L

+f1:T
L-1

f1:T/2n
L-1

f1:T/2n
Lf1:T

L-1
f1:T/2n

L-1
W

L

(a) A temporal residual module.

(b) A deformable temporal residual module.

f1:T
L-1

f1:T/2n
L-1

W
L

Figure 3: Key differences between: (a) Common tempo-

ral residual module with a single input and output; and (b)

Our deformable temporal residual module (DTRM) with

two inputs and two outputs. The input represents feature

sequences fL−1
1:T/2n and fL−1

1:T with temporal lengths of T/2n

and T , which are computed by the previous layer L − 1.

In (a), the output features are computed by a standard tem-

poral convolution, F (fL−1
1:T/2n ;W

L). In (b), the output is

computed using a cascade of a deformable temporal convo-

lution, G(fL−1
1:T , fL−1

1:T/2n ;W
L), followed by a convolution

and unpooling, F (fL−1
1:T , fL−1

1:T/2n ;W
L).

input and one output, while DTRM has two inputs and two

outputs. This is because DTRM simultaneously operates on

both the residual and pooling streams.

DTRM takes as input two feature sequences, fL−1
1:T/2n and

fL−1
1:T , with temporal lengths of T/2n and T , which are com-

puted by the previous layer L − 1 in TDRN. Specifically,

fL−1
1:T/2n is produced by the pooling stream and fL−1

1:T comes

from the residual stream of L− 1 layer. Note that the layer

number L is correlated with the temporal scale n at which the

features are computed in TDRN. These are depicted in Fig. 1

as “vertical” and “horizontal” processing levels in TDRN,

respectively. For computing the output feature sequences,

fL
1:T and fL

1:T/2n , DTRM uses a deformable temporal convo-

lution, G(fL−1
1:T , fL−1

1:T/2n ;W
L), followed by a convolution

and unpooling, F (fL−1
1:T , fL−1

1:T/2n ;W
L), as

fL
1:T = fL−1

1:T + F (fL−1
1:T , fL−1

1:T/2n ;W
L)

fL
1:T/2n = G(fL−1

1:T , fL−1
1:T/2n ;W

L)
(1)

where WL denotes network parameters. In (1), the output

of G is input to F to produce the residual stream.

It is worth noting that our TDRN has similar training

characteristics as ResNet [15], since losses can be easily

propagated back to the input through the residual stream. In

the following section, we describe DTRM in greater detail.
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Figure 4: DTRM: Given the residual and pooling features

of the previous layer as inputs, DTRM applies pooling to

the residual stream and then concatenates the result with the

input pooling stream. The concatenated features are then

processed by the deformable temporal convolution, resulting

in the output pooling features, fL
1:T/2n . Also, a temporal

residual is computed from fL
1:T/2n by the 1 × 1 temporal

convolution and temporal unpooling, resulting in output

residual features, fL
1:T .

3.1. Deformable Temporal Residual Module

The pooling and residual streams in our TDRN are fused

through a sequence of DTRMs. Fig. 4 illustrates the archi-

tecture of DTRM. DTRM takes as input the residual and

pooling features of the previous layer, fL−1
1:T and fL−1

1:T/2n ,

where the pooling sequence of features is computed at a

coarser temporal resolution, n, and hence is 2n times shorter

in time than the residual sequence of features. DTRM first

applies temporal pooling to fL−1
1:T , and then concatenates

the result with fL−1
1:T/2n . The concatenated features are then

processed by the deformable temporal convolution module,

explained in greater detail in Sec. 3.2, resulting in the output

pooling features, fL
1:T/2n , of the same length as the cor-

responding input pooling features fL−1
1:T/2n . From fL

1:T/2n ,

DTRM computes output residual features, fL
1:T , using the

1× 1 temporal convolution and temporal unpooling.

3.2. Deformable Temporal Convolution Module

The deformable temporal convolution module is aimed at

improving standard fixed-structure temporal convolutions in

modeling temporal variations of action boundaries along the

video. It consists of a deformable temporal convolution layer

followed by a Normalized Rectified Linear Unit (NRLU)

[22], defined as follows:

NRLU(·) = ReLU(·)
max(ReLU(·)) + ε

(2)

where ReLU represents a ReLU layer, max(·) returns the

maximal ReLU activation within the layer, and ε = 0.00001.

Below, we specify deformable temporal convolution.

A temporal convolution can be decomposed into two

steps: sampling of input features at specified moments in

1
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Figure 5: An illustration of deformable temporal convolution

with kernel size 3 and dilation size 1. Both the temporal off-

sets and output features are obtained by applying a temporal

convolutional layer over the same input feature maps. The

offset fields have the same size as the input feature map.

time, and weighted summation of the sampled features. Anal-

ogous to deformable spatial convolutions of objects in im-

ages [3], in our approach, the temporal sampling locations

that specified by the convolutional kernel are augmented

with variable temporal offsets, which in turn are learned

end-to-end along with the other network parameters.

Let I denote the time interval of input feature map fin,

and W denote convolution weights. Note that I defines

the temporal receptive field size as well as the dilation size.

The temporal convolution consists of sampling over I and

summing the weighted sampled values with weights W as

fout(t0) =
∑

ti∈I
W (ti) · fin(t0 + ti). (3)

Deformable convolution specifies a set of offsets �=
{�ti|i = 1, 2, · · · , |I|}, and augments the temporal sam-

pling in (3) as

f deform
out (t0) =

∑

ti∈I
W (ti) · fin(t0 + ti +�ti). (4)

From (4), the sampling is defined over variable time mo-

ments ti +�ti.
Note that �ti is typically learned as a real number. Thus,

t0 + ti + �ti is also a real number. We identify the set

of nearest integer temporal locations to t0 + ti + �ti in

the feature map, and use bilinear temporal interpolation to

compute the ith input feature for the summation in (4).

As illustrated in Fig. 5, the temporal offsets {�ti} are

obtained by applying a temporal convolutional to the input

feature maps. The kernel size and the dilation size of the

temporal convolution kernel for computing the offsets are

the same as those of the temporal kernel used for computing

output features (e.g., 3 × 1 with dilation 1 in Fig. 5). The

resulting offset fields have the same size as the input fea-

ture map. During training, both the temporal convolutional

kernel for generating the output features and the kernel for

generating the offsets are learned end-to-end simultaneously.



Dataset 50Salads (mid) GTEA JIGSAWS

Model F1@{10,25,50} Edit Acc F1@{10,25,50} Edit Acc F1@{10} Edit Acc

ED-TCN [22] 68.0,63.9,52.6 59.8 64.7 72.2,69.3,56.0 - 64.0 89.2 84.7 80.8

TUnet [34] 59.3,55.6,44.8 50.6 60.6 67.1,63.7,51.9 60.3 59.9 85.9 79.8 80.2

TResNet [15] 69.2,65.0,54.4 60.5 66.0 74.1,69.9,57.6 64.4 65.8 86.2 85.2 81.1

TDRN 72.9,68.5,57.2 66.0 68.1 79.2,74.4,62.7 74.1 70.1 92.9 90.2 84.6

Table 1: Performance comparison with respect to the most related temporal convolution models including ED-TCN [22],

TUNet [34] and TResNet [15].

Layer/Module Kernel Specification

FC Dense(C, ’softmax’)

Conv Conv1D(64, 50, 1, 1)

DTRM Conv1D(64, 50, 1, 1, Offsets(96, 50, 1, 1))

DTRM Conv1D(96, 50, 1, 1, Offsets(64, 50, 1, 1))

DTRM Conv1D(64, 50, 1, 1, Offsets(64, 50, 1, 1))

Conv Conv1D(64, 50, 1, 1)

Table 2: TDRN architecture: The temporal convolution ker-

nel is described in the same format as in Keras [1], i.e.,

Conv1D(filters, kernel size, strides, dilation rate). The last

argument of a DTRM kernel specifies the temporal convolu-

tion kernel corresponding to offsets. C denotes the number

of action classes including background class. The fully-

connected layer, Dense, is applied to every temporal window

of the input video.

4. Network Configurations and Training

Our TDRN consists three DTRMs, which are imple-

mented with Keras [1] and TensorFlow. As input, TDRN

uses a set of frame-level video features computed by CNNs.

We use the same CNN features as in [22]. The output of

TDRN is the sequence of action labels assigned to video

frames. A detailed description of each module in TDRN

is summarized in Tab. 2. For simplicity, Tab. 2 omits the

details of NRLUs that follow every deformable temporal

convolution layer in DTRM and every temporal convolution

layer in TDRN. They are fully specified in Sec. 3.2.

Parameters of TDRNs are learned using the categorical

cross entropy loss with Stochastic Gradient Descent and

ADAM [20] step updates. The batch size and the number

of epoches are 8 and 200, respectively. Dropouts are also

applied in all the temporal convolutional layers.

Note that n does not require careful tuning, because it is

not a free parameter, but set to a fixed value that depends on

a given network architecture. Specifically, n is uniquely de-

termined by the number of pooling and unpooling operations

in the network, as the pooling reduces the temporal length

of video processing by a half, and the unpooling doubles the

temporal length of video processing. For the model depicted

in Fig. 1 and summarized in Tab. 2, there are 3 residual mod-

ules (DTRMs) and 2 pooling/unpooling operations, so the

values of n in each of the 3 DTRMs, bottom to top, must be

1, 2 and 1, respectively. We use the same architecture and

hence the same values of n for all datasets.

5. Experimental Results

We conduct experiments on three challenging action seg-

mentation datasets, including the University of Dundee 50

Salads (50Salads) [40], Georgia Tech Egocentric Activities

(GTEA) [9] and the JHU-ISI Gesture and Skill Assessment

Working Set (JIGSAWS) [12]. For evaluation, we use three

standard metrics, including F1@k, edit score and accuracy

of frame labeling.

5.1. Datasets, Metrics and Baselines

Datasets. The 50Salads contains 50 videos with 25 people

preparing salad. Each video contains 9000 to 18000 frames

with accelerometer data, depth information, RGB data and

action label. As input to TDRN, we use the same spatial

CNN features as in [22], where the CNN is trained on RGB

images showing 17 mid-level action classes. For evaluation

on this dataset, we perform the same 5-fold cross-validation

as the state of the art, and report the average results.

The GTEA dataset contains 28 videos of seven fine-

grained types of daily activities in a kitchen. An activity

is performed by four different subjects and each video con-

tains about 1800 RGB frames, showing a sequence of 20

actions including the background action. For fair compar-

ison, input to TDRN are the same CNN features as those

used in [22]. For this dataset, we perform the same 4-fold

cross-validation as prior work, and report the average results.

The JIGSAWS dataset contains 39 surgical videos with

10 different actions. Each video contains about 3000 frames

showing about 20 actions. For fair comparison, we use the

same input features of 39 suturing videos as in [25, 22], and

perform the same 8-fold cross-validation as prior work, and

report the average results.

As in related work [22], we first downsample the video

frames and then handle different lengths of downsampled

video clips as follows. We first identify the maximum tem-
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Figure 6: Action segmentations for a sample test video named rgb-22-2.avi from the 50 Salads dataset. Top-down, the rows

correspond to ground truth sequence of actions {place lettuce into bowl, cut cheese, place cheese into bowl, peel cucumber,

background, cut cucumber, place cucumber into bowl, mix ingredients, serve salad onto plate, add dressing}, and predictions

of TDRN, TRN, ED-TCN [22], ST-CNN [23], Bi-LSTM [37] and Dilated TCN [22].

poral length in the dataset, and then pad zeros to those clips

that are shorter than the maximum length.

Metrics. For all the three datasets, we use the following

evaluation metrics as in [22]: frame-wise accuracy, segmen-

tal edit score, and segmental overlap F1 score with threshold

k/100, denoted as F1@k. Frame-wise accuracy is one of

the most common evaluation metrics for action segmenta-

tion. Its drawback is that it does not take into account the

temporal structure of the prediction. Consequently, results

with large qualitative differences may have the same frame-

wise accuracy. Also, this metric does not capture the case of

oversegmentation, when the results do not respect the true

temporal continuity of human actions, and yet score high

frame-wise accuracy. To address these limitations, evalua-

tions presented in [23, 24] additionally use a segmental edit

score, which penalizes oversegmentation. The approach of

[22] uses F1@k as a suitable metric for testing both action

segmentation and action detection, since it also penalizes

oversegmentation errors, but ignores minor temporal shifts

between the predictions and ground truth (which might arise

from annotation noise). F1@k score is determined by the

total number actions but not depend on the duration of each

action instance. It is a metric that similar to mean aver-

age precision (mAP) with an Intersection-Over-Union (IoU)

overlap criterion which is commonly used in object detec-

tion.

Baselines. For ablation studies, we specify the following

TDRN variants: (1) TRN : TDRN without deformable con-

volution (i.e., uses a standard temporal convolution); and

(2) TDRN+UNet : TDRN with added TUnet connections,

marked cyan in Fig. 2. We also compare with the follow-

ing closely related work: (3) Spatial CNN [23]: Frame-wise

classification using CNN features of a single RGB frame that

capture object texture and spatial location; (4) ST-CNN [23]:

Temporal convolutional filter that builds on top of spatial

CNN to capture scene changes over the course of action; (5)

Bi-LSTM [37]: Bi-directional temporal LSTM; 6) ED-TCN

50 Salads (mid) F1@{10,25,50} Edit Acc

Spatial CNN [23] 32.3,27.1,18.9 24.8 54.9

IDT+LM [32] 44.4,38.9,27.8 45.8 48.7

Dilated TCN [22] 52.2,47.6,37.4 43.1 59.3

ST-CNN [23] 55.9,49.6,37.1 45.9 59.4

Bi-LSTM [37] 62.6,58.3,47.0 55.6 55.7

ED-TCN [22] 68.0,63.9,52.6 59.8 64.7

TRN 70.2,65.4,56.3 63.7 66.9

TDRN+UNet 69.6,65.0,53.6 62.2 66.1

TDRN 72.9,68.5,57.2 66.0 68.1

Table 3: Results on 50 Salads (mid).

[22]: encoder-decoder temporal convolution neural network;

and 7) Dilated TCN [22]: encoder-decoder temporal con-

volution neural network with dilated temporal convolution.

In addition, we compare with the baselines IDT+LM [32],

EgoNet+TDD [39], and MSM-CRF [42] and TCN [25] on

50Salads, GTEA and JIGSAWS, respectively.

In our experiments, for fair comparison, we use the same

number of temporal convolution layers and kernels as in

[22].

5.2. Comparison with Convolution Models

Tab. 1 presents a comparison of TDRN with the most

related temporal convolution models, including ED-TCN

[22], TUnet [34] and TResNet [15], illustrated in Fig. 2. The

table shows that the performance of TUnet is worse than

that of ED-TCN, and that TResNet is able to improve over

ED-TCN. Our TDRN outperforms the three related models

on all of the datasets. This suggests advantages of explicitly

computing the pooling and residual feature streams in TDRN

for capturing contextual and fine-scale details, respectively,

whereas the three related models do not explicitly compute

these streams, as depicted in Fig. 2.



GT

TDRN

TRN

ED-TCN

ST-CNN

Bi-LSTM

DilatedTCN

Acc

89.6

83.9

80.2

74.8

67.4

66.4

Figure 7: Action segmentations for a sample test video named S3-CofHoney-C1.mp4 from the GTEA dataset. Top-down, the

rows correspond to ground truth sequence of actions { background, take, background, take, open, background, scoop, pour,

background, scoop, pour, background, put, close, background, take, background, open, background, pour, background, put,

close, background, take, background, open, background, pour, put, close, background, stir }, and predictions of TDRN, TRN,

ED-TCN [22], Bi-LSTM [37], ST-CNN [23] and Dilated TCN [22].

GTEA F1@{10,25,50} Edit Acc

Spatial CNN [23] 41.8,36.0,25.1 - 54.1

ST-CNN [23] 58.7,54.4,41.9 - 60.6

Bi-LSTM [37] 66.5,59.0,43.6 - 55.5

Dilated TCN [22] 58.8,52.2,42.2 - 58.3

ED-TCN [22] 72.2,69.3,56.0 - 64.0

EgoNet+TDD [39] - - 64.4

TRN 77.4,71.3,59.1 72.2 67.8

TDRN+UNet 78.1,73.8,62.2 73.7 69.3

TDRN 79.2,74.4,62.7 74.1 70.1

Table 4: Results on GTEA.

5.3. Comparison with the State of the Art

50Salads. Tab. 3 presents the results of the state of the

art, TDRN and its variants. As can be seen, TDRN gives

the best performance, since TDRN accounts for multiscale

long-range/high-order temporal dependencies as well as

frame-level features. Also, TDRN outperforms its variant

TRN which uses a standard temporal convolution, suggest-

ing that TDRN is more robust to temporal variations of

action boundaries than TRN. We also observe that augment-

ing TDRN with UNet-like connections in the variant called

TDRN+UNet deteriorates performance of TDRN. This is

consistent with the results presented in Sec. 5.2. Fig. 6 quali-

tatively compares our segmentation results with those of the

state of the art on a sample test video from the 50 Salads

dataset. As can be seen, TDRN does not suffer from over-

segmentation. TDRN produces more accurate action recog-

nition than ED-TCN. For example, in Fig. 6, ED-TCN com-

pletely misclassifies the second action in the video, while

TDRN is able to generate partially correct prediction. Also,

Fig. 6 shows that TDRN predicts more precise action bound-

aries. This suggests that using deformable temporal convolu-

tion is critical for improving accuracy of prediction of action

boundaries.

GTEA. Tab. 4 shows that TDRN and its variants achieve

superior segmental overlap F1 score, segmental edit score

and frame-wise accuracy than the baselines on the GTEA

dataset. Among the state of the art, the best accuracy was

achieved by the approach of [39], which combines CNN

features with trajectory-pooled deep-convolutional descrip-

tors (TDD) [44]. This suggests that our results could be

further improved by incorporating the TDD features. Fig. 7

qualitatively compares our segmentation results with those

of the state of the art on a sample test video from the GTEA

dataset.

JIGSAWS. Tab. 5 compares TDRN with the state of the art

on the JIGSAWS dataset. Similar to the results on 50Salads

and GTEA, TDRN achieves superior performance in all the

three metrics. A qualitative comparison on a sample test

video from JIGSAWS is depicted in Fig. 8.

In general, we find that explicit capturing of long-range

temporal dependencies by TDRN makes its predictions more

reliable than that of the state of the art, especially in cases

when distinct actions are visual very similar. For example, in

Fig. 6, ED-TCN wrongly predicts the ground truth class peel
cucumber as background while neglecting the temporal de-

pendencies between consecutive action pair {peel cucumber,
cut cucumber}. On the other hand, TDRN manages to cor-

rectly predict peel cucumber most likely because it explicitly

accounts for long-range action dependencies. We also find

similar examples in the results on the GTEA and JIGSAWS

datasets (see Fig. 7 and Fig. 8). Empirically, we find that

our TDRN sometimes misses the prediction of extremely

short action instance that fall in between two long actions,

as shown in Fig. 6 and Fig. 7.

5.4. Effect of Kernel Size and Network Depth

We study performance of TDRN as a function of varying

kernel size and network depth, i.e., varying temporal recep-

tive size and number of DTRMs. Fig. 9 shows F1@10 score

of our TDRN on 50Salads (mid). For all network depths, we

observe that the score first increases and then drops as the

kernel size becomes larger (i.e., when using longer temporal
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Figure 8: Action segmentations for a sample test video named Suturing-B002.avi from the JIGSAWS dataset. Top-down, the

rows correspond to ground truth sequence of actions in different gestures {G1, G5, G8, G2, G3, G6, G4, G2, G3, G6, G4, G2,

G3, G6, G4, G2, G3, G6, G11}, and predictions of TDRN, TRN, Bi-LSTM [37], ED-TCN [22], ST-CNN [23] and Dilated

TCN [22].

JIGSAWS F1@{10} Edit Acc

MSM-CRF [42] - - 71.7

Spatial CNN [23] - 37.7 74.0

ST-CNN [23] 78.3 68.6 78.4

Bi-LSTM [37] 77.8 66.8 77.4

ED-TCN [22] 89.2 84.7 80.8

TCN [25] - 83.1 81.4

TRN 91.4 87.7 83.3

TDRN+UNet 92.1 89.4 83.9

TDRN 92.9 90.2 84.6

Table 5: Results on JIGSAWS.

context). This suggests the importance of selecting a suitable

kernel size. Our TDRN achieves the best score when the

number of DTRMs is 3 (i.e., network depth 6 as specified

in Tab. 2) and the kernel size is 50 on the 50Salad dataset.

Our optimal network depth agrees with that in [22]. That is,

we use the same architecture as specified in Tab. 2 for all

datasets for fair comparison with [22].

Note that TDRN training takes 10x less time than for

Bi-LSTM, on a Telsa K80 Nvidia gpu card. This is due to

independent activations within each temporal convolution

layer in TDRN while the activations within Bi-LSTM depend

on its previous activations. Hence, for our TDRN, operations

can be computed simultaneously in batches.

6. Conclusion

We have presented a new deep architecture, called tempo-

ral deformable convolution neural network (TDRN), for ac-

tion segmentation in videos. TDRN consists of two process-

ing streams: a temporal pooling stream that captures long-

range and high-level features at multiple temporal scales,

and a temporal residual stream that computes features at

the same frame-level temporal resolution as the input video.

As the pooling stream accounts for temporal context, it is

aimed at improving action recognition. The residual stream
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Figure 9: F1@10 of TDRN as a fucntion of temporal kernel

size and network depth on 50Salads (mid).

is aimed at improving localization of action boundaries. The

two streams are aggregated by a cascade of deformable tem-

poral residual modules, each computing deformable tempo-

ral convolutions for modeling temporal variations in action

boundaries.

Our empirical evaluation on the benchmark University

of Dundee 50 Salads (50Salads), Georgia Tech Egocentric

Activities (GTEA) and JHU-ISI Gesture and Skill Assess-

ment Working Set (JIGSAWS) demonstrates that TDRN

outperforms the state-of-the-art convolution and temporal

convolution models. TDRN produces more accurate action

boundary detections, which suggest advantages of our end-

to-end learning of deformable temporal convolution over us-

ing the standard temporal convolution. Also, TDRN’s results

tend to better respect common-sense temporal arrangement

of actions, due to its explicit learning of long-range temporal

dependencies. We have empirically found that TDRN some-

times poorly segments very short actions that fall in between

two long actions.
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