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Abstract

We present a novel method to incorporate the recent
advent in static saliency models to predict the saliency in
videos. Our model augments the static saliency models
with the Attentional Push effect of the photographer and
the scene actors in a shared attention setting. We demon-
strate that not only it is imperative to use static Atten-
tional Push cues, noticeable performance improvement is
achievable by learning the time-varying nature of Atten-
tional Push. We propose a multi-stream Convolutional Long
Short-Term Memory network (ConvLSTM) structure which
augments state-of-the-art in static saliency models with dy-
namic Attentional Push. Our network contains four path-
ways, a saliency pathway and three Attentional Push path-
ways. The multi-pathway structure is followed by an aug-
menting convnet that learns to combine the complementary
and time-varying outputs of the ConvLSTMs by minimiz-
ing the relative entropy between the augmented saliency
and viewers fixation patterns on videos. We evaluate our
model by comparing the performance of several augmented
static saliency models with state-of-the-art in spatiotempo-
ral saliency on three largest dynamic eye tracking datasets,
HOLLYWOOD2, UCF-Sport and DIEM. Experimental re-
sults illustrates that solid performance gain is achievable
using the proposed methodology.

1. Introduction

Visual attention is a temporal selection mechanism in
which a subset of available sensory information is chosen
for further processing in the human visual system. Visual
attention tracking- determining where, and to what, peo-
ple are paying attention while viewing static photographs
or while watching videos and cinematic movies- has at-
tracted much interest recently. Despite the many applica-
tions of computational visual attention models for dynamic
stimuli such as visual surveillance [3], human-robot inter-

Figure 1: Attentional Push Cues: (top) Actor gaze shift: Actors
gaze dynamically directs the viewers attention; (middle) Rapid
scene changes: The viewers attention is pushed to the center after
rapid scene changes; (bottom) Bounce of Attention: An attended
actor is moved out of the video frame and pushes the viewers at-
tention to the center.

action [18], video compression [19], and advertising [55],
the majority of the existing models focus on static images
and spatiotemporal visual attention models are a relatively
unexplored problem.

Almost all computational visual attention models are
based on Treisman and Gelades feature integration theory
[61] and the Koch and Ullmans [35] feed-forward neural
model and are inspired by the pioneering work of Itti et
al. [28] where early visual features across multiple scales
are linearly combined into a static saliency map. Tradi-
tional spatiotemporal saliency models have also benefited
from employing early visual features or other static hand-
crafted features, along with various motion-based features
to capture the spatiotemporal nature of dynamic stimuli.
The addition of temporal dimension in videos makes dy-
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namic visual attention modeling a much more challenging
task. Since the added dimension not only requires signif-
icantly more data processing, it also needs the computa-
tional model to effectively fuse the static and the dynamic
features, for even a non-salient (in the static sense) region
might have attention allocated to it due to different motion
direction. In addition, while the viewing duration of a video
frame is limited to a fraction of a second, static images can
be viewed leisurely, which complicates moving from image
to video saliency.

The recent publication of large-scale eye movement
datasets (SALICON [29] and iSUN [66]) has enabled the
static visual attention models to benefit from more advanced
learning-based techniques, namely deep convolutional neu-
ral networks (convnets). The resulting performance gain of
the static convnet-based models has been to the extent that
newer models achieve only marginal improvements over
state-of-the-art (the MIT saliency benchmark [6] and [30]).
However, these advancements are yet to be employed by the
spatiotemporal saliency models, many of which only con-
sider simple motion cues and are mere straightforward ex-
tension of static models (see [32] for a recent review). To
the best of our knowledge, the only recent convnet-based
spatiotemporal saliency models are: the CMASS method
[45], in which shallow neural nets are trained to fuse static
hand-crafted features with dense optical flow fields; [10]
where a five-layer convnets is trained on RGB color planes
and residual motion for each video frame; and the recent
work in [39], where RGB color planes, dense optical flow
map, depth map and the previous saliency map are fed to a
seven-layered encoder-decoder structure. All three models
employ very short-term and fixed temporal information, ob-
tained from every two consecutive frames, and do not take
into account longer temporal correlations between video
frames.

In addition to the relative lack of research and the short-
term temporal span of spatiotemporal visual attention mod-
els, recent research has shown that even state-of-the-art in
static models, including both traditional hand-crafted fea-
tures and data-driven convnets, suffer from inability to ex-
ploit semantic scene information [57], [5], [8] and [21]. For
instance, the effect of the gaze direction of the scene actors
on the viewers attention has been studied well, e.g. [53],
[37], [9], [60], [4], [8], and has been used as a high-level im-
age semantic in recent static models [47], [50], [21]. Specif-
ically, [21] introduced the idea that by considering the scene
actors as active and the viewers as passive participants in
a shared attention setting, it becomes possible to augment
static saliency models with the gaze direction of the scene
actors. The model in [21] formulated the manipulating ef-
fect of the actors upon the viewers attention as an Atten-
tional Push effect, in which an abstract scene information,
i.e. actors gaze here, is used to enhance the saliency of some

other image region, i.e. the gazed-at region. The Atten-
tional Push effect is important in the sense that nearly all tra-
ditional hand-crafted features and data-driven convnets are
restricted to use a local neighborhood of image regions for
their power to attract the viewers’ attention and employing
attentional cues that push the viewers attention can greatly
benefit the current models. In addition, while effective in
augmenting static visual attention models, the Attentional
Push effect becomes stronger in dynamic situations, for the
viewer is in a more immersive shared attention setting and
is more likely to be affected by Attentional Push.

The model in [21] is limited to a single Attentional Push
cue, yet, there are other such cues arising from the literature.
One of the most prominent of these is the central bias effect,
which have been explicitly infused in many modern static
visual attention models [13], [31], [36], [62] and [64]. The
fact that even deep convnet-based saliency models such as
[36] and [13], which are based on the VGG-16 [58] and the
ResNet-50 [24] networks, need to explicitly combine cen-
tral bias maps with deep features is evidence to the fact that
even a seemingly straightforward Attentional Push cue such
as central bias cannot be learned with the location invari-
ance feature of convnets. However, the central bias effect
can be seamlessly integrated in the shared attention setting,
by treating the photographer as an active participant which
tries to put semantically salient elements in the center of the
frame and thus, pushes the viewers attention. Although the
center bias effect decreases with dynamic stimuli [42], its
dynamic counterpart, i.e. abrupt scene changes, similarly
affect the viewers attention as assessed in [48]. In addition,
[59] shows the bounce of the viewers attention back to the
center of the screen when tracking an actor which moves off
the screen to one side.

In this work we show that not only it is imperative
to incorporate Attentional Push in spatiotemporal models,
but also noticeable performance improvement is achievable
by learning its time-varying effect on the viewers atten-
tion in social scenes (everyday scenes depicting human ac-
tivities). We design a novel spatiotemporal saliency aug-
mentation model which benefits from the recent advent in
static saliency to estimate video saliency. Here, we ex-
tend the model in [21] by including the photographer in
the shared attention setting and augment state-of-the-art in
static saliency with dynamic Attentional Push. We propose
an end-to-end trainable multi-stream Convolutional Long
Short-Term Memory network (ConvLSTM) structure. Our
network contains four pathways, a saliency pathway and
three Attentional Push pathways, i.e. actors gaze, atten-
tional bounce and abrupt scene changes as shown in 1. The
saliency pathway embeds static saliency models and cap-
tures the temporal dependencies between consecutive video
frames by sequentially analyzing the static saliency maps in
the ConvLSTM recurrent mechanism. The first Attentional



Push pathway contains a deep convnet which learns to fol-
low the actors gaze on a 2-D spatial grid. This is then pro-
cessed by a ConvLSTM to capture the dynamic influence of
the actors gaze on viewers attention. In Section 4.3, we re-
port the performance after removing the recurrent structure
and show that although static Attentional Push is to some
extent effective for dynamic stimuli, solid performance im-
provement is achievable by employing the dynamic nature
of Attentional Push with the recurrent mechanism. The sec-
ond and the third Attentional Push pathways are responsible
to infuse 2-D Gaussian center bias priors upon the detection
of attentional bounce and abrupt scene changes. For each
case, the Gaussian priors are fed to a ConvLSTM which
learns their temporal effect. The multi-pathway structure
is followed by an augmenting convnet that combines the
outputs of the four ConvLSTM and generates augmented
saliency for each video frame. For training, validating and
performance evaluation of the proposed model, we use the
largest datasets available for video saliency, i.e. HOLLY-
WOOD2 [43], UCF-Sport [43] and DIEM [44] datasets.
Partial annotations for the scene actors head and gaze loca-
tion are provided and used for training and validation (see
Section 4.1).

The contribution of this work is threefold: First, we pro-
pose a novel spatiotemporal visual attention model that in-
corporates state-of-the-art in static saliency and learns long-
term temporal dependencies to estimate video saliency.
Second, we expand the notion of Attentional Push to dy-
namic stimuli and show its effectiveness in augmenting
static saliency in dynamic scenes. Third, we provide com-
prehensive experimental evaluation on publicly available
video saliency datasets which demonstrates significant im-
provement in predicting viewers fixation patterns on videos
containing human activities. The rest of this paper is orga-
nized as follows. Section 2 presents related work. We ex-
plain the structure and the training scheme for the proposed
model in Section 3. Section 4 outlines the experiments and
Section 5 concludes the paper.

2. Related work
We describe closely related work on static and spa-

tiotemporal saliency models and saliency models benefiting
from gaze following as a subcomponent.

Video Saliency: Most existing spatiotemporal saliency
models are based on adding various motion cues to the ex-
isting static hand-crafted features in the literature. Among
these, some are based on probabilistic modeling while oth-
ers use various spectral domain transformation for the fea-
ture integration stage. An early attempt was proposed by
Itti and Baldi [27] where motion energy is used along with
orientation, color and intensity contrast as static features.
In [22], intensity, color and motion features are combined
based on their spectral phase. Similarly, in [16], intensity,

color, texture and motion features are extracted and com-
bined based on the discrete cosine transform differences
while [14] uses two spatiotemporal Fourier transform to
compute video saliency. In [41], a dynamic center-surround
model based on the KullbackLeibler (KL) divergence be-
tween dynamic patches is proposed. The model in [26] uses
incremental coding length to maximize the entropy gain of
features on each frame and models the temporal correla-
tion among consecutive frame as a Laplacian distribution.
In [15], spatial and temporal dissimilarity (based on motion
vectors) are linearly combined. In [49], the difference be-
tween the optical flow and accumulated flow map is linearly
combined with low-level static features.

There are also spatiotemporal models based on hand-
crafted features which use various learning algorithm for
the feature integration stage. In [17], static features such
as color, intensity and texture are combined with optical
flow using uncertainty weighing. In [43] , optical flow-
based temporal HoG and MBH descriptor are calculated
and their bag of words representation are used to train a
multiple kernel learning model. In Rudoy et al. [56], static
candidate locations and motion candidates are employed by
a random forest regressor. In [33], motion features, based
on the number of bits needed to encode a video patch by
an optimal encoder, is used to train a Markov random field.
Similarly in [65], a video coding feature is used to train a
support vector machine for video saliency. The CMASS
method [45] uses three-layered fully connected neural nets
to fuse static features, ranging from color channels to ex-
isting saliency models, with dense optical flow fields. And
finally, spatiotemporal models based on feature-learning in-
cludes [10], where a five-layer convnets is trained on RGB
color planes and residual motion for each video frame and
the recent work in [39], which uses RGB color planes, dense
optical flow map, depth map and the previous saliency map
are fed to a seven-layered encoder-decoder structure.

Static Saliency: The recent advancements in static
saliency are mostly benefited from the advent of deep neu-
ral networks. The eDN model [62] uses convnet-based fea-
ture extractors and linear SVM classifier. Similarly, the
model in [40] uses three convnets, each trained for a spe-
cific scale, are followed by two fully connected layers.
Other models usually benefit from transfer learning in their
convnets. More recent models use transfer learning and
fine-tune the state-of-the-art models in object recognition.
Namely, DeepGaze [38] uses pre-trained AlexNet, SALI-
CON [29] benefits from two pre-trained convnets, DeepFix
[36] and ML-Net [11] are based on the pre-trained VGG
network. The recent model in [46] contains ten convolu-
tional layers with the first three initialized using the VGG
network.

Gaze following: Parks et al. [47] proposed a static atten-
tion tracking model which predicts whether the next fixation



Figure 2: Dynamics of Attentional Push: Viewers eye fixation
pattern after the actor changes his gaze direction. From left to
right: time frame 1, time frame +300ms, time frame +600ms and
time frame +1500ms.

is gaze related or being saliency driven using a two-state
Markov chain. Our model is inspired by the Attentional
Push model in [21], which augments static saliency mod-
els with the actors gaze for static scenes. While the model
in [21] only uses a single Attentional Push cue and is only
applicable for static images, in this work, we extend the At-
tentional Push notion to augment static saliency models to
deal with dynamic stimuli. Similarly, Recasens et al. [50]
proposed a two-stream convnet to learn the gazed-at object
in a scene and recently, they extend the model in [50] to es-
timate the gaze-at object on videos [51]. Although related,
there is a major distinction between saliency prediction and
gaze following. While the model in [50] focuses on estimat-
ing the gazed-at objects in a scene, from the point of view
of the scene actor, our model learns the impact of the actors
gaze upon the viewers attention. Although there are cases
in which the actors gaze pushes the viewers attention to the
gazed-at object(s), this does not hold in all circumstances.
Consider situations in which there are multiple objects in
the actors gaze direction. From the point of view of [50],
the actor is looking at one the objects. From our point of
view, the viewers attention is pushed to all of these poten-
tial foci of attention with some uncertainty. This is why in
our model we limit the input of the gaze following path-
way to a cropped region around the actors face and do not
feed the whole image content to it. This enables our model
to learn and benefit from the manipulating effect of the ac-
tors gaze direction on viewers attention. Similarly, when
an actor is looking at something that fall outside the current
video frame, the model in [51] looks for possible attended
objects on separate video frames, while our model learns
the manipulating effect of the actors gaze direction both on
the same frame, and by using the recurrent structure, con-
secutive next frames.

3. Network Architecture

While being effective in static scenes, the Attentional
Push effect becomes stronger in dynamic situations where
the viewer is in a more immersive shared attention setting
and is more likely to be affected by the scene actors. In-
spired by [21], our attention augmentation model is based
on a shared attention setting, in which the viewer, the scene

actors and the photographer are all participant in the activ-
ity occurring in the scene. While the viewer has no con-
trol over what is going on in the scene, the attentional state
of the scene actors and the photographer can nonetheless
affect the viewer attention. We explicitly model the ma-
nipulating effect of the scene actors and the photographer
via time-varying Attentional Push maps. In this work, we
use three Attentional Push cues, i.e. actors gaze, attentional
bounce and abrupt scene changes and combine them with
static saliency to estimate the fixation patterns on videos.

Figure 2 shows a time-sampled video frame sequence of
a scene where the actor changes his gaze direction. Let us
consider the video sequence as separate static images first.
Since the contents of the images are similar, we can expect
that in a static setting, the viewers fixation patterns would
be nearly identical and we can expect the Attentional Push
effect of the actors gaze to similarly influence the viewers
attention in all three images. However, it is clear that in the
actual dynamic setting, the Attentional Push effect varies
over time. While being the strongest attentional cue after
the actor gaze shift, it becomes less influential and the view-
ers fixation patterns diverge to other stimuli during the fol-
lowing video frames. This inherent dynamic nature of the
Attentional Push effect requires the attention augmentation
model to either learn time-varying Attentional Push maps
or use a non-static augmentation procedure. Our proposed
methodology learns the time-varying manipulating effect of
Attentional Push using recurrent mechanisms. As shown
in Figure 3, we employ a multi-pathway structure and em-
ploy Convolutional LSTM modules to learn the dynamics
of each Attentional Push cue. In addition, to benefit from
the strong temporal correlation of the fixation patterns in
consecutive video frames, a ConvLSTM cell is also used in
the saliency pathway. This ensure the propagation of pre-
vious information throughout the model. In the following
sections, we describe each subsystem and the training pro-
cedure of the proposed methodology.

3.1. Saliency Pathway

The saliency pathway embeds state-of-the-art static
saliency models. Given a video frame I(t) ∈ Rcols×rows×3

at time t, the static saliency sstatic(t) ∈ Rcols×rows×1 is
computed and fed to a ConvLSTMs module. ConvLSTMs
are variants of the LSTM [25] where convolutional oper-
ations are used instead of the original dot products. This
not only significantly reduces the number of parameters, but
also exploits the underlying local spatial dependencies be-
tween nearby pixels.

Let x(t), h(t) and c(t) denote the input, hidden unit and
the memory cell of a ConvLSTM module. The update equa-
tions of the ConvLSTM module are:

i(t) = σ(Wxi ∗ x(t) +Whi ∗ ht−1 + bi) (1)



Figure 3: Network Architecture: Our network contains four pathways, a saliency pathway and three Attentional Push pathways, gaze
following, rapid scene changes and attentional bounce. The network computes the augmented saliency map s̃(t) for each video frame I(t).

f(t) = σ(Wxf ∗ x(t) +Whf ∗ ht−1 + bf ) (2)

o(t) = σ(Wxo ∗ x(t) +Who ∗ ht−1 + bo) (3)

g(t) = tanh(Wxc ∗ x(t) +Whc ∗ ht−1 + bc) (4)

c(t) = f(t) · c(t− 1) + i(t) · g(t) (5)

h(t) = o(t) · tanh(c(t)) (6)

where W and b are trainable 2-D convolutional kernels and
biases while i(t), f(t) and o(t) denote the input, forget and
output gates of the LSTM, respectively. We sequentially
pass static saliency maps to the ConvLSTM input by setting
x(t) = sstatic(t), and obtain a refined sequence of time-
correlated saliency maps as s(t) = h(t). During training,
the saliency ConvLSTM learns to estimate video saliency,
by leveraging the temporal correlation between consecutive
static saliency maps. This enables our model to benefit from
complementary saliency-based and Attentional Push-based
information.

3.2. Gaze Following

We formulate the problem of estimating the actors gaze
as classifying the gazed-at location to one a pre-defined set
of possible locations on an M ×M spatial grid. We used
a similar structure as [21] for the static gaze estimation net-
work. The network is based on the VGG-16 model and
consists of fourteen weight layers, four of which are fully
connected layers, and four max-pool layers, three of which
having strides of two. We provide a cropped image region

around the actor’s head and the location of the head within
the M × M spatial grid. Given the head location of the
actor as (xhead(t), yhead(t)), we extract a close-up head re-
gion as F (t) and resize it to 224 × 224 pixels. We provide
partial head and gaze location annotations for the training
set (see Section 4.1). For testing, a YOLO9000-based face
detector [52] is used to locate the actors head. This makes
the final feature maps to be of the size of (28× 28× 512).
The first fully connected layer is responsible to project the
above into a compressed representation, which is then con-
catenated with the flattened head location and is fed through
the remaining weight layers. A softmax layer is applied to
the output of the last layer to obtain a 2-D probability dis-
tribution of the actor’s gaze over the M ×M spatial grid.
The above static Attentional Push map is then fed to a Con-
vLSTM module to deal with the dynamic aspect of Atten-
tional Push effect. When a new gaze shift occurs, the LSTM
learns to use the forget gate f(t) to erase the previous mem-
ory and to transfer the current Attentional Push input to the
memory cell (Eqn. 5) and therefore, to the output AP1(t),
given by Eqn. 6. On the other hand, during the subsequent
video frames for which the input Attentional Push map re-
mains mostly the same, the LSTM learns to apply temporal
inhibition of the current input.

3.3. Attentional Bounce and Rapid Scene Change

Bounce of attention occurs when an attended scene ac-
tor moves off the screen to one side. As shown in Fig-
ure 1, this pushes the viewers attention to the center of



the screen. To incorporate the bounce of attention and
rapid scene change, we use a set of 2-D Gaussian func-
tions with diagonal covariance matrices. Similar to [36],
we use 16 Gaussian blobs with fixed horizontal and vertical
variance as static Attentional Push maps. For each video
frame, a binary map is generated based on the detection of
bounce of attention b(t) and rapid scene change r(t), where
r(t), b(t) ∈ Rcols×rows, and {rij}, {bij} ∈ {0, 1}. Using
element-wise multiplication, these signal are used as gates
to control the corresponding ConvLSTM modules. Upon
detection of the bounce of attention or rapid scene change,
the corresponding signal is set which allows the Gaussian
priors to be fed to the ConvLSTM module. The LSTM
learns to forget the previous memory and to transfer the in-
put Attentional Push maps to its hidden state and therefore,
its output (AP2(t) and AP3(t) in Figure 3). When the de-
tection signals go back to zero during the subsequent video
frames, zero-filled maps are fed to the LSTM instead, which
learns to apply temporal inhibition on the subsequent output
frames. To detect rapid scene changes we adopt the method
in [34] which is based on comparing the edge strength and
orientation of consecutive video frames. To detect bounce
of attention, we adopted the tracking method in [63] on the
head location data.

3.4. Augmented Saliency

To fuse the saliency and the Attentional Push pathways,
we use a set of trainable dilated convolutional layers. Hav-
ing strides of larger than one, effectively increases the re-
ceptive field of each convolutional kernel without increas-
ing the network parameters. The last convolutional layer
has a (1 × 1) kernel which effectively maps the deep fea-
tures of the previous layer into the augmented saliency map,
s̃(t). The augmenting convnet is trained to learn an opti-
mal combination strategy to fuse the complementary infor-
mation given by the saliency and Attentional Push ConvL-
STMs.

4. Evaluation and Comparison
4.1. Datasets

We use the three largest video eye tracking datasets to
train, validate and test the performance of proposed method-
ology which are summarized in Table 1.

DIEM is a widely used dataset, containing 84 videos and
free-viewing fixation data from 50 subjects. The dataset
contains videos from various categories and a wide range of
duration (20 to more than 200 seconds). We use 40 videos
(more than 104k frames) containing human activities from
the DIEM dataset, ranging from movie trailers, news seg-
ments, advertisements and sport scenes. We use 30 videos
for training, 5 for validation and 5 for performance evalua-
tion. We provide partial head location and gaze annotations

for 8 training videos ( 12k frames) which are used during
the fine-tuning of the whole model.

HOLLYWOOD2 is the largest dynamic eye tracking
dataset containing 823 training and 884 validation se-
quences, with free-viewing fixation data for 3 subjects (we
only used the data under the free-viewing condition). The
videos in this dataset are short video sequences from a set
of 69 Hollywood movies, containing 12 different human ac-
tion classes, ranging from answering phone, eating, driv-
ing, running and etc. We use all the training sequences and
split the validation set into a 442 validation and 442 test
sequences. We also provide partial head location and gaze
annotations on 35 training videos ( 11k frames) which are
used during the fine-tuning of the whole model.

UCF-Sports dataset contains 150 videos on 9 sports ac-
tion classes with an average duration of 6.39 seconds. We
divide the videos of this dataset onto a training set contain-
ing 100 videos, a validation set with 10 videos and a test set
with 40 videos. We provide partial head location and gaze
annotations for 40 training videos ( 2500 frames) which are
used during the fine-tuning of the whole model.

In addition, we use the large-scale static gaze following
dataset, GazeFollow [50], for pre-training the gaze-follow
convnet, as suggested in [21].

4.2. Evaluation protocol

Static saliency models: We evaluate the performance
of the proposed model with several state-of-the-art in spa-
tiotemporal saliency models. To illustrate the effectiveness
of dynamic Attentional Push in augmenting static saliency
models, we use several neural network-based and tradi-
tional static saliency models and train and test the perfor-
mance of the network in Figure 3. We use four neural
network-based, i.e. eDN [62], ML-Net [12], SalNet [46]
and SAM-ResNet [13], and two best-performing traditional
static saliency models, BMS [67] and RARE [54]. For eval-
uation, we report the performance of the models using three
popular evaluation metrics: the Area Under the ROC Curve
(AUC), the Normalized Scan-path Saliency (NSS), and the
Correlation Coefficient (CC) to ensure that the main quali-
tative conclusions are independent of the choice of metric.
We use the implementation of the evaluation scores from
[7].

Training: To the best of our knowledge, an eye track-
ing database for video sequences containing the actors gaze
information is yet to be developed. As noted in 4.1, we pro-
vide head and gaze annotations for a subset of the training
sets ( 25k frames), which constitutes a small portion of the
available data. Furthermore, if not pre-trained, the atten-
tional bounce and the rapid scene change ConvLSTM mod-
ules are likely to diverge during training, given the sparse
nature of the corresponding detections. Therefore, we do
not proceed by training the whole model in Figure 3, and



Table 1: Summaries of the used datasets. The last three columns indicate the number of videos for each case.
Dataset Annotations Viewers Added annotations Training Validation Test
DIEM Eye movement 50 Partial Head & gaze location 30 5 5
HOLLYWOOD2 Eye movement 3 Partial Head & gaze location 823 442 442
UCF-Sports Eye movement 3 Partial Head location 100 10 40
GazeFollow Head and gaze location Crowd - 119125 3018 -

instead pre-train each of the four pathways separately, and
then fine tune the model using the annotated portion of the
training sets. To pre-train each pathway, we use stochastic
gradient descent to minimize the KL divergence between
the corresponding ConvLSTM output and the ground truth
fixation density map. Given two probability distribution
maps P,Q ∈ R2, the KL-divergence loss measures the loss
of information when P is used to estimate Q and is given

byKL(P,Q) = ΣiQi log(
Qi

Pi
) where i varies over all pixel

locations. The kernel parameters of all ConvLSTMs are ini-
tialize by the Xavier method [20], and their hidden states
and memory cells are initialized to zero.

We pre-train the saliency ConvLSTM using all the train-
ing samples listed in Table 1 with a learning rate of 1×10−4

and a weight decay of 5 × 10−5. This way, the saliency
ConvLSTM is trained to estimate video saliency, by lever-
aging the temporal correlation between consecutive video
frames. This later enables the augmenting layers to benefit
from complementary saliency-based and Attentional Push-
based information. We use temporal segments containing
16 consecutive video frames from the training sets. Al-
though the training segments mostly contain more than 100
frames, we use training on shorter video clips as a method
of data augmentation. The training stops if the performance
saturates on the validation set, to prevent over-fitting.

The gaze-following pathway is pre-trained in two steps.
Following [21], the static gaze-following layers are first
trained on the GazeFollow dataset. We initialize the con-
volutional layers with the VGG-16 network while the fully
connected layers are randomly initialized by the Xavier
method. For this phase of training, stochastic gradient de-
scent is used to minimize the multinomial logistic regres-
sion loss between the soft-max output and the ground truth
gaze location, with a learning rate of 1× 10−5 for the fully
connected layers and a learning rate of 1 × 10−7 for the
convolutional layers. Drop-out and batch normalization are
used after each of the fully connected layers to speedup con-
vergence. Then, we train the gaze-following layers and the
corresponding ConvLSTM by minimizing the error on the
annotated subset of the training set. Here, we set the learn-
ing rate of the ConvLSTM to 1 × 10−5 while the learning
rate of the static gaze-following layers are set to 1 × 10−7.
This enables the gaze-following ConvLSTM to learn the
temporal dynamics of the Attentional Push map in estimat-
ing dynamic fixation patterns. To pre-train the attentional

bounce and the rapid scene change ConvLSTMs, we first
generate the corresponding detection signals r(t) and b(t)
for the entire training set in Table 1 and select temporal seg-
ments containing 16 consecutive video frames around each
positive detection. Given the smaller number of training in-
stances, we also use an overlap of 10 frames in cutting the
video clips and train the ConvLSTMs with learning rate of
1× 10−6, a weight decay of 5× 10−5 and a dropout rate of
0.25.

After pre-training, we then use the annotated portion of
the training set to fine-tune the whole model. The aug-
menting convolutional layers are randomly initialized with
the Xavier method and are trained by back propagating the
KL divergence loss between the augmented saliency maps
and the ground truth fixation densities with a learning rate
1× 10−5. During the fine-tuning stage, we set the learning
rate of the pre-trained modules to 1 × 10−7. We use the
validation performance to stop the training. A YOLO9000-
based face detector [52] is used during the validation and
for performance evaluation.

4.3. Results

In this section, we compare the accuracy of the aug-
mented saliency models in predicting video saliency with
three state-of-the-art in spatiotemporal saliency models,
OBDL [33] , Rudoy [56] and PQFT [23]. Table 2 com-
pares the prediction performance. The results clearly show
that the augmented saliency consistently improves upon
the static saliency models and achieve considerable perfor-
mance gain over spatiotemporal saliency models on all three
test sets. The results indicated that the augmented eDN
and augmented SAM-ResNet outperform all other mod-
els with a significant margin. Interestingly, although the
Rudoy model outperform four of the static saliency mod-
els, including the convnet-based ML-Net and SalNet, all
the augmented saliency models achieve considerable gain
over the Rudoy model showing that not only it is possi-
ble to benefit from the recent static saliency models in dy-
namic scenes, augmenting them with the dynamic Atten-
tional Push maps results in solid performance improvement
over the spatiotemporal models.

We perform ablation analysis to assess the relative im-
pact of each component in the augmented saliency. For
this, we use the eDN model and train an augmented eDN
model, with one or more components of the model in Fig-



Table 2: Average evaluation scores for the augmented saliency vs. static and spatiotemporal saliency models on the DIEM, HOLLY-
WOOD2 and UCF-Sports test sets.

DIEM HOLLYWOOD2 UCF-Sports
AUC NSS CC AUC NSS CC AUC NSS CC

ML-Net [12] 0.67 0.46 0.13 0.73 0.72 0.26 0.69 0.7 0.22
augmented ML-Net 0.82 1.84 0.41 0.84 1.85 0.41 0.83 1.88 0.49
SalNet [46] 0.72 1.31 0.26 0.73 1.16 0.31 0.70 0.87 0.21
augmented SalNet 0.85 1.94 0.54 0.84 1.79 0.43 0.84 1.72 0.42
SAM-ResNet [13] 0.88 1.98 0.43 0.87 1.96 0.46 0.89 2.01 0.49
augmented SAM-ResNet 0.91 2.34 0.54 0.91 2.29 0.55 0.92 2.31 0.58
eDN [62] 0.88 1.43 0.32 0.87 1.53 0.33 0.88 1.44 0.33
augmented eDN 0.90 2.21 0.42 0.90 2.11 0.49 0.90 2.15 0.49
RARE [54] 0.75 0.54 0.08 0.76 0.68 0.14 0.78 0.69 0.16
augmented RARE 0.84 1.16 0.26 0.83 1.32 0.27 0.85 1.19 0.35
BMS [67] 0.77 1.28 0.28 0.76 1.08 0.26 0.77 1.15 0.17
augmented BMS 0.85 1.66 0.35 0.85 1.68 0.36 0.84 1.55 0.35
Spatiotemporal Models
OBDL [33] 0.74 1.16 0.26 0.79 1.45 0.32 0.78 1.08 0.30
Rudoy [56] 0.78 1.31 0.36 0.79 1.37 0.33 0.78 1.34 0.34
PQFT [23] 0.70 0.8 0.19 0.70 0.7 0.14 0.7 0.75 0.16
STS [1] 0.88 2.18 0.48 0.82 2.13 0.48
RMDN [2] 0.90 2.64 0.61

Table 3: Ablation analysis of the proposed methodology. The re-
sults are based on eDN saliency and the DIEM test set.

NSS

Augmented saliency 2.21
No dynamic Attentional Push 1.53
Saliency and gaze following pathways 1.98
No gaze following 1.63
No attentional bounce 2.06
No rapid scene change 2.01
No saliency 1.89
Saliency pathway only 1.57
Static Saliency 1.43

ure 3 disabled at a time. We only report the NSS score for
comparison. The first and the last entries in Table 3 are the
baseline performance of the eDN and augmented eDN as re-
ported in Table 2. The second row reports the performance
by removing all the ConvLSTMs, which reduces the model
into the model in [21]. The results indicates that if the dy-
namic nature of Attentional Push is not employed, the aug-
mented model would perform marginally better compared
to the static model. The third entry is the result of aug-
menting the static saliency model with dynamic gaze fol-
lowing, which achieves considerable performance. Overall,
the results indicate that while dynamic gaze following has
the strongest effect, other Attentional Push push cues also
contribute to the performance of the augmented saliency.

5. Conclusion
We presented a framework which benefits from the re-

cent development in static saliency models in predicting the
fixation patterns on videos. Our model extends the notion of
Attentional Push and learns the dynamic influence of it upon
the viewers attention. Our multi-stream structure could be
readily extended to incorporate other abstract attentional
cues which cannot be learned either as the results of model
restrictions or the limited amount of available training data.
We performed extensive experimental tests and found the
augmented saliency models to outperform both the static
and spatiotemporal saliency models.
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[38] M. Kümmerer, L. Theis, and M. Bethge. Deep gaze I: boost-
ing saliency prediction with feature maps trained on ima-
genet. arXiv preprint, arXiv/1411.1045, 2014. 3

[39] G. Leifman, D. Rudoy, T. Swedish, E. Bayro-Corrochano,
and R. Raskar. Learning gaze transitions from depth to im-
prove video saliency estimation. In The IEEE International
Conference on Computer Vision (ICCV), Oct 2017. 2, 3

[40] N. Liu, J. Han, D. Zhang, S. Wen, and T. Liu. Predicting
eye fixations using convolutional neural networks. In The
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2015. 3

[41] V. Mahadevan and N. Vasconcelos. Spatiotemporal saliency
in dynamic scenes. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 32(1):171–177, Jan 2010. 3

[42] M. Mancas, V. P. Ferrera, N. Riche, and J. G. Taylor. From
Human Attention to Computational Attention. Springer,
2016. 2

[43] S. Mathe and C. Sminchisescu. Actions in the eye: Dynamic
gaze datasets and learnt saliency models for visual recogni-
tion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 37, 2015. 3

[44] P. K. Mital, T. J. Smith, R. Hill, and J. M. Henderson. Clus-
tering of gaze during dynamic scene viewing is predicted by
motion. Cognitive Computation, 3(1):5–24, 2011. 3

[45] T. Nguyen, M. Xu, G. Gao, M. Kankanhalli, Q. Tian, and
S. Yan. Static saliency vs. dynamic saliency: A comparative
study. In Proceedings of the 21st ACM International Confer-
ence on Multimedia, page 987996, 2013. 2, 3

[46] J. Pan, E. Sayrol, X. Giro-i Nieto, K. McGuinness, and N. E.
O’Connor. Shallow and deep convolutional networks for

saliency prediction. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2016. 3, 6, 8

[47] D. Parks, A. Borji, and L. Itti. Augmented saliency model
using automatic 3D head pose detection and learned gaze
following in natural scenes. Vision Research, 116, Part B:113
– 126, 2015. 2, 3

[48] T. Po-He, C. Ran, C. I. G. M., M. D. P., and I. Laurent. Quan-
tifying center bias of observers in free viewing of dynamic
natural scenes. Journal of Vision, 9(7):4, 2009. 2

[49] P. Polatsek, W. Benesova, L. Paletta, and R. Perko. Novelty-
based spatiotemporal saliency detection for prediction of
gaze in egocentric video. IEEE Signal Processing Letters,
23(3):394–398, March 2016. 3

[50] A. Recasens, A. Khosla, C. Vondrick, and A. Torralba.
Where are they looking? In Advances in Neural Informa-
tion Processing Systems (NIPS), 2015. 2, 4, 6

[51] A. Recasens, C. Vondrick, A. Khosla, and A. Torralba. Fol-
lowing gaze in video. In The IEEE International Conference
on Computer Vision (ICCV), Oct 2017. 4

[52] J. Redmon and A. Farhadi. YOLO9000: better, faster,
stronger. CoRR, abs/1612.08242, 2016. 5, 7

[53] P. Ricciardelli, E. Bricolo, S. M. Aglioti, and L. Chelazzi.
My eyes want to look where your eyes are looking: Explor-
ing the tendency to imitate another individuals gaze. Neu-
roreport, 13(17):2259–2264, 2002. 2

[54] N. Riche, M. Mancas, M. Duvinage, M. Mibulumukini,
B. Gosselin, and T. Dutoit. Rare2012: A multi-scale rarity-
based saliency detection with its comparative statistical anal-
ysis. Signal Processing: Image Communication, 28(6):642–
658, 2013. 6, 8

[55] R. Rosenholtz, A. Dorai, and R. Freeman. Do predictions of
visual perception aid design? ACM Trans. Appl. Percept.,
8(2):12:1–12:20, Feb. 2011. 1

[56] D. Rudoy, D. B. Goldman, E. Shechtman, and L. Zelnik-
Manor. Learning video saliency from human gaze using can-
didate selection. In 2013 IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 1147–1154, June 2013.
3, 7, 8

[57] J. Shen and L. Itti. Top-down influences on visual attention
during listening are modulated by observer sex. Vision Re-
search, 65(Supplement C):62 – 76, 2012. 2

[58] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint,
arXiv:1409.1556, 2014. 2

[59] T. J. Smith. The attentional theory of cinematic continuity.
Projections, 6(1):1–27, 2012. 2

[60] R. Subramanian, V. Yanulevskaya, and N. Sebe. Can com-
puters learn from humans to see better?: Inferring scene se-
mantics from viewers’ eye movements. In Proceedings of the
19th ACM International Conference on Multimedia, pages
33–42. ACM, 2011. 2

[61] A. M. Treisman and G. Gelade. A feature-integration theory
of attention. Cognitive Psychology, 12(1):97–136, 1980. 1

[62] E. Vig, M. Dorr, and D. Cox. Large-scale optimization of hi-
erarchical features for saliency prediction in natural images.
In Computer Vision and Pattern Recognition (CVPR), 2014
IEEE Conference on, pages 2798–2805, June 2014. 2, 3, 6,
8



[63] L. Wang, W. Ouyang, X. Wang, and H. Lu. Visual tracking
with fully convolutional networks. In 2015 IEEE Interna-
tional Conference on Computer Vision (ICCV), pages 3119–
3127, Dec 2015. 6

[64] Z. Wu, L. Su, Q. Huang, B. Wu, J. Li, and G. Li. Video
saliency prediction with optimized optical flow and gravity
center bias. In 2016 IEEE International Conference on Mul-
timedia and Expo (ICME), pages 1–6, July 2016. 2

[65] M. Xu, L. Jiang, X. Sun, Z. Ye, and Z. Wang. Learning to
detect video saliency with hevc features. IEEE Transactions
on Image Processing, 26(1):369–385, Jan 2017. 3

[66] P. Xu, K. A. Ehinger, Y. Zhang, A. Finkelstein, S. R.
Kulkarni, and J. Xiao. Turkergaze: Crowdsourcing
saliency with webcam based eye tracking. arXiv preprint,
arXiv:1504.06755, 2015. 2

[67] J. Zhang and S. Sclaroff. Exploiting surroundedness for
saliency detection: A boolean map approach. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (TPAMI),
2015. 6, 8


